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Experimental determination of the critical spin-glass correlation length in single-crystal CuMn
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Using high resolution superconducting quantum interference device magnetometry we have made detailed
measurements of the waiting time effect of the thermoremanent magnetization (TRM) decays on a single-crystal
CuMn(6%) spin-glass sample near Tg. We have systematically mapped the rapid decrease of the characteristic
timescale tweff , approaching Tg from below, for waiting times ranging from 100 to 100 000 s. Using tweff to
determine the length scale of the growth of correlations during the waiting time, ξTRM (observed in both numerical
studies and experiment), we observe both growth of ξTRM in the spin-glass phase and then a rapid reduction very
close to Tg. We interpret this reduction in ξTRM, for all waiting times, as being governed by the critical correlation
length scale ξcrit = a(T − Tc )−ν .
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I. INTRODUCTION

In 1972 Cannella and Mydosh [1] found evidence of a
phase transition (through observation of a cusp in the mag-
netic susceptibility) in dilute random magnetic alloys of Au
with a few percent of Fe. Further investigations found this
cusp to be time dependent [2]. In 1976 Edwards and Ander-
son [3] (EA) showed that a magnetic system with random cou-
plings can have a phase transition. Following these seminal
contributions, many different experiments were performed on
spin glasses [4] and the system proved to be experimentally
interesting due to a number of time-dependent effects span-
ning the complete range of experimental timescales available.
In contrast to the susceptibility measurements, specific heat
measurements displayed no evidence of a phase transition (ex-
pected from EA) leading to confusion about the nature of the
transition. Also missing from the picture are measurements
of a critical correlation length ξcrit (T ). This is likely due to
the lack of a probe that can couple to the effectively random
spin configurations (paramagneticlike) that exist within the
spin-glass state.

In 1983 two groups [5,6] observed that the thermoremenant
magnetization (TRM) exhibited a decay that was dependent
on the length of time the sample was held at the measuring
temperature before the magnetic field was turned off. This is
known as the waiting time effect. To measure the TRM, the
material is cooled along the field-cooled magnetization MFC

line (in a magnetic field H) though a temperature Tg (the onset
of irreversible behavior), to a temperature T and held for a
waiting time tw. In small magnetic fields, the magnetization
(MFC) is approximately constant below Tg, indicating that all
of the spins are effectively frozen. The magnetic field is shut
off and the magnetization decay recorded. Within the spin
glass phase ( T < 0.9Tg), the time dependences of this effect
appeared to be independent of temperature, a large departure
from Arrhenius behavior often seen in materials dynamics.
This observation has lead to the development of the TRM

as a powerful probe of the spin- glass state, elucidating such
questions as the structure of energy barriers, [7] the nature of
aging in the spin-glass phase,[8] the effect of magnetic field
on time dependencies, [9] memory [10], and rejuvenation [11]
effects, and the development of the S(t ) = −dM/dln(t )[12]
function as a probe of time dependent effects. The S(t) func-
tion is a straightforward method of observing the waiting time
effect. The S(t) function displays a peak at a time equal to
the time where an inflection point in the decay is observed.
In the temperature range 0.4-0.9Tg, this characteristic time
scale is observed to occur at a time approximately equal to
the input waiting time. In this paper we use the S(t) function
to investigate time and spatial dependences in the spin-glass
state near Tg in particular focusing on the region T > 0.9Tg.

In 1996 Kisker et al. [13] analyzed two-dimensional (2D)
and 3D numerical simulations of Ising spin-glass models.
They found that they could determine a spatially dependent
correlation length scale using a four-spin autocorrelation func-
tion,
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These spatial correlations grow according to

ξ (tw, T ) = A

(
tw
τ0

)c2(T/Tc )

, (2)

where τo is a microscopic exchange time, and A and c2 are
constants.

In the confining geometry of a 15.7 nm Ge:Mn thin film,
Guchait and Orbach [14] found that for waiting times larger
than a crossover time tco the zero-field-cooling (ZFC) decay
became exponential (indicating Arrhenius behavior and the
existence of a maximum energy barrier which governed the
decay). Setting the limiting length scale for the growth of
correlations Eq. (2) to ξZFC(tco, T ) = L the film thikness, they
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determined the maximum observed energy barrier �max from
Joh et al. [9]

�max(L)

kBTg
= 1

c2

[
ln

( L
a0

)
− ln c1

]
, (3)

where the constant A, in Eq. (2), has been replaced by c1ao and
ξ = ξZFC. ao is the average distance between magnetic ions
(allowing for comparison of data taken at different concentra-
tions hence different Tg). This dynamic analysis was extended
to CuMn(14%) thin films by Zhai et al. [15] who found
consistent results for three films with substantially different
L, using c1 = 1.448 and c2 = 0.104. They also associated
the maximum barrier with the observed thin film freezing
temperatures �max = kbTf (L) from Ref. [16] and found that
Eq. (3) substantially predicts the form of Tf (L). In the above
studies it is assumed that ξ grows isotropically until it reaches
the thickness of the film. For the rest of this manuscript,
superposition [17] is assumed and ξ = ξTRM = ξZFC.

