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Vortex bound state of a Kondo lattice coupled to a compensated metal
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We theoretically study physical properties of the low-energy quasiparticle excitations at the vortex core in
the full-gap superconducting state of the Kondo lattice coupled to compensated metals. Based on the mean-
field description of the superconducting state, we numerically solve the Bogoliubov-de Gennes (BdG) equations
for the tight-binding Hamiltonian. The isolated vortex is characterized by a length scale independent of the
magnitude of the interaction and the energy level of the core bound state is the same order as the bulk gap.
These properties are in strong contrast to the conventional s-wave superconductor. To gain further insights,
we also consider the effective Hamiltonian in the continuous limit and construct the theoretical framework of
the quasiclassical Green’s function of conduction electrons. With the use of the Kramer-Pesch approximation,
we analytically derive the spectral function describing the quasiparticle excitations which is consistent with
the numerics. It has been revealed that the properties of the vortex bound state are closely connected to the
characteristic odd frequency dependence of both the normal and anomalous self-energies which is proportional
to the inverse of frequency.
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I. INTRODUCTION

Superconductors are classified into two types by the mag-
netic responses to the applied field [1]. Type-I superconductor
excludes the magnetic flux from the bulk and turns into the
normal state at the critical field. On the other hand, the
magnetic flux can penetrate into the type-II superconductor,
where the superconducting order parameter becomes spatially
nonuniform and the quantum vortices are formed. The physics
of the superconducting vortex has been studied intensively
[2]. For instance, the s-wave superconductor with the applied
magnetic field forms the vortex and has the low-energy bound
state known as Caroli-de Gennes-Matricon (CdGM) mode
[3]. The topologically nontrivial vortex bound state in the
iron-based compounds has been studied for their application
to the quantum computation [4–6]. The quasiparticle excita-
tion spectrum in real space can be observed by the recent
advanced experiments such as scanning tunneling microscope
measurements [7,8].

Recently, motivated by the experiments that identify a
full-gap nature of the superconducting states of CeCu2Si2 and
UBe13 [9,10], we have proposed a mechanism of the full-gap
superconductivity relevant to compensated metals interacting
with the localized spin/pseudospin moments [11]. This mech-
anism is associated with a frustration originating from the
multichannel Kondo effects [12,13]: The overscreened local-
ized moment mediates the quantum-mechanical superposition
between the electron Fermi surface and the hole Fermi surface
to form the Bogoliubov quasiparticle [11]. The resultant U(1)
symmetry breaking is characterized not by a conventional
Cooper pair amplitude among the conduction electrons but
by a composite pair amplitude [12,14–19], which describes
a three-body bound state involving itinerant electron, hole,
and localized spin/pseudospin moment. We have studied the

Meissner response to the uniform field and revealed that the
magnetic penetration depth is longer than the usual BCS
superconductor [11]. In addition, we have also found that the
uniform magnetic field induces the second-order transition
[20], while the conventional BCS superconductor shows only
the first-order transition at the Pauli limit. We thus expect
that the physical properties of the low-energy quasiparticles
within the vortex core are also different since the localized
spin/pseudospin, which is described as an effective fermionic
degree of freedom, mediates the formation of the Bogoliubov
quasiparticle.

In this paper, we study the low-energy properties of the
isolated vortex in the Kondo lattice with compensated metallic
conduction bands (CMCB-KL). For this purpose, we uti-
lize the mean-field approximation [11,21,22] to describe the
superconducting state. We consider the Kondo lattice with
non-Kramers pseudospins, which has been suspected as an
origin of some heavy-electron superconductors with non-
Fermi liquid behavior [13]. We first discuss the tight-binding
model numerically and show characteristic properties of the
vortex in the CMCB-KL; the length scale of the vortex bound
state in the CMCB-KL is independent of the magnitude of
the order parameter, in contrast to the BCS superconductors,
where the length scale is proportional to the inverse of the
superconducting gap function �. The energy level spacing of
the core states is the order of a bulk superconducting gap, and
this point is also different from the BCS case where its level
spacing is the order of �2/EF with EF (��) being the Fermi
energy. To further elucidate the low-energy properties of the
CdGM mode, we derive the Eilenberger equation, which is
the quasiclassical version of the Dyson-Gor’kov equation. In
the derivation process, we find that the superconducting elec-
trons feel the self-energy inversely proportional to frequency,
i.e., the odd-frequency superconductivity is realized in the
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CMCB-KL. With the use of the Kramer-Pesch approximation
[23,24], which is used to analyze the vortex bound state in
the BCS superconductor, we derive the energy dispersion of
the CdGM mode in the CMCB-KL and reveal that the unique
physical properties are associated with the characteristic fre-
quency dependence of the self-energy.

The rest of this paper is organized as follows. In Sec. II, we
present numerical results for the tight-binding model, which
are obtained by solving the Bogoliubov-de Gennes (BdG)
equation for a finite-sized system self-consistently. In Sec. III,
we introduce the effective Hamiltonian in the continuum limit
of the tight-binding model to investigate the physical origin of
the characteristics of the vortex. The summary of our work is
given in Sec. IV. In the following, we take h̄, kB and the lattice
constant a as unity.

II. TIGHT-BINDING MODEL

A. Mean-field theory

We introduce the tight-binding model of the CMCB-KL.
Focusing on the non-Kramers �3 doublet as the ground state
of the localized f electron with f 2 configuration in cubic
symmetry [13], the Kondo lattice model is given by

H = H0 + Hint,

H0 =
∑

〈i, j〉ασ

ti j (c
†
iασ c jασ + H.c.) − μ

∑
iασ

σ z
ααniασ , (1)

Hint = 1

2
J

∑
iαα′σ

T i · c†
iασ σαα′ciα′σ , (2)

where ciασ (c†
iασ ) is an annihilation (creation) operator of

the conduction electron. The corresponding particle number
operator is given by niασ = c†

iασ ciασ . The index i denotes
the lattice site located at Ri. σ =↑,↓ describes the Kramers
indices associated with the time-reversal symmetry. α = 1, 2
stands for the band index of the compensated metal. We have
introduced the 2 × 2 Pauli matrix σ = (σ x, σ y, σ z ). T i is the
local pseudospin moment describing the non-Kramers doublet
and couples with the conduction electrons through the band
index α. J is the coupling constant of the two-channel Kondo
interaction. We note that the symmetry of the Kondo coupling
between σ =↑ and ↓ is preserved by the time-reversal sym-
metry [11]. Therefore, the frustration on the Kondo screening
between spin-up electron and spin-down electron remains and
can cause superconductivity.

Assuming that the vortex penetrates into the thin film of
the superconductor, we now consider the square lattice for
simplicity. The spatial coordinate is written as Ri = (Xi,Yi ),
where Xi = ix − (Nx − 1)/2 (ix = 0, · · · , Nx − 1) and Yi =
iy − (Ny − 1)/2 (iy = 0, · · · , Ny − 1). The number of the lat-
tice sites is N = NxNy. ti j = −t is the hopping amplitude on
the nearest neighbor bond in the square lattice. The onsite
potential μ (<0) resolves the degeneracy between α = 1, 2
to form the compensated metallic conduction bands. The
single-particle energy dispersion of conduction electrons is
then given by

ξkα = −2t (coskx + cosky) − μσ z
αα. (3)

In this setup, ξk1 has an electron Fermi surface around the �

point [k = (0, 0)], while ξk2 has a hole Fermi surface around

FIG. 1. Schematic picture of the tight-binding model. Blue and
pink curved surfaces, respectively, represent the dispersion relation
of ξk1 and that of ξk2. Gray plane represents the Fermi energy and the
black border describes the Brillouin zone (BZ) in the square lattice.
Blue and pink dotted circles on the gray plane, respectively, describe
the electron Fermi surface and the hole Fermi surface.

the M point [k = (π, π )] whose size is the same as that of the
electron Fermi surface. (See also Fig. 1.) The Fermi energy EF

measured from the bottom of ξk1 is expressed as EF = 4t +
μ. The equivalence of the Fermi volume of the electron band
and that of the hole band is always guaranteed in the case of
compensated metals.

