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Bogoliubov Fermi surfaces (BFSs) are topologically protected regions of zero energy excitations in a super-
conductor whose dimension equals that of the underlying normal state Fermi surface. Examples of Hamiltonians
exhibiting this “ultranodal” phase are known to preserve charge-conjugation (C) and parity (P) but break
time-reversal (T ). In this work, we provide examples of model Hamiltonians that do not necessarily preserve
this symmetry pattern but have well-defined sign-changing Pfaffians yielding BFSs. While their topological
character has not been recognized previously, some of the models we present have been extensively studied
in prior literature. We further examine thermodynamic and electronic properties arising from the ultranodal
state. In particular, we study the effect of a weak Zeeman field close to the topological transition and propose
distinguishing features of BFSs using residual specific heat and tunneling conductance. Our calculation of the
superfluid density in a toy multiband model indicates a window of interband pairing strength where BFSs are
stable with a positive superfluid density. We also present additional signatures of BFSs in spin-polarized spectral
weight and total magnetization measurements.

DOI: 10.1103/PhysRevB.102.064504

I. INTRODUCTION

The dimensionality of zero-energy quasiparticle excita-
tions forms a defining characteristic of superconductors (SCs)
both from the perspective of their pairing symmetry as well
as their experimental phenomenology. Most well-known con-
ventional or unconventional SCs are either fully gapped or can
host line or point nodes that have dimensionality strictly less
than that of the underlying Fermi surface (FS). However, in
the presence of certain combinations of discrete symmetries,
SCs can acquire extended nodes called Bogoliubov Fermi sur-
faces (BFSs)—defined as contours of zero-energy quasiparti-
cle excitations in the Brillouin zone that share dimensionality
with the normal state FS. The notion of a BFS, while not new
[1,2], has witnessed a recent resurgence [3–6] in multiband
systems due to the recognition of its topological protection—
the zero-energy quasiparticle excitations are robust to the
introduction of a finite intrapocket pair (independent of its
symmetry). This must be contrasted with the topologically
trivial case where zero-energy quasiparticles stem from pure
inter-pocket pairs far away from the FS [7]. In the latter, the
quasiparticle spectrum is gapped out by even an infinitesi-
mally small and isotropic intrapocket order parameter.

A formal description of BFSs [3,5] hinges on the existence
of a Z2 topological invariant which can be expressed as a Pfaf-
fian, Pf(k). The Pfaffian is well defined and acquires purely
real values if the Hamiltonian can be similarity transformed
into a basis where it is antisymmetric. If the Pfaffian changes
sign at any point(s) in the Brillouin zone, a BFS is guaranteed.
As argued by the authors of Ref. [3], a sufficient condition (but
not necessary) for the existence of such a transformation is a
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Hamiltonian with charge conjugation (C) and parity (P). In
addition, a time reversal symmetry breaking (TRSB) pairing
component in spin space (or type-2 TRSB) can lead to a sign
change in Pf(k) and a BFS emerges. For spin- 1

2 multiband
systems (in the absence of external fields), when the intraband
pairing exceeds a critical value set by the strength of the
interband pair, the BFS is destroyed [6].

Possible material realization of BFSs was first suggested
[3] in the context of higher spin angular momentum sys-
tems with j = 3/2 pairing and additional intrinsic TRSB.
These include uranium (URu2Si2, UPt3) and strontium (SrP-
tAs, Sr2RuO4) based compounds which have multiple bands
crossing the Fermi level. Very recent proposals also include
spin liquids [8] and superfluid 3He [9]. The spin s = 1/2
iron chalcogenide superconductor FeSe1−xSx was argued to
be the first system to exhibit a topological transition into
an “ultranodal” phase with BFSs in the absence of external
fields [6]. The large spin-orbit coupling (SOC) in the parent
FeSe [10] can in principle stabilize a spin-triplet inter- and
intraband pairing [11–14], and with the additional presence of
nonunitary TRSB, the sign change condition of the Pfaffian
is satisfied as the interpocket pair exceeds intrapocket pair
at some momenta. Empirically, the intrapocket gaps become
more nodal as a function of sulfur doping and the resulting
zeros of the Pfaffian occur close to the original normal state
FS. However, despite experimental evidence of TRSB order
parameter in many of the aforementioned compounds includ-
ing FeSe [15] and additional work being done on the sulfur
doped FeSe [16], so far there is no direct attempt to probe
its nonunitary character in any of them. While theoretical
proposals have also been made in Weyl systems [17,18], in-
cluding experimental signatures in dichalcogenides [19], more
candidate models and materials are needed to fully explore the
physics of BFSs in greater depth. One of the main goals of
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this paper is to explore experimental methods of identifying
the ultranodal state definitively.

The most obvious observable manifestation of the topolog-
ical phase is a large enhancement of tunneling density of states
(DOS) at zero energy as well as large T = 0 residual specific
heat (CV /T ) and thermal conductivity (κ) even in very clean
samples [20–23]. As a practical matter, however, it can be
difficult to distinguish the ultranodal state from a nodal system
with disorder by measures of residual density of states alone,
unless one is certain disorder effects are very weak. Further
contrasts between the topological phase and nodal SCs are ex-
pected to show up in the low energy/temperature behavior of
the single-particle tunneling rate, magnetic penetration depth,
and NMR spin-relaxation rate. The power-law temperature
and frequency dependences are succinctly summarized in a
recent work [24]. Nevertheless, the most direct evidence for
BFSs can be obtained from a combination of angle-resolved
photoemission (ARPES) measurements and probes of nonuni-
tary TRSB. While the former has been difficult due to low
temperatures and poor sample surfaces, the latter, as we argue
below, may be hard to detect due to relatively low values of
internal TRSB moments.