In a previous study [18], we found that the time associ-
ated with the peak in the S(t) function (tweff ) dramatically
decreased above 0.9Tg. It was conjectured that the correlation
length may be reaching the polycrystalline size scale and
the dramatic decrease may be due to finite size effects [19].
To test this hypothesis we grew and prepared a single crys-
tal CuMn(6%) sample. The sample was prepared using the
Bridgman method. The Cu and Mn were arc-melted several
times in an Argon environment and cast in a copper mold. The
ingot was then processed in a Bridgman furnace. X-ray fluo-
rescence and optical observation showed that the beginning of
the growth is a single phase. Further details on the production
of the sample are presented elsewhere [20].

In this study we differentiate between the wait time (tw),
the experimental time spent in a field of 5 G before setting the
field to 0 G and tweff , which is determined by the peak in the
S(t) function. We also differentiate between Tg (Tg = 31.5 K
for the single crystal sample as determined from FC/ZFC
measurements) [21], the temperature where remanent be-
havior is first observed, and Tc the critical phase transition
temperature.

II. EXPERIMENTAL RESULTS

All data presented were taken using The Indiana Univer-
sity of Pennsylvania (IUP) High Sensitivity Dual DC su-
perconducting quantum interference device (SQUID) mag-
netometer. The magnetometer uses Quantum Design (QD)
DC SQUIDS coupled to 1-cm diameter pickup coils in a
second-order gradiometer configuration. The magnetometer
continously monitors the change in magnetic flux in the pick
up coils, over the entire measurement time, and is queried
once per second to record the data. The magnetization signal
is output in volts. When measuring near the limits of the
magnetometer’s sensitivity limit, this technique is sensitive
to atmospheric pressure changes. We can significantly reduce
this unwanted signal by inserting an electronic pressure con-
trol valve downstream of the He boiloff line and pumping
on the output. The measurement temperature can be controlled
for more than 100 000 s with mean fluctuations less than
±1mK . Side by side comparisons with a commercial QD
DC SQUID magnetometer located at The University of Texas

(a)

(b)

FIG. 1. (a) TRM decays at temperatures ranging between 27 and
30 K for the 10 000 s waiting time, Tg = 31.5 K. (b) displays the S(t)
function of the same data. The inset in (b) shows the three highest
temperature data sets on an expanded scale.

indicate that the IUP magnetometer has a signal-to-noise
ratio approximately 27 times better that the QD system. This
improved signal to noise is especially useful in this study as
the signal rapidly decreases as Tg is approached. Other details
of the experimental apparatus are discussed elsewhere [18].

TRM data were acquired in two separate series of experi-
ments, both using a 5-G field. This insured that Tg(H ) is con-
stant [22]. The first set of data were taken over temperatures
ranging from 7 K (0.22Tg) to 34 K (1.1Tg) with probed waiting
times of 100, 1000, and 10 000 s and measuring times ranging
from 20 000 to 100 000 s. A second series of measurements
were taken in the vicinity of Tg on a denser temperature grid,
as small as 0.1 K (tw = 1000 s), although most of the waiting
times were probed at 0.2 K increments. Figure 1 displays
TRM decay data (Series 2) for TRM decays with waiting time
tw = 10 000 s for temperatures between 27 and 30 K. In this
temperature region both the magnetization and tweff display
significant decreases.

The TRM decay has three distinct regions. When the
field is cut off there is a large rapid decay which is waiting
time independent but strongly temperature dependent. This
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FIG. 2. TRM magnetization measurement at t = 0 s (solid sym-
bols) and the TRM magnetization measurement at t = 10 000 s (open
symbols). The difference between these measurements display both
the waiting time effect and the magnitude of the TRM decay.

reversible decay [23] (often called the stationary decay) is
approximately the same magnitude as the ZFC magnetization
MZFC signal. At low temperatures this signal can be as small as
0.5MFC (at approximately 0.3Tg) increasing with temperature
up to ≈0.97MFC at 0.9Tg and finally equaling MFC at Tg.
The second distinct region of the decay is the waiting time
dependent decay. While this term has structure near a time
comparable to the waiting time, this decay component can
extend out several orders of magnitude in measurement time
greater than the waiting time. Finally, there is a waiting time
independent logarithmic decay that makes up the residual
remanence [24].