We next introduce the mean fields describing the super-
conducting state. To this end, we first rewrite the localized
moment T i in terms of the pseudofermion degrees of freedom
{ fi1, fi2}, which is introduced as follows,

T i = 1

2

∑
αα′

f †
iασαα′ fα′ , (4)

with
∑

α f †
iα fiα = 1, which is the constraint on the localized

pseudofermion at each site. Assuming that this constraint is
satisfied in average as

∑
α〈 f †

iα fiα〉 = 1, then the interaction
term can be decoupled in the mean-field approximation as
follows,

Hint �
∑

iα

(V ∗
iα↑c†

iα↑ + W ∗
iᾱ↓εαᾱciᾱ↓) fiα + H.c., (5)

where ᾱ is the complementary component of α such as 1̄ =
2. ε̂ = iσ̂ y is the antisymmetric unit tensor. The mean-field
amplitudes (Viα↑,Wiᾱ↓) are defined as follows,

Viα↑ = J

4
(〈 fiαc†

iα↑〉 + 2〈 fiᾱc†
iᾱ↑〉), (6)

Wiᾱ↓ = J

4
εαᾱ (〈 fiαciᾱ↓〉 − 2〈 fiᾱciα↓〉). (7)

We here assume the s-wave symmetry of the order parameters
since the original Kondo coupling is local. To satisfy the con-
straint on the pseudofermion number, in general we need to
add the potential term ε f

∑
iα ( f †

iα fiα − 1) with the Lagrange
multiplier ε f to the Hamiltonian. However, we can take ε f =
0 in the non-Kramers doublet systems due to the particle-hole
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symmetry of the superconducting state [11]. Then, the BdG
Hamiltonian in the CMCB-KL is given by

HBdG =
∑

α



†
αĤα 

α + const., (8)

Ĥα =

⎛
⎜⎝

ξ̂α 0 V̂ †
α↑

0 −ξ̂T
ᾱ Ŵ †

ᾱ↓
V̂α↑ Ŵᾱ↓ 0

⎞
⎟⎠, (9)

where 

α = (
cα↑ 
c †
ᾱ↓ 
fα )T is the Nambu ba-

sis with 
cασ = (c1ασ , c2ασ , · · · , cNασ )T and 
fα =
( f1α, f2α, · · · , fNα )T . The matrix elements of each
block matrix are then given by (ξ̂α )i j = ti j − μσ z

ααδi j ,
(V̂α↑)i j = Viα↑δi j , and (Ŵᾱ↓)i j = Wiᾱ↓εαᾱδi j .

The conduction electrons are hybridized with the pseud-
ofermions by the mean fields, which effectively describe
the formation of the heavy-fermion band [11,21,22]. This
Fermi-liquid picture of the Kondo lattice is justified in the
low-temperature limit, where the coherence among the local
Kondo clouds is activated well [25]. Although the introduction
of the mean fields is asymmetric with respect to the spin
indices, this property is associated with the fact that the
definition of the pseudofermion in Eq. (4) is not unique [22].
The symmetry between up and down spin indices is preserved
if we evaluate the physical quantities in terms of the original
physical degrees of freedom, i.e., the field operator of the
conduction electrons and the pseudospin moment T i. Indeed,
the superconducting state in the CMCB-KL is described by
the formation of the composite pair amplitude [11]

�iαα′σσ ′ ≡ 〈T i · ciασ σαα′ciα′σ ′ 〉, (10)

∝ V ∗
α↑Wᾱ↓εσσ ′εαα′ (11)

which has symmetric form between spin up and down. There-
fore, the U(1) symmetry breaking is characterized by the
coexistence of the mean-field amplitudes in Eqs. (6) and (7).

B. Numerical results

1. Method of numerical solution for isolated vortex

We here solve Eqs. (6) and (7) by iterative method to obtain
the self-consistent solutions of the mean-field amplitudes. In
order to consider a simple compensated metallic situation,
where the electron Fermi surface and the hole Fermi surface
are separated, we take μ/t = −3 (EF = t). We focus on the
physical properties of the isolated vortex by assuming that
the magnetic field is weak so that the distance between the
penetrating vortices is large enough.

We choose the open boundary condition for the matrix
elements of the hopping term in the BdG Hamiltonian. In
addition, we consider the type-II limit with long enough
London penetration depth, because the superconducting state
in the CMCB-KL shows the magnetic penetration depth much
larger than the usual value in the BCS theory [11]. We then
ignore the vector potential A to describe the vortex as the topo-
logical defect of the velocity potential of the superconducting
electrons. In order to describe the single vortex, we use the

nonuniform initial value for the mean fields, which are given
by

Viα↑ = |Viα↑|eiθiα↑ , (12)

Wiᾱ↓ = |Wiᾱ↓|eiθiᾱ↓ , (13)

where θiασ = νασ tan−1(Yi/Xi ) with the integer νασ =
0,±1,±2, · · · . tan−1(Yi/Xi ) ≡ ϕ(Ri ) is the azimuth angle in
the two-dimensional polar coordinate systems. We note that
the vorticity of the superconducting electrons is characterized
by the difference δνα = να↑ − νᾱ↓ because the composite
pair amplitude �iαα′,σσ ′ is decoupled into

�iαα′,σσ ′ ∝ |Viα↑||Wiᾱ↓|exp[−iδναϕ(Ri )] (14)

within the mean-field theory. Therefore, the physical proper-
ties of the superconducting state with (να↑, νᾱ↓) = (1, 0) is
equivalent to those with (να↑, νᾱ↓) = (0,−1). We therefore
take να↑ = +1 and νᾱ↓ = 0 to describe the vortex with the
single flux quanta in the following. As a criterion for con-
vergence of the iteration, we use the threshold 10−4 for the
relative error of the mean fields at all the sites. In addition
to the vortex state, we will also consider the nontopological
defect by introducing the impurity at the center of the system
for comparison.

2. Isolated vortex state as topological defect

We first study the characteristic length scale of the vortex.
In the BCS superconductor, the parameter dependence of the
length scale ξ is given by ξ ∼ vF/�, where � is the bulk
gap of the superconducting state and vF is the Fermi velocity.
On the other hand, the parameter dependence of the length
scale in the CMCB-KL is unclear because there are two-
characteristic energy scales, i.e., the hybridization gap |V | =
|Vα↑| = |Wᾱ↓| and the Kondo gap �K ∼ ρ(0)|V |2, where
ρ(0) is the density of states at the Fermi level. Therefore we
first look into the spatial variation of the order parameter to
study the characteristic length scale in the CMCB-KL. The
self-consistent solutions of the mean-field amplitudes are
shown in Fig. 2. The absolute value of the mean fields in
the CMCB-KL is shown in panel (a), where the condition
|Vi1↑| = |Vi2↑| = |Wi1↓| = |Wi2↓| ≡ |Vi| is always satisfied.
Since the solutions |Vi| are symmetric with respect to Yi = 0,
we take Yi = 1/2 to study the spatial variation near the vortex
core. The mean-field amplitude is slightly suppressed near
the center of the vortex and is restored at a length of about
the lattice constant. In addition, the spatial distribution of the
mean fields are well scaled by the real-space average of the
order parameter |V̄ | = ∑

i |Vi|/N . This parameter independent
behavior is in contrast to the BCS superconductor where the
core radius spreads out with decreasing the magnitude of
the order parameter as shown in Fig. 2(b) for comparison,
where we show the order parameter of the BCS s-wave
superconducting state obtained by solving the BdG equation
for the attractive Hubbard model (see Appendix A for more
details). We see that the length scale becomes short even in
the BCS theory when we use the strong attraction. Hence
the appearance of the short length scale indicates that the
superconducting electrons experience the large mean field. As
discussed later (Sec. III), this unusual property is connected
to the characteristic pair potential in the CMCB-KL.
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FIG. 2. Self-consistent solutions of the order parameters in the presence of the vortex for Nx = Ny = 64. Yi = 1/2. In panels (a) and (b), the
amplitudes of the order parameters are, respectively, normalized by the real-space average as (a): |V̄ | = ∑

i |Vi|/N and (b): |�̄| = ∑
i |�i|/N .

Panels on the right-hand side show (c) the derivative of the order parameters in the CMCB-KL δ|V (Xi + 1/2)| = |V (Xi + 1)| − |V (Xi )| and
(d) that in the BCS model δ|�(Xi + 1/2)| = |�(Xi + 1)| − |�(Xi )|. Xi = 0 and Xi = 32, respectively, represent the coordinate of the center of
the vortex and that of the boundary, which is parallel to the y axis. The markers (circle, triangles, square), represent the parameters shown in
each panel. The Fermi energy is EF/t = 1 and the temperature is T = 0.