We begin our work by studying model Hamiltonians that
do not necessarily preserve charge conjugation or parity but
have well defined Pfaffians that can change sign nevertheless.
This helps extend the phase space of material systems that
can also exhibit the physics of BFS. Some of the models
are simple and well known in the existing literature, but we
choose to revisit them in order to highlight their topological
characteristics. We then examine electronic and thermody-
namic properties of BFSs including their spectral properties,
effect of in-plane and out-of-plane Zeeman field close to
the topological transition, magnetization, and BFS stability
via electromagnetic response and band structure effects. We
perform these calculations assuming no residual interactions
between quasiparticles [25]. We find that, close to the topolog-
ical transition, an in-plane field always pushes the system into
the topological phase irrespective of its direction. The ther-
modynamic properties, however, depend on the directionality
of an out-of-plane field—the system becomes topological or
trivial depending on whether the applied field aligns or cancels
the internal TRSB field. We present results for the DOS and
residual specific heat for each of the cases above. While it
has been argued that known models that support BFSs can
be unstable due to their negative superfluid density [26], our
calculation of the electromagnetic response shows that the
superfluid density can remain positive even in the presence
of a BFS provided the interpocket pairing is below a critical
value set by aspects of the band structure such as the band
masses. A further increase in interpocket pairing strength
then indeed renders the ultranodal state unstable due to a
negative superfluid density. Furthermore, the total internal
magnetization of the toy model studied in Ref. [6] shows that
the nonunitary TRSB magnetic moment is relatively small
and could be nontrivial to detect experimentally. Finally, we
examine the stability of BFSs due to changes in the electronic
structure and find that small energy band separations are more
susceptible to formations of BFSs.

In Sec. II we outline the four generic model Hamiltonians
along with their corresponding symmetries, Pfaffians, and

conditions for existence of BFSs. In Sec. III, we focus specif-
ically on the low-energy effective Hamiltonian in Ref. [6]
used to describe the physics of Fe(Se,S) and expand the study
of various experimental consequences. Section IV analyzes
electronic structure effects which can determine the formation
of BFSs in addition to the Pfaffian. We conclude with our final
remarks in Sec. V.

II. MODEL HAMILTONIANS

In this section we review simple models, some previ-
ously studied in the literature, that have extended FSs in the
superconducting state associated with their Z2 topological
invariant. In each of the cases, we show that their Pfaffians
are real and well defined, and analyze the conditions under
which they can change sign. We consider four models: two of
them with explicit TRSB in the kinetic energy and two others
with TRSB in the pairing terms.

(a) d-wave SC in Zeeman field: The first model we con-
sider is that of a one-band d-wave superconductor in an
external Zeeman field [1]. We begin with the total Hamil-
tonian Ĥ = 1

2

∑
k �

†
kH (k)�k, where the Nambu operator is

defined in the basis �
†
k = (c†

k↑, c†
k↓, c−k↑, c−k↓) and c†

kσ is
the electron creation operator with momentum k and spin
σ . The individual terms in the Hamiltonian are expanded
as Ĥ = Ĥ0 + Ĥ j

Z + Ĥ�. We choose the normal state part of
the Hamiltonian as Ĥ0 = ∑

kσ ε(k)c†
kσ ckσ written in the band

basis with ε(k) = k2/2m, Ĥ j
Z = ∑

kσ σ̄ h jσ
σσ̄
j c†

kσ ckσ̄ is the
Zeeman term with a constant magnetic field hj along direc-
tion j = x, y, z, and Ĥ� is a spin-singlet pairing Hamiltonian
Ĥ� = ∑

k �(k)c†
k↑c†

−k↓+H.c. with d-wave order parameter

�(k) = �0 cos(2φk). In the basis of �
†
k and a magnetic field

along the z direction (hz ≡ h), the total Hamiltonian takes the
form

H (k) = �(k)(iπy ⊗ iσy) + ε(k)(πz ⊗ σ0) + h(πz ⊗ σz ),

(1)

where σi and πi are Pauli matrices in spin and particle-hole
space. For a constant h independent of momentum, the Hamil-
tonian above maintains C and P symmetries individually.
The Pfaffian of the Hamiltonian is real and well defined,
and given by Pf(k) = ε(k)2 + �(k)2 − h2. As a functional
of the band structure, the Pfaffian acquires arbitrarily large
positive values but has a minimum given by Min{Pf(k)} =
�(k)2 − h2. Hence for a nodal SC, the Pfaffian changes sign
for an infinitesimally small Zeeman field near the nodal points
giving rise to BFSs, consisting of nodal loops circling the
h = 0 point node in 2D.

(b) Loop currents coexisting with d-wave order: From the
analysis above, it can be seen that in order for the Pfaffian
to change sign, we do not need to require the momentum de-
pendence of the field h to have any particular symmetry with
respect to inversion. As an example of such a state studied in
literature, we consider the loop current order coexisting with
d-wave superconductivity which was proposed as a possible
superconducting ground state of the underdoped cuprates
[27,28]. In the presence of intraplaquette loop currents, the
hopping parameters pick up additional phases originating
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from the flux and the total Hamiltonian takes a form similar
to Eq. (1) but with a momentum dependent effective magnetic
field. Such a Hamiltonian can be written as

H (k) = �(wk)(iπy ⊗ iσy) + ε(k)(πz ⊗ σ0)

+ J (k)(πz ⊗ σz ), (2)

where J (k) = −J (−k) is odd under inversion and is pro-
portional to the loop current order parameter J . For a
square lattice, the functional form is given by J (k) =
J (sin kx − sin ky + sin(ky − kx )). Due to this property of J (k)
appearing as a diagonal element, the loop current term breaks
both C and P symmetries but maintains the product CP.
Nonetheless, stable BFSs exist as the Pfaffian minimum
Min{Pf(k)} = �(k)2 − J (k)2 changes sign close to the d-
wave nodes.