Figure 2 displays the static TRM values taken at the first
point of the decay Mo (t = 0 s), (solid symbols), and at
10 000 s into the decay, M(t = 10 000 s) (open symbols).
It can readily be observed that as Tg (31.5 K) is approached
from below, the TRM magnetization, Mo, decreases by ap-
proximately three orders of magnitude. The magnitude of the
TRM decay and the waiting time effect are evident in the
difference between the t = 0 s and t = 10 000 s data points.
While the waiting time effect is effectively over for small
waiting time and 10 000 s measuring time, the tw = 10 000 s
data is only approximately at the inflection point. The waiting
time independent logarithmic decay makes up the majority
of the residual remanence left after the 10 000 s measuring
time [24]. It can be observed that for most of the spin glass
phase, the TRM decay is only a small contribution to the entire
remanence.

In the inset of Fig. 3 the effective waiting times (Series
1) for T > 0.22Tg, are plotted as a function of temperature.
At low temperatures tweff [time associated with the peak in
the S(t) function] is a little larger than tw but approximately
constant over a wide temperature range 0.22Tg < T < 0.9Tg

indicating the standard waiting time effect. Above 0.9Tg we
observe the same rapid decline of tweff that was observed in
the polycrystalline bulk sample. Since this sample is a single

FIG. 3. (Series 1) The inset graph displays tweff [found from the
peak of the S(t) function], versus temperature for waiting times rang-
ing of 100, 1000, and 100 000 s. The correlation length ξTRM(tweff )
as a function of temperature (main graph). The open circles are data
from Ref. [16] and plot the thin film thickness as a function of
observed freezing temperature. The solid line is a best fit to the thin
film data to determine c1 and c2. The dashed line is a fit to Eq. (2)
with tw = 1000 s. The dotted line plots Eq. (2) with tw = 10 000 s.

crystal (0.3 mm × 0.5 mm) this effect is clearly not due to
finite size effects due to crystallites.

The open circles in the main plot of Fig. 3 are thin film
thicknesses L as a function of the measured freezing temper-
ature Tf , from Ref. [16]. The estimated timescale of the Tf

measurements was approximately 200 s. We obtain the values
c1 = 0.87 and c2 = 0.11 by fitting Eq. (2) with tw = 200 s
(solid line), to the thin film data. These values are used for the
following analysis.

III. DISCUSSION

Using tweff as the governing time scale within the TRM
correlation function [ξTRM(tweff )], the power law as a function
of temperature can be observed (main graph Fig. 3) over most
of the spin-glass phase. The dashed line is a plot of Eq. (2) us-
ing tw = 1000 s. Comparing power law growth of Eq. (2) (tw
= 1000, dashed line) with ξTRM(tweff ), we observe that ξTRM

begins to grow more slowly than the straight power law as low
as 25 K (≈0.8Tg). This suppression of the correlated growth
continues until the region where tweff rapidly decreases. In
this temperature region the growth of ξTRM(tweff maximizes
then decreases as temperature increases. (The same behavior,
on a finer temperature grid, is observed in Fig. 5 for Series 2
data)

Figure 4 displays tweff vs temperature for Series 2 data, for
waiting times ranging from 300 to 100 000 s. In the region of
the peaks observed in Fig. 3 (the high temperature region),
tweff overlaps for different waiting times tw, producing a
cutoff timescale. For example at 29 K the cut-off timescale is
approximately 1000 s. For waiting times less than 1000 s, tweff

still varies with tw. TRM measurements with waiting times
greater than 1000 s all produce a tweff = 1000 s. Therefore,
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FIG. 4. (Series 2 data) tweff [found from the peak of the S(t)
function], versus temperature for waiting times ranging from 300 to
100 000 s.

in the region of overlap, the timescale for growth of spatial
correlations is also cut off. This region of overlap of tweff for
different waiting times spans approximately three orders of
magnitude in the timescale.

There have been many observations of time dependencies
in spin glasses near Tg. These include a large number of
ac susceptibility measurements, as well as changes in the
characteristic timescale, as a function of temperature, ob-
served by Uemura et al. [25] in AuFe and CuMn spin glasses
using muon-spin relaxation and Mezei et al.[26] using neu-
tron spin-echo decay. These experiments all show rapid time
scale changes for short timescales in the temperature region
above Tg. Figure 4 shows rapid changes in the characteristic

FIG. 5. (Series 2 data) The correlation length found by inserting
the values of tweff displayed in Fig. 4 as the timescale for growth of
correlations.

timescale of the TRM and occurs in the temperature region
below Tg. In the past, these time dependences have been fit to
both a Volger-Fulcher Law, indicating a glass transition, and
to a power law, indicative of a phase transition. In both cases,
glasses or a phase transition, timescales generally slow down
as the glass or critical temperature is approached.