To clearly show the parameter dependence of the length
scale, we next calculate the derivative of the order parameters
δ|V (Xi + 1/2)| = |V (Xi + 1)| − |V (Xi )| on discretized mesh
of the tight-binding model. Figures 2(c) and 2(d), respectively,
show the log-log plot of the derivative of the order parameter
in the CMCB-KL and that in the BCS model. In both of
the figures, we see that the derivative shows the Friedel
oscillation, whose periodicity is the order of k−1

F , where kF

is the Fermi wave number, and decays as it goes away from
the center of the vortex (Xi = 0) or from the system boundary
(Xi = 32).

In Fig. 2(c) for the CMCB-KL, the length scale of the
decay near the vortex core is not sensitive to the parame-
ters. On the other hand, it is notable that the characteristic
length scale near the boundary depends on the choice of the
parameter and becomes larger with decreasing |V̄ |. Such a
behavior is consistent with the coherence length ξ = vF/|V |
[11], where vF and |V |, respectively, denote the Fermi veloc-
ity and the mean-field amplitude in the homogeneous case.
Hence the characteristic length scale for the vortex core is
different from ξ . This fact implies the possibility that the
characteristic length in the CMCB-KL is determined irre-
spective of the interaction term and hence is given by the
lattice constant. In the BCS superconductor, for reference,
both of the length scale near the vortex core and that near
the boundary vary depending on the parameters as shown in
Fig. 2(d).

To obtain further insight on the characteristic length scale
in the CMCB-KL, we also calculate the self-consistent so-
lutions in the presence of the nontopological defect instead
of the vortex. We introduce the nonmagnetic onsite potential

Uimp in the BdG Hamiltonian, which is given by

Uimp =
∑

iα

ui(niα↑ + niα↓ + ni f α ), (15)

where ni f α = f †
iα fiα . The summation with respect to i runs

over (Xi,Yi ) = {(±1/2, 1/2), (±1/2,−1/2)} around the ori-
gin. We take the amplitude of the potential as ui/t = 40, so
that the electrons and the pseudofermion cannot come to these
impurity sites. In Fig. 3, we show the self-consistent solutions
[Fig. 3(a) and Fig. 3(b)] and the derivative of the amplitude
[Fig. 3(c) and Fig. 3(d)]. In the presence of the impurity po-
tential, both the order parameter in the CMCB-KL [Fig. 3(a)]
and that in the BCS model [Fig. 3(b)] show similar behaviors.
Hence, the characteristic length scale varies depending on
the choice of the parameters, which is in contrast with the
results in Fig. 2(b). Thus the parameter-independent behavior
in the CMCB-KL is specific to the vortex state with nonzero
winding number for the superconducting phase.

3. Quasiparticle spectrum at vortex core

Since we have confirmed that the very short length scale
is a unique property of the vortex in the CMCB-KL, we
expect the appearance of the unconventional quasiparticle
excitations within the vortex core. Hence, we now examine
the low-energy properties in the presence of the single vortex.
We relate the spatial distribution of the wave function to the
energy eigenvalues {Eα

γ }, which is obtained by diagonalizing

the BdG Hamiltonian Ĥα (γ = 1, 2, · · · , 3N is the index for
eigenstates). For this purpose, we first introduce the quantity
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FIG. 3. Self-consistent solutions of the order parameters in the presence of the impurity potential. Panels (a) and (b), respectively, show
the order parameters in the CMCB-KL and that in the BCS model. Panels (c) and (d) represent the derivative of the absolute value of the order
parameters. Physical parameters are the same as those in Fig. 2.

Rα
γ with the dimension of length as

Rα
γ =

∑
I=(i,ν)

√
X 2

i + Y 2
i

∣∣U α
Iγ

∣∣2
, (16)

which describes the real-space spread of the wave function.
Here U α

Iγ = (Û α )Iγ denotes the eigenvectors of the BdG
Hamiltonian. The subscript I (= 1, 2, · · · , 3N ) represents the
index for both lattice i and flavor ζ = (cα↑, c†

ᾱ↓, fα ) in-
dices. For simplicity, we use the pair potential given by
(Viα↑,Wiᾱ↓) = |V |(eiνϕ(Ri ), 1), where ν is the vorticity, instead
of solving Eqs. (6) and (7) since the magnitude of the self-
consistent solutions can be regarded as nearly constant in the
CMCB-KL [see Fig. 2(a)]. This makes the calculation easier
and the system size can be larger.

In Fig. 4, we show the relation between the energy eigen-
values {Eα

γ } near the Fermi level and {Rα
γ }. Figures 4(a) and

4(b), respectively, show the result in the presence of the single
vortex (ν = 1) and that in the absence of the vortex (ν = 0).
In Fig. 4(a), we see a characteristic behavior in |E |/t � 0.2,
where Rγ (∼30) seems to be independent on Eγ . Since such a
behavior is also seen in the case without the vortex shown in
Fig. 4(b), this behavior originates from the extended state in
the homogeneous bulk case. Indeed, we can roughly estimate
Rγ ∼ 0.4

√
N when we assume the uniform solution |UIγ |2 =

1/(3N ). This is consistent with Rγ ∼ 30 in this case with
N = 802.

On the other hand, the nearly flat branch, which continues
to Rγ � 0, appears in the low-energy region in the presence
of the vortex [Fig. 4(a)]. This indicates that the energy eigen-
states in the low-energy region are localized near the center
of the vortex core. These characteristic behaviors are also
seen in the similar plot for the BCS superconductor with
the pair potential �i = |�|eiνϕ(Ri ). The numerical results are,
respectively, shown in Figs. 4(c) (ν = 1) and 4(d) (ν = 0).

The main difference between the CMCB-KL and the BCS
model appears in the branches close to the vortex core, where
the R dependence is sharper in the BCS case.

Since we have confirmed the localized nature of the eigen-
states in the low-energy region inside the bulk gap, we next
consider the energy distribution of the peak of the local
density of states (DOS) ρI (ω) = ∑

γ |UIγ |2δ(ω − Eγ ) to elu-
cidate the low-energy excitation of the quasiparticles within

FIG. 4. Energy eigenvalue {Eγ } plotted as a function of {Rγ }.
Panels (a) and (b): The result in the CMCB-KL with |V |/t = 0.5.
Left and right panel, respectively, show the result with (Viα↑,Wiᾱ↓) =
|V |(exp[iϕ(Ri )], 1) (vorticity ν = 1) and the one with (Viα↑,Wiᾱ↓) =
|V |(1, 1) (ν = 0). Blue and orange markers, respectively, denote the
contributions from Ĥα=1 and Ĥα=2. Panels (c) and (d): The result in
the BCS model with |�|/t = 0.5 is shown. EF/t = 1. Nx = Ny = 80.
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FIG. 5. εi,ζ=↑ normalized by the magnitude of the bulk gap |Eg|
is plotted as a function of Xi. In panel (a), blue-circle, red-upward
triangle, and black-downward triangle, respectively, correspond to
|V |/t = 0.1, 0.3, and 0.5. In panel (b), blue, red, and black markers
correspond to |�|/t = 0.1, 0.3, and 0.5. Nx = Ny = 80.

the vortex core. To this end, we define the local DOS in the
low-energy region as

FI (ω) =
∑

�−<Eγ <�+ |UIγ |2δ(ω − Eγ )∑
�−<Eγ <�+ |UIγ |2, (17)

where the distribution function FI (ω) describes the energy
profile of the local DOS in the low-energy region. We here
impose the normalization condition

∫ �+
�−

dω FI (ω) = 1 where
the energy cutoff �± is taken as the minimum of the energy
gap defined in the absence of the vortex. The summation for
γ runs over the range where �− < Eγ < �+ is satisfied, to
pick up the contributions from in-gap states.

With the above information we can define the expectation
value of the energy εI as

εI ≡
∫ �+

�−
dω ωFI (ω) =

∑
�−<Eγ <�+ Eγ |UIγ |2∑

�−<Eγ <�+ |UIγ |2 . (18)

εI can be regarded as the peak position on the ω axis of
the local DOS in �− < ω < �+. In the following, we focus
on the contribution from the conduction electron with σ =↑
since the BdG Hamiltonian holds the particle-hole symmetry
ρi↑(ω) = ρi↓(−ω).