(c) Type-1 TRSB, odd-parity, spin-triplet pair terms: As ar-
gued in Ref. [6], for spin 1

2 particles with even parity intra- and
interpocket pairing along with a nonunitary TRSB compo-
nent, a BFS is ensured if the interpocket pairing exceeds a crit-
ical value. Below we show that a similar argument holds when
the intrapocket pair is an odd-parity, spin-triplet, provided it
is purely imaginary (type-1 TRSB). Together with real inter-
pocket even parity pairs, these terms make the total pairing
Hamiltonian have a mixed parity. We choose a total Hamilto-
nian as Ĥ = Ĥ0 + Ĥ� = 1

2

∑
k �

†
k (H0(k) + H�(k))�k, with

the normal state part written in band basis given by Ĥ0 =∑
iσk εi(k)c†

kiσ ckiσ , where i = 1, 2 is the pocket index. For the
pairing, we choose two different pairing Hamiltonians

H�1 (k) = iγ (k)(τ0 ⊗ σx ) + �0(iτy ⊗ σ0) + δ(iτy ⊗ σz ),

H�2 (k) = iγ (k)(τ0 ⊗ σx ) + �0(τx ⊗ iσy) + δ(iτy ⊗ σx ),

(3)

where τi are the Pauli matrices in band/pocket space and
underlined quantities represent one block in particle-hole
space. Here H�1 (k) (H�2 (k)) contains interpocket terms, with
coefficients �0 and δ, that are TRS or TRSB spin-triplet pairs
with equal (opposite) spin. The term proportional to γ (k) in
each case is an intrapocket spin-triplet pair that is odd under
inversion, i.e., γ (k) = −γ (−k), and real. Hence both pairing
Hamiltonians in Eq. (3) break parity and maintain charge
conjugation, but their Pfaffians are well defined and real.
Minimizing the Pfaffian functional for the total Hamiltonian
with respect to the band energies, we obtain for the two cases
above

Min{Pf(k)}�1 = 4δ2(γ (k)2 − �2
0)

Min{Pf(k)}�2 = 4�2
0(γ (k)2 − δ2).

Hence BFSs exist above a critical value of (�0, δ) set by the
intrapocket triplet pair γ (k).

(d) Broken inversion symmetry: In all the previous ex-
amples considered above, the individual pairing terms and
basis functions for the superconducting order parameters
were eigenstates of parity operator with eigenvalues ±1
(although the total pairing Hamiltonian was allowed to
be mixed under parity). As a final example, we consider
the scenario where inversion symmetry is explicitly bro-
ken by the interpocket pair so that this no longer holds.
The total Hamiltonian is again chosen as Ĥ = Ĥ0 + Ĥ� =

TABLE I. Table of summary of symmetries in the four models.

Case C P T

(a) d wave + Zeeman 1 1 0
(b) d wave + Loop currents 0 0 0
(c) Type 1 TRSB (triplet) 1 0 0
(d) Mixed parity 0 0 0

1
2

∑
k �

†
k (H0(k) + H�(k))�k, with the normal state part writ-

ten in band basis as Ĥ0 = ∑
iσ εi(k)c†

kiσ ckiσ , and the off-
diagonal pairing block in Pauli matrix notation as

H�(k) = φ(k)(τ0 ⊗ iσy) + �0(τx ⊗ iσy) + δ(iτy ⊗ iσy),

(4)

where φ(k) is an even function of k. The first term is
an ordinary spin singlet and the second term has a matrix
structure similar to the interpocket pairing term appearing in
Eq. (3). However, and in contrast to Eq. (3), the presence of the
iτy ⊗ iσy matrix in the δ term ensures that inversion symmetry
is explicitly broken since a state exhibiting a combination
of �0 and δ terms will no longer be an eigenstate of the
parity operator. Similar to the previous cases, the Pfaffian is
real with an arbitrarily large and positive maximum value.
The minimum, on the other hand, can be evaluated for δ �= 0
as Min{Pf(k)} = 4δ2(φ(k)2 − �2

0), hence yielding BFSs at
the appropriate sign change regions in the Brillouin zone.
A summary of the symmetries in the four models discussed
above is shown in Table I.

III. EXPERIMENTAL CONSEQUENCES

In this section we study properties of BFSs that can be
manifested in experiments. To be more specific, from now
on we focus on the Hamiltonian that has been proposed
in the context of the Fe(Se,S) system [6], where a model
of hole and electron pockets at the � and X,Y points
has been used to describe the electronic structure of this
iron-based material. The normal state Hamiltonian is Ĥ0 =∑

kiσ εi(k)c†
kiσ ckiσ where εi(k) are parabolic bands centered

at � and X,Y . The superconducting order parameter consists
of a momentum-dependent intraband pairing term � j (k) =
� ja(k) + � j which is parametrized by isotropic � j and an
anisotropic term of the form � ja(k) = � ja(k2

x − k2
y ). As a

function of sulfur doping, the isotropic component of the order
parameter becomes smaller in magnitude as observed exper-
imentally (see Ref. [6] and references therein). Additionally,
we introduce the BFS pairing ansatz through a time-reversal
preserving triplet component �0 and a time-reversal breaking
triplet component δ. For simplicity, we set them equal in for
the rest of the discussion, �0 = δ.

The pairing term in the band basis then reads

Ĥ� = 1

2
�0

∑
i< j,k

(c†
ki↑c†

−k j↑ + c†
ki↓c†

−k j↓) + H.c. − (i ↔ j)

+ 1

2
δ

∑
i< j,k

(c†
ki↑c†

−k j↑ − c†
ki↓c†

−k j↓) + H.c. − (i ↔ j)

+ 1

2

∑
i,k

�i(k)(c†
ki↑c†

−ki↓ − c†
ki↓c†

−ki↑) + H.c. , (5)
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where the additional indices on the fermionic operators label
bands. For the calculations to follow, we use the generic
Hamiltonian stated above unless stated otherwise.

A. Spectral functions

With a workable model in place, we begin by calculating
the spin polarized spectral functions that can be measured by
ARPES. The following calculations are performed by taking
simple parabolic dispersion for the electronic structure. Each
of the pockets are chosen to have a quadratic dispersion with
momenta defined in units of the inverse lattice constant,

ε� (k) = −4α

π2
k2 + E+ (6a)

εX (k) = 4α

π2

[(
kx − π

1 + ε

)2

+
(

ky

1 − ε
)2

]
− E− (6b)

εY (k) = 4α

π2

[(
kx

1 − ε

)2

+
(

ky − π

1 + ε

)2]
− E− (6c)

with the parameters α = 2 and E+ = 0.6, E− = 0.6 ε = 0.2
and additionally inserting symmetry related electron bands
having band minima at (0,−π ) and (−π, 0). Here and below,
energies are given in arbitrary units; where applicable, we plot
quantities that are associated with the dimension of energy
normalized to the hole pocket anisotropic gap maximum
��A = 0.5, which is associated with the coherence peak of
2.2 meV [21,29]. The order parameters are explicitly given by