In glasses the relaxation timescales τ are proportional to
the viscocity ν. As the viscosity increases near the glass
temperature the timescales increase as

τ = τ0e
(

A
T −To

)
. (4)

Setting τ = tweff we explored fitting of Eq. 4 to the data
in Fig. 4. For strong glasses To = 0 K, we do not find any
fitting parameter that would support this low of a transition
temperature. The solid line Eq. (4), in Fig. 4 fits the data with
τ0 = 2 × 10−s s, A= 201 K, and T0 = 21.7 K.

While it is interesting that the time dependence of the data
can be fit to glassy dynamics, it is the general consensus that
the spin glass exhibits a phase transition. We fit the timescales
tweff (in the region of overlap, Fig. 4 dashed line) to the
dynamic scaling function

tweff = τo

∣∣∣∣T − Tc

Tc

∣∣∣∣
−zν

, (5)

and we obtain best fit values of τ0 = 2 × 10−8 s for Tc =
25.8 K and zν = 12.

The fits in Fig. 4 show that the data can be fit to both a
glass and phase transition. These transitions have different
physics, with the glass transition determined by the rapidly
increasing relaxation time scales whereas a phase transition is
accompanied by the growth of correlations with ξ −→ ∞ as
Tc is approached.

Figure 5 is a plot of ξTRM(tweff ) vs temperature for the
Series 2 data where ξTRM(tweff ) is determined from Eq. (2).
At a given measuring temperature (e.g., 29 K), the waiting
effect persists for small waiting times (tw <1000 s) albeit
with reduced tweff (tweff < tw). As with the case of the thin
film analysis, it is assumed that ξTRM grows isotropically until
it is confined by a limiting length scale. In the single crystal
sample isotropic growth is expected. At 29 K the waiting time
effect disappears for tw > 1000 s, as all of this data share a
common tweff . From a spatial point of view, at 29 K, ξTRM

can grow up to a finite size of ≈19 nm and then ceases to
grow. The line of data that signals the end of growth of ξTRM is
temperature dependent and for tw > tweff , time independent.
Following the assumption made in the confining geometry of
the spin glass films, we conjecture that ξTRM(tweff ), in the
high temperature region, is confined by the size of critical
correlations ξcritical(T ). This is suggested by the effect on the
time dependence, the proximity of the line formed by the
length scales to Tg, and the structure of the line formed by
this data.

In critical phase transition theory [27], phase transitions
are characterized by the growth of critical correlations and the
growth of a correlation length scale according to the form:

ξcrit (T ) = A

∣∣∣∣T − Tc

Tc

∣∣∣∣
−ν

. (6)
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It is only at Tc that ξcrit → ∞. In a real experimental samples,
ξcrit will be cut off by finite size effects. Above Tc correlations
are limited, but according to Eq. (4) the mean length scale is
only a function of temperature.

We fit the high temperature correlation length scales [tem-
peratures greater than the peaks observed in Fig. 5, 40
points)], to the functional form for ξcrit using both manual and
automated search routines to find the minimum in χ2 within
the 3D space defined by A, Tc and ν. We find that there are
two fits that minimize and give the same value of χ2. The
solid lines plotted as Fit 1 in Fig. 5 are the fit of Eq. (4) with
Tc = 26.2 K (.83Tg), ν = 0.7 and minimum spin-glass size of
A = 4.5 nm. Fit 2, the dashed lines, show best fit values of
Tc = 24.6 K (0.78Tg), ν = 1.1, and A = 3.4 nm.

Interestingly the transition temperature found from fitting
the effective times in Fig. 4 falls between the two transition
temperatures found by fitting the correlation length. Setting
the value of Tc = 25.8 K and fitting with that constraint (Fit
3 dotted line) we obtain values of ν = 0.83 and a minimum
spin-glass size of A = 3.9 nm Using this value of ν, a value
for the dynamic exponent of z =14.5 can be extracted.