The numerical result in the CMCB-KL and that in the BCS
model are, respectively, shown in Figs. 5(a) and 5(b), where
the energy scale for each parameter is normalized by the
magnitude of the minimum of the energy gap in the absence
of the vortex (bulk gap |Eg|). In the CMCB-KL [Fig. 5(a)],
the energy εi↑ shows the full-gap behavior, which is well
scaled by the magnitude of the bulk gap |Eg| even in the limit
EF � |V |. This is in strong contrast to the BCS model shown
in Fig. 5(b), where the lowest excitation energy decreases
with decreasing the magnitude of the pair potential |�|. This
behavior is related to the fact that the minimal energy of the
core state in usual s-wave superconductor is ∼�2/EF.

Thus we have revealed that the vortex bound state in
the CMCB-KL are characterized by the short length scale,
which is independent of the parameter, and the quasiparticle
energy at the vortex core is of the order of the bulk gap.
We next clarify the physical origin of these characteristic
properties which are in contrast to the conventional full-gap
BCS superconductor.

III. LOW-ENERGY EFFECTIVE THEORY

In this section, we construct the low-energy effective model
in the continuum limit and the quasiclassical theory of the cor-
responding Green’s function to study the physical origin of the
characteristics of the low-energy quasiparticle in the CMCB-
KL. Obviously, the short characteristic length scale with the
order of the lattice constant is not compatible with the spirit of
quasiclassical theory where we assume the presence of a long
characteristic length. However, we still have a possibility that
the extrapolation of the quasiclassical theory works well also
for the short-length scale range. As demonstrated below, the
quasiclassical theory for the CMCB-KL indeed qualitatively
works, which is justified by comparing the results with those
of the tight-binding model discussed in the last section.

In Sec. III A, we introduce the effective Hamiltonian and
the corresponding Green’s function. In Sec. III B, we derive
the Eilenberger equation and determine the normalization
condition. Finally, we calculate the energy spectrum of the
vortex bound state in the CMCB-KL analytically with the
use of the Kramer-Pesch approximation [23,24], which was
originally introduced to study the vortex bound state in the
framework of the BCS theory.

A. BdG Hamiltonian and Dyson-Gor’kov equation in
continuum limit

In order to describe the nonuniform properties of the
system, we construct the real-space representation of the
CMCB-KL model with continuum approximation. To under-
stand the physical origin of the numerical results obtained
in the tight-binding model, we consider a simple model of
the compensated metal obtained by approximating the one-
particle kinetic energy of the electron band ξk1 and the hole
band ξk2 with the parabolic dispersion. Assuming that both
Fermi surfaces are separated in the momentum space, we can
approximate the energy dispersions as follows,

ξkα = 1

2mαλ

(
k − σ z

ααKλ

)2 − μαλ (k ∈ Kλ)

≡ ξkαλ, (19)

where Kλ denotes the center of each Fermi surface. This
model derives from the tight-binding model in Eq. (3) with
the limit μ → −4t . We show the schematic of the parabolic
dispersion in Fig. 6, where ξkαα (λ = α) and ξkαᾱ (λ = ᾱ),
respectively, describe the low-energy part of the αth band and
the high-energy part. mαλ and μαλ, respectively, denote the
effective mass and the chemical potential of the αth band in
the region Kλ defined by |k − Kλ| < kc, where kc denotes the
band cutoff. In the BCS theory, the Cooper pairs are formed
among the conduction electrons only in the low-energy region.
However, in our theory, not only the electron near the Fermi
level but also the ones in the high-energy region must be
involved in the theoretical framework [11]. This is because
the Fermi-surface-only model describes the composite pair
amplitude given in Eq. (10), but it cannot account for the
Cooper pair amplitude composed of conduction electrons only
[11]. Since the external field acts only on the conduction elec-
trons, the presence of conduction electron pair is necessary
for the electromagnetic properties including vortex state made
of magnetic flux. For this reason we need to consider the
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FIG. 6. Schematic picture of the effective model. Panels (a) and
(b), respectively, represent the side view and the top view of the
dispersion relation. Blue and pink dotted lines in panel (a) represent
the original band dispersion given in Eq. (3). Parabolic dispersions
defined in Eq. (19) are drawn by red solid and navy solid lines.
The region Kλ is represented by dashed navy and red lines in panel
(b). Blue and pink circle markers respectively denote the conduction
electron in ξk1 and that in ξk2. The Cooper pair formation is described
by green arrows.

high-energy electron bands to produce a Cooper pair of con-
duction electrons. As shown below, our theoretical framework
can reproduce the bulk properties.

With the above parabolic dispersions, we can obtain the
real-space representation of the kinetic term as follows,∑

kασ

c†
kασ

ξkαckασ

�
∑
αλσ

∫
dr ψ

†
ασ,λ(r)

[
− 1

2mαλ

∇2
αλ − μαλ

]
ψασ,λ(r), (20)

where the derivative operator is defined as ∇αλ = ∇ −
iσ z

ααKλ. ψασ,λ(r) is an annihilation operator of the conduction
electron describing the degrees of freedom in the region k ∈
Kλ and is defined as follows,

ψασ (r) �
∑

λ

ψασ,λ(r), (21)

ψασ,λ(r) = 1

(2π )
3
2

∫
k∈Kλ

dk ψkασ eik·r. (22)

Although we have taken the type-II limit in the numerical
calculation, we introduce the vector potential to study the
Meissner state. Following the gauge principle, the vector po-
tential can be introduced as ∇ψασ (r) → (∇ − ieA(r))ψασ (r)
[∇ψ†

ασ (r) → (∇ + ieA(r))ψ†
ασ (r)] irrespective of the sign of

the effective mass of the conduction band. This procedure is
consistent with the result obtained by introducing the Peierse
phase in the tight-binding model (see Appendix B for detail).

On the other hand, the real-space representation of the
interaction term can be obtained by replacing the site index
i in Eq. (5) with the real-space coordinate r. We then obtain
the low-energy effective Hamiltonian in the presence of the
magnetic field as follows,

Heff
A =

∑
αλ

∫
dr

[
ψ

†
α↑,λ(r)

(
− 1

2mαλ

D̀
2
αλ − μαλ

)
ψα↑,λ(r)

+ ψᾱ↓,λ(r)

(
1

2mᾱλ

D́
2
ᾱλ + μᾱλ

)
ψ

†
ᾱ↓,λ(r)

+{(V ∗
α↑(r)ψ†

α↑,λ(r)+W ∗
ᾱ↓εαᾱψᾱ↓,λ(r)) fαλ(r)+H.c.}

]
,

(23)

where D̀αλ = ∇ − iσ z
ααKλ − ieA(r) and D́αλ = ∇ +

iσ z
ααKλ + ieA(r). We have neglected the matrix elements of

the interaction such as V1↑(r)ψ†
1↑,1(r) f1,2(r), which describe

the scattering process with large momentum transfer, since
we now focus on the quasiclassical limit kFξ � 1, where ξ

is the characteristic length scale of the spatial nonuniformity
of the mean fields. Although the numerical results indicate
that the characteristic length in the CMCB-KL is the atomic
scale, in Sec. III C, we show that our quasiclassical theory
can be extrapolated to the quantum limit and reproduces the
characteristics of the vortex bound state qualitatively.

To study the low-energy bound state in the vortex core,
we derive the Eilenberger equation, which is one of Green’s
function approaches used for spatially nonuniform super-
conductors [26,27]. Let us begin with the Dyson-Gor’kov
equation derived from the low-energy effective Hamiltonian
in Eq. (23). The one-particle Green’s function is then defined
as follows,

Ĝc
αλ(x, x′) = 〈−Tτ [ 
ψαλ(x) 
ψ†

αλ(x′)]〉, (24)

where


ψαλ(x) = eτHeff
A (ψα↑,λ(r), ψ

†
ᾱ↓,λ(r))T e−τHeff

A (25)

and 
ψ†(r, τ ) = ( 
ψ (r,−τ ))† are the Heisenberg representa-
tion of the Nambu basis. The corresponding Matsubara-
Green’s function is obtained as follows,

Ĝc
αλ(iωn; r, r′) =

∫ β

0
d (τ − τ ′) eiωn (τ−τ ′ )Ĝc

αλ(x, x′)

≡
(
Gαλ(iωn; r, r′) Fαλ(iωn; r, r′)
F†

αλ(iωn; r, r′) −Ḡαλ(iωn; r, r′)

)
. (26)

We have traced out the pseudofermions fαλ(r), which is
an auxiliary degree of freedom introduced to describe
the localized pseudospin moment. We then construct the
self-contained theoretical framework involving only the con-
duction electrons for a given mean-field configuration.
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The Green’s function obeys two types of Dyson-Gor’kov
equations, which are derived from the effective Hamiltonian
as follows,