�� (k) = �� + 4��a

π2
(k2

x − k2
y ) (7a)

�X (k) = �X + 4�Xa

π2

[
−

(
kx − π

1 + ε

)2

+
(

ky

1 − ε

)2]
(7b)

�Y (k) = �Y + 4�Ya

π2

[(
kx

1 − ε

)2

−
(

ky − π

1 + ε

)2]
(7c)

and the corresponding order parameters on the symmetry
related electron bands. We use for the anisotropic gap com-
ponents ��a = 0.1, and �Xa = �Ya = 0.4. The isotropic gap
components are denoted as [��,�X ,�Y ] and are assumed to
decrease continuously as a function of sulfur doping, and we
choose the same values as in Ref. [6], i.e. we define sets of
parameters A–D with A:[0.40,0.35,0.35], B:[0.35,0.27,0.35],
C:[0.16,0.20,0.25], D:[0.07,0.07,0.07]. These parameters
were adopted to describe a situation where the gap in Fe(Se,S)
evolves from a highly anisotropic, nematic state with nodes
along one axis of each Fermi surface pocket, to an even
more anisotropic state with four nodes on the � pocket as
the tetragonal phase is reached, consistent with experiment
[20–23].

We begin by evaluating the spin dependent intensities as
measured by ARPES. Diagonalizing the Hamiltonian, we ob-
tain the eigenenergies Eμ(k) of the Bogoliubov quasiparticles
in μth band and a unitary transformation with the matrix
elements a jσ

μ (k) such that the spin-resolved spectral function

reads

Aσ (k, ω) = − 1

π
Tr Im

(
Gσ

11(k, ω)
)

= 1

π

∑
μ

η |a1σ
μ (k)|2

η2 + (ω − Eμ(k))2
,

(8)

where Gσ
11(k, ω) refers to the diagonal Gorkov Green’s func-

tion, σ is the spin index, and η is an artificial broadening
parameter. In Fig. 1, we show the spin-resolved spectral
function along the high-symmetry path X -�-Y for down-spin
component and up-spin components for cases A–D. Case A
[Figs. 1(a) and 1(e)] shows that the system will be fully
gapped without any residual BFSs. With evolution in sulfur
doping content of the system, as mimicked in the transition
from case A to D, the spectral map reveals a Fermi level
crossing of the bands as can be seen in Figs. 1(b)–1(d)
and 1(f)–1(h). The BFSs become larger as more momentum
space points satisfy the Pfaffian sign change condition. Such
features can be easily detected in ARPES measurements. With
spin-resolved ARPES, it is possible to probe into different
momentum sections of the same band as depicted in Fig. 1.
The calculation of spectral function was carried out on a
momentum path of size 1200 points in each segment of X -�
and �-Y , and on a frequency grid of 1500 points. The artificial
broadening η was set to 0.008. Further analysis of the effect
of magnetic field on the spectral function is presented in
Sec. III C.

B. Spontaneous magnetization

In this subsection we calculate the expectation value 〈M〉
of the sum of the spin operators Sk = ∑

i,α,βσ
αβ
i eic

†
kαckβ in

the superconducting state

M = 1

Nk

∑
k

Sk . (9)

The expectation values 〈c†
kα

ckβ〉 at finite temperature are
evaluated in the basis where the Hamiltonian is diagonal,

〈c†
kαckβ〉 =

∑
μ

a1α
μ (k)∗a1β

μ (k)n(Eμ(k)), (10)

such that the matrix elements a jσ
μ (k) from the unitary trans-

formation and the Fermi function n(x) = 1/(exp(x/T ) + 1)
of the eigenenergies Eμ(k) enter. In the following, we use
the same gap parameter values as in the previous section
for cases A–D. For our model system proposed for Fe(Se,S)
[30], it turns out that there is only a z component of the
magnetization due to the choice of the time reversal symmetry
breaking. Indeed, at T > Tc the spontaneous magnetization
vanishes and acquires a finite value once T < Tc. Note that the
details of the magnetization curves depend on the electronic
structure, i.e., the relative size, position of holelike bands
and electronlike bands, and their densities of states as well
as the balance of interband pairing and intraband pairing
contributions. As it can be seen in Fig. 2, for the different
choices of the intraband pairing A–D, the behavior of the
magnetization and also its value at T → 0 can be different.
The agreement of the magnetization at T → 0 for cases A
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FIG. 1. Spin-resolved spectral function Aσ (k, ω) for the “realistic” model described in the text, appropriate for Fe(Se,S), evaluated along
high-symmetry path X -�-Y at temperature T/Tc = 0.02 for the example cases [6] (a) A, (b) B, (c) C, and (d) D (with the energy axis normalized
to hole pocket anisotropic gap maximum ��A) (see text for parameters corresponding to different cases). The arrow pointing downwards refers
to spin-down component σ =↓. (e)–(h) Same as in (a)–(d) but for spin-up component σ =↑.

and B is accidental for our choice of parameters and the
negative value for the cases C and D is due to the additional
contribution from BFS stemming from the electron bands
which in our choice have a larger density of states and a
dominant negative contribution to Mz if BFS are present. To
summarize, there is a finite magnetization as expected from
the TRSB pairing. However, the direction and temperature

FIG. 2. Magnetization in z direction from the time reversal sym-
metry breaking pairing term. Assuming a BCS like behavior of all
order parameters in Eq. (5), one obtains a small but in general
nonzero magnetization in the superconducting state. The sign of the
magnetization and its functional behavior depends on details of the
band structure and the order parameters as seen for the example cases
A–D [6].

dependence of this quantity is not directly connected to the
topological state with BFS. We find that the value of the
magnetization can be small, especially if contributions from
hole and electron bands compensate partially (see Fig. 2).
Therefore, the screening due to the Meissner effect might not
allow the direct detection of the magnetization at all if the
corresponding field is smaller than Hc1.