Numerical studies indicate a phase transition in spin
glasses and this is usually determined from the temperature
(Tc) at which the Binder cumulant, for different size systems,
exhibits crossover. Numerical studies on 3D Ising spin glasses
by Fernandaz et al. [28] indicate that Eq. (2) holds for T < Tc

but the exponent c2T/Tg becomes a constant Z ≈ 1/6 above
Tc. Fitting our data above 26 K to this growth function, we
again observe a reduction in ξTRM above 28 K. Fitting this
cutoff length scale to Eq. (4) and using the ν = 2.56 from the
same paper, we find Tc = 24.2 K and A = 2.2 nm. We find,
however, that the correlation length scales are an order of
magnitude greater than those shown in Fig. 5. To compare
with the numerical values [28] using ν = 2.56, and Tc =
24.2 K from above, we find z = 4.7 and τ = 1.5 × 10−8 s.

IV. MAGNETIC FIELD DEPENDENCE NEAR Tg

We have followed up the above results with a set of field
dependent measurements in the “critical region” (25–30 K).
Figure 6 displays the field dependence of the TRM decay in
fields ranging from 1 to 30 G. It can be observed that at 25 and
27 K the data looks approximately linear in magnetic field. At
29 K the data become nonlinear at high fields and at 30 K the
magnetization hits a maximum at 10 G and then decreases as
the field gets larger.

In Fig. 7, it can be observed that as the field increases there
is a decrease in tweff [the peak time of the S(t ) function]. This
same effect was observed by Zhai et al. [29] in a generally
equivalent measurement to the TRM, the ZFC magnetization
decay. We see that the effect is less pronounced at the lowest
temperature (25 K), increases through 27 K and maximizes
at 29 and 30 K. This is in the critical region observed in
Fig. 4. We believe that this effect is due to the variation of
Tg with magnetic field. In 1993, Kenning et al. mapped the
decrease in Tg with increasing magnetic field in a CuMn(6%)
polycrystalline sample. This was interpreted as evidence for
the AT line, theoretically found as a line of instability in the
free energy of the Sherrington-Kirkpatrick model, predicting
that Tg decreases as H2/3. We believe that the reduction of

(b)

(c)

(d)

(a)

FIG. 6. Variation of TRM decays as a function of magnetic field
at temperatures ranging between 25 and 30 K for a 1000 s waiting
time. Magnetic fields of 1, 2, 5, 10, 20, and 30 G were measured.

tweff as a function of H in Fig. 7 is due to a reduction of
Tg(H ), as a function of H. At a particular temperature T, as the
field increases Tg(H ) decreases thereby increasing the reduced
temperature Tr = T/Tg(H ). Therefore, at a fixed temperature
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(b)

(a)

(c)

(d)

FIG. 7. Variation of S(t) function (data in Fig. 6) as a function
of magnetic field at temperatures ranging between 25 and 30 K for a
1000 s waiting time. Magnetic fields of 1, 2, 5, 10, 20, and 30 G were
measured.

the decays measured at larger magnetic fields are equivalent
to measuring at a higher temperature. Figure 4 shows that as
the temperature increases tweff decreases.

FIG. 8. TRM magnetization measurement at t = 0 s (solid sym-
bols) for the data in Fig. 6.

In Fig. 8, the initial point in the decay Mo as a function
of H is plotted. The plot is on a log-log graph to express
all of the data. Again, the data at the lowest temperature
appears to vary approximately linearly suggesting we are far
away from the transition temperature. The data approaching
Tg looks highly nonlinear implying Tg may be close to the
transition temperature. Again we face the issue that Tg is a
function of field. We propose to measure the nonlinear terms,
while compensating for the shift in Tg(H ). We propose to first
use the Quantum Design magnetometers (SQUIDs) to obtain
accurate FC/ZFC curves for 1, 2, 5, 10, 20, and 30 G magnetic
fields. We will plot the difference between these curves to
determine the onset of irreversibility, defining Tg(H ). We will
then perform TRM experiments over temperatures ranging
from 0.8 Tg(H) to Tg(H) as a function of magnetic field. We
believe that compensating for the shift in Tg(H ) as a function
of H is crucial for a correct scaling analysis. Over the range
of fields we will probe why the shift in Tg(H ) can be as much
as 1 K. In Fig. 4, in the critical region, variations of 1 K can
change both tweff (Fig. 4) and the magnetization (Fig. 2) by as
much as an order of magnitude or more completely changing
the relationships observed in Fig. 8.

In summary, we have made extensive measurements of the
waiting time effect near the transition temperature Tg. For
temperatures less than but approaching Tg, we observe both
the collapse of the observed remanence and the timescale
tweff associated with the waiting time effect. Determining
the length scale associated with the growth of correlations
in the spin-glass phase, we observe, near Tg, a cut-off length
scale. We associate this cut-off length scale with the critical
correlation length scale and determined values for scaling
parameters.
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