δ(3)(r − r′)τ̂ 0

= (
iωnτ̂

0 − ξ̂L
αλ(r) − �̂c

α (iωn, r)
)
Ĝc

αλ(iωn; r, r′), (27)

δ(3)(r − r′)τ̂ 0

= Ĝc
αλ(iωn; r, r′)

(
iωnτ̂

0 − ξ̂R
αλ(r′) − �̂c

α (iωn, r′)
)
, (28)

where τ̂ 0 is the two-dimensional identity matrix. In addition,
τ̂ i=1,2,3 used below is the Pauli matrix describing the degrees
of freedom of the Nambu basis 
ψαλ(r). ξ̂L

αλ(r) denotes the
kinetic energy, which is defined by

ξ̂L
αλ(r) =

⎛
⎝− D̀

2
αλ

2mαλ
− μαλ 0

0 D́
2
ᾱλ

2mᾱλ
+ μᾱλ

⎞
⎠, (29)

and ξ̂R
αλ(r) can be obtained by replacing (D̀αλ, D́ᾱλ) with

(D́αλ, D̀ᾱλ). In addition, we have introduced the self-energy
�̂c

α (iωn; r), which is defined as follows

�̂c
α (iωn; r) =

(
�α↑(iωn; r) �α (iωn; r)
�†

α (iωn; r) �ᾱ↓(iωn; r)

)
, (30)

with �†
α (iωn; r) = (�α (−iωn; r))∗,

�α↑(iωn; r) = |Vα↑(r)|2
iωn

, (31)

�ᾱ↓(iωn; r) = |Wᾱ↓(r)|2
iωn

, (32)

�α (iωn; r) = V ∗
α↑(r)Wᾱ↓(r)εαᾱ

iωn
. (33)

We find that the anomalous self-energy (pair potential) �α is
purely odd with respect to the fermionic Matsubara frequency
ωn. Therefore, the superconductivity in the CMCB-KL is a
new member of the odd-frequency superconductivity [28–32].
In addition, the frequency dependence of the self-energy
proportional to the inverse of the frequency implies that the
pair potential is effectively enhanced in the low-energy region
ωn → 0.

B. Quasiclassical theory

1. Eilenberger equation

We next derive the Eilenberger equation from the Dyson-
Gor’kov equations (27) and (28). We subtract Eq. (28) from
Eq. (27) and expand the difference up to the first order of
the spatial derivative ∇rG , where rG = (r + r′)/2 is the center
of mass coordinate of the two conduction electrons. Then,
following the standard procedure [27], we can integrate out
the relative coordinate R = r − r′ to obtain the Eilenberger
equation, which is given by

[B̂αλ(iωn, k̂Fλ; rG), ĝαλ(iωn, k̂Fλ; rG)]

= ivFλ · ∇rG ĝαλ(iωn, k̂Fλ; rG) (34)

with

B̂αλ(iωn, k̂Fλ; rG)

= τ̂ 3
(
iωn − 1

2 Ecσ
z
αα + evFλ · A(rG) − �̂c

α (iωn; rG)
)
,

(35)

where k̂Fλ = kFλ/|kFλ| is the unit vector of the Fermi mo-
mentum kFλ, which is measured from the center of the Fermi
surface Kλ. vFλ = kFλ/mλ is the Fermi velocity in the re-
gion Kλ, where mλ = m1λ = m2λ is the effective mass of the
conduction band in the region Kλ. Ec ≡ (μαλ − μᾱλ)σ z

αα >

0 represents the band splitting of the conduction electrons
(see Fig. 6). ĝαλ(iωn, k̂Fλ; rG) is the quasiclassical Green’s
function, which is given by

ĝαλ(iωn, k̂Fλ; r)

=
∮

dξkλ

∫
dR Ĝc

αλ(iωn; r+, r−)τ̂ 3e−ik·R

≡
(

gαλ(iωn, k̂Fλ; r) − fαλ(iωn, k̂Fλ; r)

f †
αλ(iωn, k̂Fλ; r) ḡαλ(iωn, k̂Fλ; r)

)
, (36)

where r± = r ± R/2.
∮

is an integration taking the contribu-
tions from the pole of the Green’s function near the Fermi
level ξkλλ ≡ ξkλ = 0. In the following, we sometimes omit the
argument (iωn, k̂Fλ; r) to simplify the presentation.

To determine the nonuniform solution of the Eilenberger
equation that is connected to the bulk state at the large enough
distance, we consider the normalization condition of the
quasiclassical Green’s function. When ĝαλ satisfies Eq. (34),
ĝαλĝαλ also becomes the solution of Eq. (34). Hence, ĝαλĝαλ

can be written as

ĝαλĝαλ = aτ̂ 0 + bĝαλ, (37)

where τ̂ 0 is the two-dimensional identity matrix and is the triv-
ial solution of the Eilenberger equation. a and b are constants
determined in a homogeneous case. The homogeneous solu-
tion can be derived from Eq. (34). Here we need to care about
the order of taking the limit. Namely, we will take the band
splitting Ec as infinity for the effective low-energy theory, but
this must be done after performing the integrals. Otherwise,
we cannot pick up the leading-order contribution with respect
to E−1

c , which is necessary to form the conventional Cooper
pair of conduction electrons [11]. The resultant quasiclassical
Green’s function is given by

ĝαλ(iωn)

= πsgn(ωn)σ z
αα√

�2
nα + �α (iωn)�†

α (iωn)

(
i�nα −�α (iωn)

�†
α (iωn) −i�nα

)
,

(38)

where �nα is defined as follows

i�nα = iωn − 1
2 Ecσ

z
αα − 1

2

(
�α↑(iωn) + �ᾱ↓(iωn)

)
. (39)

Therefore, the normalization condition in Eq. (37) is obtained
as follows

a = −π2, (40)

b = 0. (41)

These are identical to the normalization condition used in the
BCS theory.
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2. Meissner response

To test the derived Eilenberger equation, we calculate the
charge current density, which is obtained in the quasiclassical
theory as follows,

j = e

β

∑
nα

ρα (0)
∫

d�kFα

4π
vFαTr[τ̂ 3ĝαα (iωn, k̂Fα )], (42)

where d�kFα
denotes the solid angle of the Fermi surface

in k ∈ Kα . See Appendix B for the derivation of the current
density operator of the conduction electron with the effective
mass. To calculate the linear response of the vector potential
A(r), we utilize the perturbative expansion of the quasiclas-
sical Green’s function given as ĝαλ = ĝ(0)

αλ + ĝ(1)
αλ, where the

overscript denote the order of the spatial derivative and the
vector potential. The normalization condition in Eq. (37) gives

g(0)
αλ + ḡ(0)

αλ = 0, (43)

g(1)
αλ + ḡ(1)

αλ = 0, (44)

(g(0)
αλ )2 − f (0)

αλ f †(0)
αλ = −π2, (45)

2g(1)
αλg(0)

αλ = f (1)
αλ f †(0)

αλ + f (0)
αλ f †(1)

αλ . (46)

The zeroth-order solutions of the quasiclassical Green’s func-
tions are same as Eq. (38). With the use of the normalization
condition, we can obtain the two-independent Eilenberger
equations describing the first-order corrections, which are
given by

�αg(1)
αλ − i�nα f (1)

αλ = 1
2 ivFλ · (∇ − 2ieA(r)) f (0)

αλ , (47)

i�nαg(1)
αλ − �†

α f (1)
αλ = 1

2 ivFλ · ∇g(0)
αλ. (48)

From above, the first order term is obtained as follows

g(1)
αλ = −πsgn(ωn)σ z

αα|V ∗
α↑Wᾱ↓|2

ω2
n

(
�2

nα + �α�
†
α

) 3
2

evFλ ·
(

A(r) − 1

2e
∇θ (r)

)
,

(49)

where we have assumed that �α (iωn) =
|V ∗

α↑(r)Wᾱ↓(r)|eiθ (r)εαᾱ/(iωn). The resultant quasiclassical
Green’s function is invariant for the gauge transformation
A(r) → A(r) + ∇χ (r) with θ (r) → θ (r) + 2eχ (r). This fact
supports that the physical U(1) gauge degrees of freedom is
only the relative phase θ (r) between the conduction electron
ψα↑ and ψᾱ↓. When we consider the Meissner state, the
U(1) gauge θ (r) is fixed. Then the Fourier component of the
charge current density is given by j(q) = −K (q)A(q). From
Eq. (42), we can obtain the Meissner kernel K (q → 0) ≡ K ,
which is given by