C. Zeeman field

We now study the effect of a weak Zeeman field on
BFSs close to the topological transition. Before we present
results for our more realistic distribution of bands specific to
the iron superconductor Fe(Se,S), we consider a simple toy
model which includes the Zeeman field to demonstrate the
underlying physics. We choose this model to be of the form

Ĥ = Ĥ0 + Ĥ� + Ĥ j
Z

= 1

2

∑
k

�
†
k

(
H0(k) + H�(k) + H j

Z (k)
)
�k. (11)

Here j = x, y, z is the direction of the magnetic field and
the Zeeman term reads explicitly Ĥ j

Z = ∑
kσ σ̄ h jσ

σσ̄
j c†

kσ ckσ̄ .
The normal state part written in band basis given by Ĥ0 =∑

iσk εi(k)c†
kiσ ckiσ . For the pairing, we work with two special

cases—sign-change (+−) and no-sign-change (++) pairing
on the two pockets. These pairing terms are written as

H++
� (k) = �(k)(τ0 ⊗ iσy) + �0(iτy ⊗ σ0) + δ(iτy ⊗ σz ),

H+−
� (k) = �(k)(τz ⊗ iσy) + �0(iτy ⊗ σ0) + δ(iτy ⊗ σz ),

(12)

which take a form similar to H�1 (k) written above in
Sec. II(c), but with a real �(k) and �(k) = �(−k). The
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�(k) term defines the pairing amplitude for a spin-singlet
intrapocket pair with the same order parameter magnitudes
on both pockets. We choose this pairing form for purposes
of illustration but our conclusions can be easily extended to
the case of the pairing Hamiltonian H�2 (k) [see Eq. (3)] with
a similar spin-singlet intrapocket pair. Finally, the Zeeman
term is written in the expanded particle-hole basis as H j

Z (k) =
h j (πz ⊗ τ0 ⊗ σ j ). When the magnetic field is in-plane (h‖,
j = x, y), the relevant Pfaffian minima with respect to the
band energies are

Min{Pf(k)} =
{

4δ2
(
�(k)2 − �2

0 − h2
‖
) ++

4�2
0�(k)2 − 4δ2

(
�2

0 + h2
‖
) +−.

(13)

Hence an in-plane field always pushes the system into the
topologically nontrivial state for both phase distributions as
long as δ �= 0. Moreover, and as one should anticipate, this
conclusion is independent of the direction of in-plane field.
For the case when the field is out-of-plane (h⊥, j = z), the
total Pfaffian is written as a sum of two terms—one quadratic
in the field and another linear. It takes the form

Pf(k)±{δ,�(k),�0, h⊥, εi} = Pf(k)2,±{δ,�(k),�0, h2
⊥, εi}

−h⊥δ�0(ε1 + ε2), (14)

where the first term, Pf(k)2,±, is quadratic in the field and
± denotes the sign-change and no-sign-change cases, respec-
tively. For a given set of bands with dispersion εi, the relative
signs of the field h⊥ and the TRSB component δ determines
the sign of the linear term. While for generic field strengths
both terms are important in determining the existence of
BFSs, the linear term dominates the physics at small fields.
In this limit, one can ignore the field dependence of Pf(k)2,±
and we obtain

Pf(k)±{δ,�(k),�0, h⊥, εi} � Pf(k)2,±{δ,�(k),�0, 0, εi}
−h⊥δ�0(ε1 + ε2). (15)

Close to the topological critical point, we know that the
first term Pf(k)2,±{δ,�(k),�0, 0, εi} � 0. Hence whether the
Pfaffian changes sign in this regime is completely determined
by the linear term in h⊥, i.e., the relative signs of h⊥ and δ.
If the Pfaffian has a certain sign for a given direction of the
weak field, it must change sign when the direction of the field
is flipped. Therefore, if there exists no BFS for a certain direc-
tion of the field, h⊥, one must emerge for −h⊥. This statement
is independent of the details of the band structure εi, provided
one has purely electron or hole like pockets and the field has
little effect on the internal electronic structure of the material,
and therefore, forms a distinct signature of topological phase
transition. The above signatures are expected to show up in
the specific heat and tunneling DOS close to the topological
critical point.

In the case where one has mixed electron and hole pockets
as is the case with FeSe, the situation is less unambiguous.
As is evident from the last term in Eq. (16), the relative
sign between the two pockets with respect to the Fermi level
becomes important. In such a scenario, the electron and hole
pockets satisfy the Pfaffian sign change condition separately
for opposite direction of the field. Hence, close to the topo-
logical transition, BFSs form only on the hole pockets for

one direction of the field and on the electron pockets for the
opposite direction. Nonetheless, a key of signature of BFSs
would manifest in the asymmetry of the residual specific heat
and tunneling conductance spectra with respect to flipping
the field direction as the hole and electron pockets generally
have different density of states at the Fermi energy (see
the next subsection on specific heat and residual differential
conductance).

We now present the spectral map of the system evaluated
under the presence of a magnetic field close to the topo-
logical transition. Choosing the same model as discussed
in Sec. III A, we select the isotropic gap components as
�� = 0.23,�X = 0.28,�Y = 0.33, interband gap compo-
nent to be �0 = 0.3 and time-reversal broken component δ =
�0. Anisotropic gap components are ��a = 0.1, and �Xa =
�Ya = 0.3. This choice of parameters is made such that the
system is very close to the transition into the topological state.
Exactly at the transition, the BFS reemerges upon application
of an infinitesimal magnetic field as seen in Eq. (15). We use
three values of magnetic field h⊥ to generate BFS as seen in
Figs. 3(a) h⊥ = −0.03, 3(d) h⊥ = 0, and 3(g) h⊥ = +0.03.
Note that the sign of the magnetic field (±h⊥) is chosen
with respect to the sign of the interband gap component �0.
The red lines denote the normal-state FS contour under the
same parameter values for magnetic field. Notice that the spin
degeneracy is lifted under the presence of the magnetic field,
giving rise to very closely-spaced concentric Fermi pockets in
the normal state. Case 3(d) shows no BFS under zero magnetic
field close to the topological transition. We recover ultranodal
BFS states on the electron pockets in case 3(a) (blue) with
negative magnetic field and on the hole pockets in case 3(g)
(pink) with positive field.