K ≡
∑

α

nSC
α (T )e2

|mα| , (50)

where nSC
α (T ) is the superfluid density, which is obtained as

follows,

nSC
α (T ) = nα

1

β

∑
n

πsgn(ωn)σ z
αα|V ∗

α↑Wᾱ↓|2

ω2
n

(
�2

nα + �α�
†
α

) 3
2

. (51)

nα = 4ρα (0)|μαα|/3 is the number density of the conduction
electron (α = 1) or that of the hole (α = 2). In the low-
temperature limit, the fermionic Matsubara frequency ωn =
(2n + 1)πT can be regarded as a continuous valuable. We
hence consider the partitioning quadrature, which is defined
as

lim
T →0

T
∑

n

F (ωn) = 1

2π

∫ ∞

−∞
dω F (ω). (52)

Then, we can rewrite the superfluid density as follows

nSC
α (T → 0)

nα

�
( |V |

Ec

)2 ∫ ∞

−∞
dx

−4isgn(x)

x2
[
1 − i 4

x

] 3
2

= 4|V |2
E2

c

,

(53)

where we have used |Vα↑| = |Wᾱ↓| = |V | and neglected the
higher-order contributions of the order of |V |/Ec. This result
is confirmed also by carrying out the summation with respect
to the Matsubara frequency numerically. From above, we can
obtain the magnetic penetration depth λ as follows,

λ =
√

1

μ0K
= Ec

2|V |

(
μ0

∑
α

nαe2

|mα|

)− 1
2

. (54)

The result is the same as the one derived by calculating the
current-current correlation function without the quasiclassical
approximation [11]. Since the resultant magnetic penetration
depth is larger than the typical value in the BCS theory by
the order of Ec/|V | � 1, the superconducting state of the
CMCB-KL can be regarded as an extreme limit of the type-II
superconductor.

In the above derivation, we have learned a lesson relevant
to our CMCB-KL: When we focus on the low-temperature
properties, we cannot take the limit Ec → ∞. This fact is
symbolically expressed by[

lim
Ec→∞

, lim
T →0

T
∞∑

n=−∞

]
�= 0. (55)

This is associated with the fact that the self-energy is enhanced
in the low-energy region due to the 1/iωn shape, and it can
become larger than the band splitting Ec at low temperatures.

C. Application of Kramer-Pesch approximation and vortex
bound state in CMCB-KL

1. Binding energy of vortex core state

To elucidate the low-energy properties of the quasiparticle
excitation in the vortex-core state, we use the perturbative the-
ory introduced by Kramer-Pesch [23,24]. Since the magnetic
penetration depth in Eq. (54) is larger than the usual value
in the BCS theory, we consider the type II limit to neglect
the electromagnetic field A in the following discussion. We
now assume that the isolated vortex, which is described by
the following pair potential with single flux quanta:

�α (z, r) = |V (r)|2eiϕ

z
εαᾱ, (56)

where ϕ is the azimuth angle of the two-dimensional polar co-
ordinate system. z is the complex frequency. We set |V (r)| =
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|Vα↑(r)| = |Wᾱ↓(r)| as confirmed in the tight-binding model
simulation in Sec. II. We also take |V (r)| = |V (r)|, where
r = |r| since we have assumed the s-wave symmetry of the
superconducting state. To write the Eilenberger equation in
the simplest form, it is better to use another coordinate system,
where the axis is parallel to the Fermi velocity [27]. Then, the
position of the quasiparticle is specified by three parameters:
the direction of the Fermi velocity being at angle γ with the
x axis, the impact parameter b measured from the vortex core,
and the distance u along the quasiparticle trajectory. In order
to calculate the bound state energy, we can put γ = 0 since
the Fermi surface is isotropic in our effective model. Then,
the Eilenberger equations are written as follows,

− ivFλ∂u fαλ = 2�α (z) fαλ − 2�α (z)gαλ, (57)

− ivFλ∂u f †
αλ = −2�α (z) f †

αλ + 2�†
α (z)gαλ, (58)

where vFλ is the magnitude of the Fermi velocity. �α (z) is
defined as follows,

�α (z) = z − 1
2 Ecσ

z
αα − 1

2

(
�α↑(z) + �ᾱ↓(z)

)
. (59)

We note the relation �α (iωn) = i�nα . To solve the Eilen-
berger equation with the use of the perturbative approach,
we first focus on the boundary condition of the vortex bound
state. In the literature which applies the Kramer-Pesch approx-
imation for the conventional BCS superconductor [23,24], the
low-energy excitation appears in the region |ω| � |�BCS| and
the frequency ω � 0 has been treated as the perturbation. On
the other hand, we need to reconsider the energy region where
the perturbative approach is justified in the CMCB-KL since
the vortex bound state has a characteristic energy, which is of
the order of the Kondo gap |ω| ∼ |V |2/Ec rather than ω � 0.
[See Fig. 5(a).] Hence we consider the boundary condition
for gαλ. In the bulk limit |u| → ∞, the quasiclassical Green’s
function gαλ asymptotically approaches to

gR,A
αλ (ω, |u| = ∞)

= (−1)R,Aiπσ z
αα

�α (ω ± iδ)√
�2

α (ω ± iδ) − |V∞|4
(ω±iδ)2

, (60)

where |V∞| = |Vα↑(±∞)| = |Wᾱ↓(±∞)| represents the am-
plitude of the order parameter in the bulk limit. The over-
scripts R and A, respectively, stand for the retarded- and the
advanced version of the quasiclassical Green’s function. δ > 0
is a positive infinitesimal. The sign (−1)R,A which is (+1) for
R and (−1) for A results from the analytical continuation.

On the other hand, as shown in Fig. 5(a), the peak position
of the local DOS in the low-energy region is localized near
the center of the vortex. This indicates that the quasiclassical
Green’s function gαλ(ω0, u), where ω0 represents the binding
energy of the low-energy quasiparticle must vanish in the bulk
limit |u| → ∞. This fact requires �α (ω0, |u| = ∞) = 0 so
that gαλ(ω0, |u| = ∞) = 0. Hence, we can obtain the equation
to determine ω0 as follows,

�α (ω0, |u| = ∞) = ω0 − 1

2
Ecσ

z
αα − |V∞|2

ω0
= 0. (61)

From above, we can find two solutions of ω0, which are
obtained as follows,

ω
η

0 = 1
4

[
Ecσ

z
αα + η

√
E2

c + 16|V∞|2 ]
(η = ±1). (62)

Since Ec � |V∞| usually holds, the solution for η = −σ z
αα

is of the order of the Kondo gap, while the other one is far
away from the Fermi level. Hence, we regard the former one
as the binding energy of the vortex bound state εα0, which is
approximated as follows,

εα0 � −σ z
αα

2|V∞|2
Ec

. (63)

If we rewrite the energy splitting Ec in terms of the po-
tential in the tight-binding model as Ec = 2|μ|, we obtain
εα0 � −σ z

αα|V∞|2/|μ|, which is the same as the Kondo gap
evaluated in the low-energy effective theory [11]. In addition,
this binding energy is also consistent with the numerical result
shown in Fig. 4(a), where the electron band (α = 1) forms the
localized state with the negative energy, while the one with
the positive energy is composed of the hole band (α = 2).
Therefore, the characteristic energy scale of the vortex bound
state in the CMCB-KL results from characteristic frequency
dependence of the normal self-energies �α↑(ω) and �ᾱ↓(ω)
as reflected in the third term in the middle of Eq. (61). If
we apply the above scheme for the BCS superconductors, we
get ω0 = 0 [27] since Ec and |V∞|2/ω0 terms are absent in
Eq. (61) are absent.

2. Characteristic length scale and energy dispersion

So far, we have focused on the boundary condition in
the bulk limit |u| = ∞ with b = 0 to determine the binding
energy of the vortex core state. We now solve the Eilenberger
equations (57) and (58) since the spatial derivative with
respect to the coordinate u includes the information of the
characteristic length scale of the core state. From Eqs. (57)
and (58), we find the following symmetries

fαλ(u) = − f †
αλ(−u), (64)

gαλ(u) = gαλ(−u). (65)

Hence, we focus on Eq. (57) in the following. Assuming
u � b � 0 and z � εα0, we regard �α (z) ∝ (z − εα0) and
the impact parameter b as the perturbation. In addition, the
pair potential is rewritten in the (u, b) coordinate system as
follows,

�α (z, u, b) = |V (u, b)|2
z

εαᾱ

u + ib√
u2 + b2

= �̄α (z, u)sgn(u)

(
1 + i

b

u

)
+ · · · , (66)

where �̄α (z, u) = |V (u)|2εαᾱ/z describes the frequency de-
pendence of the anomalous self-energy. Then, the quasiclassi-
cal Green’s functions up to the first order of the perturbation
obey the following equations

− ivFλ∂u f (0)
αλ (u) = −2�̄α (z, u)sgn(u)g(0)

αλ(u), (67)

− ivFλ∂u f (1)
αλ (u)
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= 2�α (z, u) f (0)
αλ (u) − 2i�̄α (z, u)

b

|u|g(0)
αλ(u), (68)

where the overscript represents the order of the perturbation.
We here assume that f (0)

αλ (u) = −ig(0)
αλ(u) to make gαλ satisfy

the boundary condition gαλ(±∞) = 0. We then obtain the
quasiclassical Green’s function as follows,

gαλ(u) = C0e−Kαλ(z,u), (69)

fαλ(u) = −ieiγC0

[
e−Kαλ(z,u) + 2i

vFλ

∫ u

0
du′

×
(

�α (z, u′) + �̄α (z, u′)
b

|u′|
)

e−Kαλ(z,u′ )
]
, (70)

where C0 is the coefficient, which is determined below so
that fαλ(u) satisfies the boundary condition in the bulk limit.
Kαλ(u) is defined as follows,

Kαλ(z, u) = − 2

vFλ

∫ |u|

0
du′�̄α (z, u′) � Ec

vFλ

∫ |u|

0
du′ |V (u′)|2

|V∞|2 .

(71)

Since the amplitude of the order parameters can be regarded
as nearly constant over the whole space as evidenced by the
tight-binding model calculation [see Fig. 2(a)], we can find
the characteristic length scale of the vortex bound state ξ̃ from
gαλ(u) ∼ e−u/ξ̃ as follows,

ξ̃ ≡ vFλ

2|�̄α (εα0,∞)| � vFλ

Ec
. (72)

The resultant length scale is independent of the Kondo cou-
pling and much shorter than the coherence length ξ = vF/|V |.
Indeed, we obtain ξ̃ � vFλ/Ec = √

t/|μ| ∼ 1 with the use of
Ec = 2|μ| and vFλ = 2

√|μ|t .
We can understand the appearance of the short length scale

independent of the order parameter as follows. The length
scale of the bound state within the vortex core is characterized
by the anomalous self-energy similar to the BCS theory, but
here the frequency dependence enters. In the CMCB-KL, the
anomalous self-energy makes the characteristic length be pro-
portional to the frequency as ξ̃ ∼ vF/�α (ω) ∝ |ω|vF/|V |2. As
a result, the characteristic length becomes very short in the
low-energy region ω → 0 inside the superconducting bulk
gap, and the minimal energy is given by the binding energy
εα0 ∝ |V |2/Ec, to reach Eq. (72), where the order parameter
dependence is canceled out.

Considering the boundary condition for fαλ, we can deter-
mine the coefficient C0 to obtain the quasiclassical Green’s
function as follows,

gαλ(u) = π |εα (b)| e−Kαλ(u)

iωn − εαλ(b)
, (73)

εα (b) = −σ z
αα

2|V∞|2
Ec

+ |V∞| b

vFλ/2|V∞| . (74)

See Appendix C for details of the derivation. Since the
leading-order contribution in the quasiparticle energy εα (b) is
the zeroth-order term of the impact parameter, the character-
istic energy scale of the vortex bound state is the same as the
magnitude of the bulk gap.

From above, we have clarified that the characteristics of
the vortex bound state, such as the short length scale with the
order of the lattice constant and the quasiparticle energy with
the order of the bulk gap, are associated with the characteristic
frequency dependence of both the normal and anomalous self-
energies. The quasiparticle energy for the vortex bound state
is determined by the normal self-energy, which arises from
the effective hybridization between the conduction electron
and the pseudofermion. On the other hand, the quasiparticle
in the low-energy region experiences effectively large pair
potential due to the frequency dependence of the anomalous
self-energy. As a consequence, the characteristic length be-
comes the atomic scale.

In this section we have assumed the quasiclassical limit
kFξ � 1 to study the low-energy properties of the vortex
bound state. Whereas the appearing small length scale is not
compatible with this assumption, if we regard it as an ex-
trapolation from the quasiclassical limit, a qualitatively same
behavior as the two-dimensional tight-binding model is ob-
tained for the isolated vortex. Hence we expect that the present
Eilenberger theory can give qualitatively correct results for
the nonuniform superconductors. The further explorations for
the more complex systems, such as vortex lattice state and
comparison with three-dimensional cases, are left as future
studies.

IV. SUMMARY AND DISCUSSION

Based on the mean-field theory, we have elucidated the
physical properties of the vortex bound state in the Kondo
lattice model with compensated metallic conduction bands.
We have solved the BdG equation numerically to obtain the
self-consistent solution in the presence of the topological de-
fect and the nontopological defect. We have revealed that the
characteristic length within the vortex core in the CMCB-KL
is not sensitive to the choice of the parameters and becomes
atomic scale. This is in contrast to the characteristic length in
the presence of the impurity potential, which becomes longer
with changing parameters such as the Kondo coupling. Hence
the robust short length scale is a characteristic of the vortex
state of the CMCB-KL. We have also calculated the peak
position of the local DOS to show that the magnitude of the
quasiparticle energy is the same order as the bulk gap unlike
the BCS superconductor.

To clarify the physical origin of the characteristics of
the vortex bound state, we have constructed the low-energy
effective theory of the superconducting state in the CMCB-
KL. We introduce the low-energy effective Hamiltonian with
continuum approximation, where the compensated metallic
conduction bands are described by the parabolic dispersion.
We then derive the equation of motion of the correspond-
ing Green’s function. With the use of the quasiclassical ap-
proximation, we have derived the Eilenberger equation for
the CMCB-KL, where we have the characteristic frequency
dependence of the self-energy, which is proportional to ω−1

indicating the odd-frequency superconductivity. The validity
of the effective theory is checked by comparing it with the
tight-binding model and with the bulk properties which are
derived without using the quasiclassical theory. We study the
vortex core bound state of the CMCB-KL using the Kramer-
Pesch approximation, which is a perturbative approach orig-
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inally introduced to describe the vortex bound state in the
BCS superconductor. As a result, we have revealed that the
normal self-energy determines the characteristic energy scale
where the vortex bound state appears, while the anomalous
self-energy (pair potential) is effectively enhanced in the low-
energy region to make the length scale of the vortex core
very short. Thus the peculiar properties of the vortex core are
closely related to the dynamical structure of self-energies.

Finally, let us comment on the merit of the vortex core in
the CMCB-KL different from the usual BCS case. It has been
recognized that the s-wave BCS superconducting state of the
metal with the band inversion around the Fermi energy has
a pair of localized Majorana state at the edges of the vortex
line under the magnetic field [4,33]. In view of the energy
spectrum, the zero-energy Majorana state is formed inside
the gap with energy Egap ∼ �2/EF which is a level spacing
between the vortex core bound states. For usual supercon-
ductors, this energy Egap is very small due to the magnitude
relation � � EF, and such Majorana mode is observed in the
relatively large- �

EF
superconductor such as Fe(Se,Te) [5,6,34].