The corresponding spectral function for h⊥ = 0 case
[Figs. 3(e) and 3(f)] shows that the system will be fully
gapped without any residual Bogoliubov surfaces. With the
application of −h⊥, the residual BFS appears along �-X
direction which is shown in the Fermi level crossing of the
spectral map in Figs. 3(b) and 3(c). Upon flipping the direction
of the magnetic field to +h⊥, the Fermi level crossing shifts
towards the �-Y direction as shown in Figs. 3(h) and 3(i).
Since the effects described here are small but observable, it is
worth stating clearly that the best chance for a “smoking gun”
experiment where the BFS is induced by an external probe
requires operation very close to the transition point.

D. Specific heat and differential conductance

To obtain specific heat, one can start from calculating the
entropy S of the free Fermi gas of Bogoliubov quasiparticles,
in terms of the eigenenergies Eμ(k) of the Hamiltonian H (k)
and use CV = T −1dS/dT to obtain

CV = 2

Nk

∑
μ,k

n(Eμ(k))n(−Eμ(k))

T 2

×
(

Eμ(k)2 − T Eμ(k)
∂Eμ(k)

∂T

)
(16)

where μ is a band index and n(x) = 1/(exp(x/T ) + 1) is
the Fermi function. The temperature dependence of the order
parameter is assumed to follow a mean field behavior with
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FIG. 3. (a) Normal state Fermi surface (red contour) and Bogoliubov Fermi surface in superconducting state (blue/pink patches) for
magnetic field h⊥ = −0.03. (b) Spin-resolved spectral function Aσ (k, ω) evaluated along high-symmetry path X -�-Y at temperature T/Tc =
0.02 (with the energy axis normalized to hole pocket anisotropic gap maximum ��A). The arrow pointing downwards refers to spin-down
component σ =↓. (c) Same as in (b) but for spin-up component σ =↑. (d)–(f) Same as in (a)–(c) but for magnetic field h⊥ = 0. (g)–(i) Same
as in (a)–(c) but for magnetic field h⊥ = +0.03. Note that while results are plotted over a putative first Brillouin zone, the model is actually
continuous. Note that the sign of the magnetic field (±h⊥) is chosen with respect to the sign of the interband gap component �0.

dimensionless function d (T ) = tanh(1.76
√

Tc/T − 1), where
we have set Tc = 0.15 which is chosen to yield 2��A/Tc ≈ 7,
i.e., larger than the BCS value and very close to the ratio
discussed for FeSe [22]. Results of (CV /T )|T →0 as a function
of fields in plane h‖ and out of plane h⊥ are shown in
Fig. 4. The numerical evaluations are carried out at a low
temperature of T/Tc = 0.0007. While for in plane fields, the
specific heat is an even function of the field [see Fig. 4(a)],
it also acquires a dependence on odd powers of the field
h⊥ in Fig. 4 (b); finite values of (CV /T )|T →0 are signatures

of the ultranodal state. Starting from the case A, where no
Bogoliubov Fermi surface exists, it is possible to tune into
the topological state by fields in any direction, while the field
in z direction is more effective. In the parameter set B it is
not possible to decrease (CV /T )|T →0 with fields in plane;
in contrast the curve for h⊥ has a finite slope at zero field
such that leaving the topological state might be possible. Note
that qualitatively similar behavior of CV /T is expected at any
temperature T � Tc; this quantity will be an even function of
the in plane fields but acquire odd powers of h⊥. We have not
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DCBA

FIG. 4. Residual specific heat CV /T at zero temperature, nor-
malized to the value in the normal state. For fields in plane, h‖ the
CV /T is an even function of the field (a), while for out of plane
field, h⊥, there are also contributions odd in the field (b). The explicit
behavior depends on the details of the order parameter (and the band
structure); here we present results for a model for Fe(Se,S) [6] with
parameters for the cases A–D as given in the text. The inset shows
the expected zero field behavior as function of temperature as also
presented in Ref. [6].

calculated the corrections to the specific heat due to the low
energy states in the vortex phase of the superconductor (e.g.,
Volovik contribution from extended states [31], or Caroli-de
Gennes-Matricon states in the core [32]). However, we stress
that these will always increase the value of CV /T and are
independent of the direction of the field; they therefore do
not change the conclusion that in the state with BFS, CV /T
acquires dependence on h⊥ of odd powers. A momentum grid
of 1200 × 1200 was used to calculate the specific heat to yield
convergence at the lowest temperature.

Also the density of states ρ(E ) and thus the STM con-
ductance dI (V )/dV exhibits similar symmetry behavior as
function of the magnetic field in plane h‖ and out of plane
h⊥. To highlight this behavior, we calculate the differential
conductance dI (V )/dV as a function of external bias voltage
V and external field. For this, we first calculate the density of
states by

ρ(E ) = 1

Nk

∑
k,σ

Aσ (k, E ) (17)

and then perform a convolution with the derivative of the
Fermi function to obtain the differential conductance

dI (V )

dV
∝

∫ EU

−EL

ρ(E )e(E−eV )/T

(1 + e(E−eV )/T )2
dE , (18)

where the solution of ρ(E ) is used to evaluate dI (V )
dV .

The integration was performed from −2π � kx,y � 2π .
The upper and lower boundaries of the integral, EU , EL, were
set to extend the plotted range over several scales of the
temperature such that the derivative of the Fermi function
outside that window is numerically zero. The calculation of
LDOS was carried out on a momentum grid of size 800 × 800
points. The energy grid was spaced by 0.0015 and artificial
broadening η was set to 0.0004.

The results are presented in Fig. 5, where we first show
the differential conductance (normalized to the normal state
value) at zero voltage: Panel (1) shows this quantity as a func-

FIG. 5. Differential conductance for finite magnetic field for a
model of Fe(Se,S) [6] with parameter sets A–D: (1) conductance at
zero energy as a function of in plane field normalized by the order
parameter (h‖/��A) (2) the same quantity for out of plane field,
h⊥/��A. The slope at h = 0 depends on the details of the order
parameter. Other panels: false color maps of the conductance for
fields in plane h‖ (A1–D1) exhibiting mirror symmetry at the dashed
line and out of plane h⊥ (A2–D2). Right panels: conductance as a
function of bias voltage V , i.e. cut through the data at the dashed
vertical lines in (A1–D1). (1) and (2) are cuts through the data at the
horizontal line at eV = 0.

tion of magnetic field in plane for the four different parameter
sets A–D that correspond to different doping levels in our
model for Fe(Se,S). In the ultranodal state, the conductance is
nonzero but is a symmetric function of the field h‖. This is in
contrast to the zero energy conductance for a field out of plane,
which is not an even function of h⊥. Note that the slope of the
curves at h⊥ = 0 strongly depends on the details of the model.
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The false color maps show the dependence of the conductance
as function of bias voltage and external field. Panels (A1–D1)
for in plane fields exhibit a mirror symmetry with respect
to the dashed line, while this symmetry is absent in panels
(A2–D2) for fields out of plane. For convenience, we show the
conductance at zero field in the right row which is a plot of the
data from the false color maps along the dashed vertical line
in each of the panels (A1–D2). Note that qualitatively similar
curves as in (1) and (2) are obtained for horizontal cuts at any
bias |V | � ��A: The conductance at any bias voltage is an
even function of the in plane field, but has odd powers for out
of plane field, a qualitatively different behavior than expected
from low energy states due to vortices [31,32].

E. Superfluid density

In this section, we calculate the superfluid density to
analyze the stability of the BFS states. BFSs found in our
model can be unstable if they are associated with negative
superfluid density. We show in this section that over a large
parameter space, our model results in a positive superfluid
density, and stable BFSs exist without the necessity of fine
tuning. On the other hand, zero temperature superfluid density
is suppressed by the existence of BFSs since the quasiparticle
excitations bear the same dimensionality of the normal state
Fermi surface. This can in principle serve as an experimental
signature.

We start with the current operator for a multiband system
with normal state dispersion εα (k) in the presence of a vector
potential with components Ai,

j p
x (q = 0) = − e

Nk

∑
k,α,σ

∂εα (k)

∂kx
c†

kασ ckασ (19)

jd
x (q = 0) = e

cNk

∑
k,α,σ

∂2εα (k)

∂k2
x

Axc†
kασ

ckασ . (20)

j p, jd are the paramagnetic and diamagnetic current, respec-
tively. The contributions to the current response kernel are
accordingly

K p
xx(q → 0, ω = 0) = πe2

c2

× T

Nk

∑
k

∑
νn

Tr(Vx(k)G(k, iνn)Vx(k)G(k, iνn)) ,

(21)

where we defined a velocity matrix,

Vx(k) =

⎛
⎜⎝

∂ε1(k)
∂kx

1
∂ε2(k)
∂kx

1
. . .

⎞
⎟⎠ (22)

and

Kd
xx(q → 0, ω = 0) = 4πe2

c2Nk

∑
k,α

∣∣∣∣∂2εα (k)

∂k2
x

∣∣∣∣nα (k) (23)

as it can be read off from the definition in linear response
theory

ji(q, ω) = − c

4π
Ki j (q, ω)Aj (q, ω) (24)

j = j p + jd , K = K p + Kd . (25)

Here nα is the density of electrons (holes) in electronlike
(holelike) band α in the normal state, G(k, iνn) is the Nambu
Green’s function. Kxy = 0 for the quadratic dispersion used
in our model. Kyy = Kxx if C4 symmetry is preserved. The
response kernels are to be calculated at zero temperature,
but T = 0.001 is chosen when performing the numerics. The
numerically calculated response kernels are normalized with
respect to the normal state diamagnetic kernel Kd (� = 0), in
other words, superfluid densities are normalized to the normal
state carrier density.

We see from Fig. 6 that there exists a regime of interband
pairing where the superfluid density remains positive when
the system supports BFSs. To be specific, the labels A and
B mark parameters yielding a positive superfluid density
with no or very small BFSs; marker D is a parameter set
exhibiting positive superfluid density with significant BFSs
around all the electron pockets and the center hole pocket,
and finally, marker C is an example where BFSs exist, but
the system has a negative superfluid density. As a matter of
fact, we find that the BFSs around the center hole pocket
develop gradually as �� decreases (red arrow in panel (a)),
while almost independently, the BFSs around the four electron
pockets grow if �X and �Y decrease [blue arrow in panel
(a)]. The superfluid density goes down and then back up,
or we say it shows “dips” [indicated by the red and blue
dashed lines in panel (a)], in both of the above processes.
This kind of behavior is better understood in a simplified
isotropic two-band model (Fig. 7). We find that the dips in
superfluid density are common near where the BFS begins
to show up in the parameter space. A careful analysis shows
that the dips in the superfluid density are associated with
“van Hove-like” singularities in the quasiparticle bands (in
contrast to a van Hove singularity in the usual sense, which
is associated with a normal state band). Figure 7 shows the
van Hove-like singularities as indicated by the small arrows
in panel (c) and (d) and how these van Hove-like singularities
are associated with the dips in the superfluid density when
δ = �0 is tuned.

A possible interpretation of the region where superfluid
density turns negative is that the system is unstable toward
a phase where spatially modulating gaps and BFSs coexist
with TRSB. However, in principle, the system could get
around such a phase by acquiring a momentum-dependent
interband order parameter �0(k) = δ(k). This can happen by
avoidance of the van-Hove singularity at zero energy due to
residual pairing [25] of Bogoliubov quasiparticles. Further
investigations of this problem are underway.