On the other hand, the energy gap in the CMCB-KL that
separates zero energy state from the first excited states is
the order of the bulk gap, which is much larger than the
BCS case. Hence, if we consider the topologically nontrivial
normal metal in the CMCB-KL, we can expect a zero-energy
Majorana mode which is separated from the excited states
with the energy of nearly bulk gap and should be easier to
be detected experimentally. Exploration of such topological
superconductors in three dimensions are interesting future
perspective in the context of this paper.
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APPENDIX A: BCS THEORY

We use the attractive Hubbard model in the square lattice,
which is given by

HBCS = −t
∑

〈i, j〉,σ
(c†

iσ c jσ + H.c.) − μ
∑

iσ

niσ

+ U
∑

i

ni↑ni↓, (A1)

where 〈i, j〉 runs over the nearest neighbor bond in the square
lattice. U < 0 denotes the onsite attractive interaction. niσ =
c†

iσ ciσ is the particle number operator of the conduction elec-
tron. Introducing the spin-singlet Cooper pair amplitude �i =
U 〈ci↓ci↑〉, the interaction term can be decoupled as follows,

U
∑

i

ni↑ni↓ �
∑

i

�ic
†
i↑c†

i↓ + H.c. + const. (A2)

We thus self-consistently solve the BdG Hamiltonian, which
is obtained as follows,

HBdG = 

†Ĥ 

 + const., (A3)

Ĥ =
(

ξ̂ �̂

�̂† −ξ̂T

)
, (A4)

where 

 = (
c↑ 
c †
↓ )T is the Nambu basis with 
cσ =

(c1σ , c2σ , · · · , cNσ )T . The matrix elements are given by
(ξ̂ )i j = ti j − μδi j and (�̂)i j = �iδi j .

APPENDIX B: CURRENT DENSITY OPERATOR

In this section, we derive the current density operator
for the conduction electrons with the effective mass of the
kinetic energy. To this end, we utilize the Peierls substitution
for the general tight-binding model. In the presence of the
electromagnetic field, the Hamiltonian is given as follows,

HA =
∑

i j,αα′
c†

iαtiα, jα′eiφi j [A]c jα′ , (B1)

φi j[A] = e
∫ Ri

R j

dr · A(r), (B2)

where i, j is the site index. α, α′ denote the physical degrees
of freedom such as spin and orbital. tiα, jα′ is the hopping
amplitude. e < 0 is the charge of the electron. φi j is the Peierls
phase. We assume that the wavelength of the electromagnetic
field is much longer than the lattice constant for a simplicity.
Then the Peierls phase is rewritten as φi j[A] � eA(Ri j ) · (ri j ),
where ri j = Ri − R j and Ri j = (Ri + R j )/2, respectively,
represent the relative coordinate and the center of mass of
the conduction electrons. In the linear response of the vector
potential, the current density ĵμ(Ri j ) = −δHA/δAμ(Ri j ) is
obtained as follows,

ĵμ(Ri j ) = −ie
∑
αα′

c†
iα (ri j )μtiα, jα′c jα′

+ e2
∑
ν,α,α′

c†
iα (ri j )μ(ri j )νtiα, jα′Aν (Ri j )c jα′ . (B3)

When we assume the translational symmetry of the original
Hamiltonian, the hopping matrix is given by tiα, jα′ = tα,α′ (ri j ).
Then, we can obtain the Fourier component of the current
density as follows,

ĵμ(q) = 1

N

∑
i, j

ĵμ(Ri j )e
−iq·Ri j ≡ ĵμp (q) + ĵμd (q), (B4)

ĵμp (q) = 1

N

∑
k

∑
αα′

c†
k− q

2 α

(
e
∂ξk,αα′

∂kμ

)
ck+ q

2 α′

ĵμd (q) = − 1

N2

∑
kq′

∑
ν,αα′

c†

k− q′
2 α

(
e2 ∂2ξk,αα′

∂kμ∂kν

)
Aν (q − q′)ck+ q′

2 α′ ,

(B5)

where ĵμp (q) and ĵμd (q), respectively, represent the param-
agnetic component and the diamagnetic component. N is
the number of the site. ckα is the Fourier component of the
annihilation operator ciα defined as ckα = ∑

i ciαe−ik·Ri/
√

N .
ξk,αα′ denotes the kinetic energy of the conduction electrons
and is given by

ξk,αα′ =
∑

δ

tαα′ (δ)e−ik·δ. (B6)
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When we assume that the kinetic energy is diagonal with
respect to the channel α and the Fermi energy is located in the
bottom (or top) of the conduction band, the energy dispersion
can be approximated as ξk,αα′ = (k2/2mα − μα )δαα′ . Then,
we can rewrite the current density operator as follows,

ĵμp (q) = 1

N

∑
kα

′
c†

k− q
2 α

(
ekμ

mα

)
ck+ q

2 α
, (B7)

ĵμd (q) = − 1

N2

∑
kq′,α

′
c†

k− q′
2 α

e2

mα

Aν (q − q′)ck+ q′
2 α

, (B8)

where the summation
∑′ runs over the momentum in the

vicinity of the Fermi surface and neglect the high-energy
part of the conduction band structure. In the continuum limit,
we replace the field operator ckα with ψkα whose real-space
representation is given by

ψα (r) =
∫

dk

(2π )
d
2

ψkαeik·r, (B9)

where d is the dimension of the system. Then, we can obtain
the current density operator in the continuum limit as follows,

ĵ p(r) =
∑

α

e

2imα

(ψ†
α (r)∇ψα (r) − (∇ψ†

α (r))ψα (r)), (B10)

ĵd (r) = −
∑

α

ψ†
α (r)

e2

mα

A(r)ψα (r). (B11)

APPENDIX C: ENERGY DISPERSION OF VORTEX
BOUND STATE

In this section, we summarize the derivation of the energy
spectrum in Eq. (74). To this end, we consider the boundary
condition for the anomalous part of the quasiclassical Green’s
function, which is obtained as follows,

f R,A
αλ (ω, |u| = ∞)

= (−1)R,Aπσ z
αα

|V∞|2
ω±iδ εαᾱsgn(u)√

−�2
α (ω ± iδ) + |V∞|4

(ω±iδ)2

ω→εα0−−−→ (−1)R,Asgn(u)π. (C1)

We then obtain the coefficient C0 in Eq. (70) as follows,

C0 = πvFλ

2W (vFλ)

1

z − 1
2 Ecσ z

αα − 〈�(z)〉 + 〈�̄′
α (z)〉 , (C2)

W (vFλ) =
∫ ∞

0
du e−Kαλ(u), (C3)

〈�(z)〉 = 1

W (vFλ)

∫ ∞

0
du

|V (u)|2
z

e−Kαλ(u), (C4)

〈�̄′
α (z)〉 = 1

W (vFλ)

∫ ∞

0
du

b

|u|
|V (u)|2

z
εαᾱe−Kαλ(u). (C5)

Since the spatial profile of the order parameter |V (u)| can be
regarded as constant as shown in Fig. 2(a), we put |V (u)| �
|V∞| to obtain

Kαλ(u) � |u|
vFλ/Ec

, (C6)

W (vFλ) � vFλ

Ec
, (C7)

〈�(z)〉 � |V∞|2
z

. (C8)

In addition, 〈�̄′
α (z)〉 is obtained as follows,

〈�̄′
α (z)〉 � |V∞|2

z σ z
αα

Ec
vFλ

∫ ∞
0 du b

u e−u/(vFλ/Ec ).

Although this integration shows a logarithmic divergence
in u → 0, it is an artifact resulting from the perturbative
expansion for the impact parameter. The factor 1/u arises
from the pair potential in Eq. (66), where we have assumed
u � b � 0 to use 1/

√
u2 + b2 � 1/u. We therefore introduce

the lower cutoff b and ignore the contribution from the small u
region since the factor 1/

√
u2 + b2 ∼ 1/b (u < b) is regarded

as constant. In addition, we also introduce the upper cutoff
vFλ/Ec to neglect the exponential term in the integration.
Then, 〈�̄′

α (z)〉 is evaluated as follows,

〈�̄′
α (z)〉 � |V∞|2

z
σ z

αα

b

vFλ/Ec
log

(
vFλ/Ec

b

)

∼ |V∞|2
z

σ z
αα

b

vFλ/Ec
, (C9)

where we have neglected the logarithmic coefficient which
has weak parameter dependence. We can find that the de-
nominator of the coefficient C0 is the same as �α (z) with
|V∞|2 → |V∞|2(1 − σ z

ααb/(vFλ/Ec)). We then obtain

C0 � πvFλ

2W (vFλ)

z

(z − εα (b))
(
z − 1

2 Ecσ z
αα

) , (C10)

where

εα (b) = −σ z
αα

2|V∞|2
Ec

+ 2|V∞| b

vλ⊥/|V∞| (C11)

represents the energy dispersion of the vortex bound state.
Focusing on the low-energy region |z| ∼ |εα (b)| � Ec, we
can rewrite C0 as

C0 � π |εα (b)|
z − εα (b)

. (C12)

Therefore, we can obtain the quasiclassical Green’s function
as follows

gαλ(u, iωn) = π |εα (b)| e−Kαλ(u)

iωn − εα (b)
. (C13)
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