IV. FINITE BANDWIDTH EFFECTS

In the calculation of the minimum of the Pfaffian as
discussed in Sec. III C, the eigenenergies of the electronic
structure were considered as free parameters and varied to
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FIG. 6. Contour plots of superfluid density as isotropic gap components vary. The interband gap component is �0 = 0.4 and the TRSB
component δ = �0. Anisotropic gap components are ��a = 0.1, �X a = �Ya = 0.4. The choice of parameters follows that of Fig. 2 in Ref. [6],
so that the shapes (or nonexistence) of Bogoliubov Fermi surfaces are known at specific points in this figure. (a) xx-component of the response
kernel tensor Kxx , assuming C4 symmetry is preserved. �X = �Y . (b)(c) Kxx and Kyy, when C4 symmetry is broken. �X = 0.8�Y .

find the minimum. For a real electronic structure, the band
energies in the normal state of the two (or lowest two) bands
are however not completely free parameters. Instead, there is
a given relation ε1(k) and ε2(k) for all allowed momenta k.
Then, the minimization has to be done with the constraint
on allowed band energies for the given model. In Fig. 8
the allowed pairs of (ε1, ε2) are shown as light blue area
for representative models: (a) a minimal two band model
for iron-based superconductors [33], (b) a realistic five band
model for FeSe [29], where only the lowest eigenvalues (in
magnitude) have been considered and (c) the two pocket
model of this work, Eqs. (7a)–(7c). Note that not all area is
covered and that there is a point reflection symmetry around
the point (0,0) which simply reflects the interchange of ε1 and
ε2. Considering now the model of the electronic structure in
Eqs. (7a)–(7c) and assuming that the superconducting order

parameter exhibits the intraband order parameters �1 and �2

together with a Type-1 TRSB, odd-parity, spin-triplet pair
described by the order parameters �0 = δ, see Eq. (5) [6],
one can calculate the contour lines in (ε1, ε2) where the
Pfaffian vanishes. In Figs. 8(c) and 8(d), the allowed pairs of
eigenenergies represent the blue area and mentioned contour
lines are plotted for a choice of �1 = �2 = 0.15 and �0 =
δ = 0.4, which is the contour line at T = 0. The area inside
the contour lines exhibits Pf < 0, while outside Pf > 0. For
T > 0, we decrease all components of the superconducting
order parameter according to the mean field behavior. Then,
the size of the contour for Pf = 0 shrinks and the minimum
of the Pfaffian moves along a trajectory ε1 = −ε2 towards
the origin, see Fig. 8(d) such that at a temperature smaller
than Tc there is no overlap between the allowed eigenenergies
(light blue area) with the region where Pf < 0, i.e., the system

FIG. 7. (a) Superfluid density of an isotropic two-band model. The interband TRS and TRSB gap components �0 and δ are tuned and are
set equal to each other. The intraband gaps are �1 = 0.05, �2 = 0.10. Shaded area shows where stable BFS can exist with positive superfluid
density. (b)–(e) Quasiparticle bands of the same isotropic two-band model plotted along radial |k| direction. Note the van Hove like singularity
at |k| ≈ 1.6 in (c) and that at |k| ≈ 2.7 in (d), which give rise to the first and the second dip in (a). respectively.
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FIG. 8. Transition to ultranodal state with finite bandwidth: Al-
lowed lowest eigenenergies for electronic structures on a lattice for
(a) two band model of Raghu et al. [33] and (b) lowest two eigenen-
ergies of a five band model for FeSe [29]. The blue area denotes
the possible combinations of (ε1, ε2) in the respective electronic
structure in the normal state. (c) Allowed energies of the model for
Fe(Se,S)[6] with electron and holelike bands together with contours
where the Pfaffian is zero, i.e., inside the area of these contours
the Pfaffian becomes negative. Assuming for simplicity isotropic
intraband order parameters �1 = �2 = 0.15 and � = δ = 0.4 at
T = 0 and inferring that all order parameters have the same (mean-
field-like) temperature dependence, the contours decrease in size and
move towards the origin as temperature increases towards Tc. Once
there is no allowed point (ε1, ε2) inside the contour, the system is not
topological. (d) Blowup of the region close to the origin showing that
the area of negative Pfaffian shrinks to a small triangle when T → Tc

and eventually does not any contain allowed (ε1, ε2).

enters the trivial state at T < Tc. Note that unless there are two
bands crossing the Fermi level at the same k value (accidental
Fermi surface intersection), the transition to the ultranodal
superconducting state is expected to happen at a temperature
where the relevant superconducting order parameters are siz-
able. Thus we can conclude that closer the multiple bands are
energetically, easier is the formation of BFSs.

V. CONCLUSIONS

Despite several proposals for the realization of BFSs in
materials, conclusive evidence of their existence has been
elusive. While energy and momentum resolved band struc-
ture probes such as ARPES will have the final say on this

question, a consideration of combinations of indirect exper-
imental probes that are sensitive to extended surfaces of
gapless excitations in the superconducting state is urgent. This
work attempts to make progress in this direction while also
expanding on the class of model Hamiltonians which show
topological transitions into the ultranodal state. Some of these
Hamiltonians are commonly studied models in the existing
literature, while others include charge conjugation or parity
nonpreserving terms that were not previously examined in
the context of BFSs. Here we have not commented on the
microscopic method of generating these terms, but this is
clearly an important further step to construct a convincing
case for the existence of such states.

Our analysis of the effect of a weak Zeeman field on the
electronic and thermodynamic properties of BFSs close to the
topological critical point reveals a distinguishing feature of
BFSs—the dependence of residual observables such as the
zero temperature specific heat or the zero frequency tunneling
density of states on the sign of the out-of-plane external
field. Generic features arising from the spin-resolved spectral
functions can be verified using spin-polarized ARPES.

Our calculation of the total internal magnetization in the
ultranodal state shows that the nonunitary TRSB magnetic
moment is small. This could make its experimental detection
using standard probes such as μSR difficult. Our considera-
tion of finite-band width effects on the Pfaffian sign-change
condition identifies features of more realistic multiband mod-
els of Fe(Se,S) that support the BFSs as opposed to simplified
two-band descriptions; additionally, multiband systems where
the bands are energetically closer to each other are more
favorable to the formation of BFSs.

Finally, from our evaluation of the superfluid density in the
ultranodal state, we can conclude that there exists a window
of interband pairing strength for which BFSs are stable with
positive phase stiffness. Outside this window, BFSs either
do not exist or are unstable with negative superfluid density.
Consequences of the latter to possible modulated supercon-
ductivity with broken time-reversal symmetry will be the
subject of future work. In the meantime, more direct probes
of BFSs such as ARPES and quantum oscillations could help
paint a fuller picture of this rapidly developing story and pave
the way toward a deeper understanding of the ultranodal state.

Note added. After the completion of this paper, recent μSR
measurements reported TRSB in sulfur doped FeSe [22].
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