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Determination of the crystal field parameters in SmFe11Ti
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The magnetization of SmFe11Ti single crystals has been measured along the principal crystallographic
directions in steady (14 T) and pulsed (43 T) magnetic fields. The fourfold symmetry axis [001] is an easy
magnetization direction. The magnetization curves measured in directions perpendicular to [001] are remarkable
in two ways: (i) They do not depend on orientation of H within the basal plane; (ii) at low temperature they
are S shaped, with an inflection point at about 0.6 times saturation magnetization. These two facts enable us
to conclude that three out of five crystal field parameters of SmFe11Ti are negligibly small; only A0

2 and A0
6 are

essentially nonzero. A comparison with an isomorphous compound DyFe11Ti reveals a dramatic disparity of
their crystal fields, especially as regards A4

4, nearly zero in SmFe11Ti but outstandingly large in DyFe11Ti.

DOI: 10.1103/PhysRevB.102.064423

I. INTRODUCTION

The RFe11Ti compounds (where R stands for a rare earth),
and in particular SmFe11Ti, occupy a special place among RFe
intermetallics. The reason of that is twofold:

(1) From the point of view of applications, SmFe11Ti is
a promising permanent-magnet material. However, in order
to fulfill the promise one needs to find a way to eliminate or
drastically reduce the titanium, which stabilizes the ThMn12

structure but serves no useful purpose otherwise. A first
success in obtaining pure SmFe12 has been reported recently
[1,2] but is limited to thin films. The fact that it took more than
three decades of intensive efforts is indicative of the difficulty
of the task.

(2) From a more fundamental perspective, the structural
simplicity of RFe11Ti, where the rare earth occupies a single
high-symmetry site 2a, makes them a favorite model system
for studying magnetic anisotropy and crystal field. SmFe11Ti
is interesting in this respect because its low-temperature mag-
netization curve contains an S-shaped anomaly that does not
seem to be a discontinuity [3]. The quality of the single crystal
used for the measurements and the exact orientation of applied
magnetic field, labeled merely as “� [001]” remain rather
unspecified in the original publication [3]—a hard-to-find
conference paper. We are not aware of any other confirmation
of the magnetization data of Ref. [3]. (We do not consider
measurements on polycrystals here.)

Theoretically, the case of R = Sm is more difficult (and
interesting) because of a strong J-mixing effect [4]. An an-
alytical approach based on perturbation theory was tested
successfully on Sm2Co17 [5]. Yet, given the strength of the
J-mixing, doubt persists as to whether the perturbation
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expressions are accurate enough for Sm intermetallics in
general. As regards numerical crystal field calculations for
SmFe11Ti, as many as four of them are known [3,6–8]. (Cal-
culations that neglect the J mixing or rely on oriented powder
data are not included.) In all four cases crystal field parameters
(CFPs) were found by fitting a single magnetization curve—
that of Ref. [3]. The four obtained sets of CFP agree so
well that they can hardly be regarded as independent (cf.
Table I). They should rather be viewed as one and the same
set reproduced four times. Apparently, each new calculation
used the output of earlier calculations as a starting point for
the nonlinear optimization, which then made little headway.
Uniqueness of the so-obtained CFP remains an open question.

Another interesting point was raised by Kou et al. [7], who
noticed that one of the three adjustable CFPs, A0

4, could be
set to zero without making the fit any worse. The authors of
Ref. [7] admit having no explanation of that. The question
really is whether the three-parameter set is overcomplete and
so one of the CFPs can be eliminated—or is A0

4 truly close to
zero and why?

This work aims at answering the open questions on the
basis of an experimental study carried out on purposefully
produced single crystals. The paper is organized as follows:
After a brief account of the experimental procedures (Sec. II),
the results of the magnetic measurements are reported in
Sec. III. The crystal-field analysis of the data is elucidated in
Sec. IV, with particular emphasis on uniqueness, which is then
followed by a discussion (Sec. V) and a conclusion (Sec. VI).

II. EXPERIMENTAL DETAILS

SmFe11Ti single crystals were grown by the reactive flux
method using excess Sm as a flux. The first stage consisted
in preparing the alloy of composition Sm2Fe11Ti by melting
high-purity constituting metals in an induction furnace under
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FIG. 1. Magnetization curves of SmFe11Ti measured along the
principal crystallographic axes at 300 K.

a purified atmosphere of argon. The so-obtained ingot was
placed in a zirconia crucible, sealed in an evacuated quartz
tube and annealed in a resistive furnace as follows. It was
heated up to 1623 K at a rate of 300 K/h and kept at this
temperature for 5 min in order to melt. The temperature was
reduced down to 1483 K at a rate of 300 K/h. Then, it was
slowly cooled down to 1453 K during 13 days, kept there
for 15 days, and finally quenched in water. This mode is
favorable for growth of large crystalline grains. The ingot was
broken up and several 1-mm-large grains were extracted. The
strained surface layer of the grains was etched off electrolyt-
ically in phosphoric acid. The final composition was deter-
mined from energy-dispersive x-ray microanalysis and found
to correspond to the desired stoichiometry SmFe11Ti. The
single-crystallinity control and orientation of the grains were
performed by means of backscattering Laue x-ray diffraction.
The lattice parameters deduced from standard x-ray powder
diffraction (a = 8.568 Å and c = 4.797 Å) are in good agree-
ment with the literature.

Magnetization curves were measured on oriented crystals
in steady magnetic fields up to 14 T at various fixed tem-
peratures ranging from 2 to 600 K using a Physical Prop-
erty Measurement System (PPMS14 of Quantum Design).
The magnetization measurements were extended up to 43 T
using a nondestructive pulsed-field coil at the Dresden High
Magnetic Field Laboratory. A single 1.44-MJ capacitor bank
was used. When fully charged, it could produce a maximum
magnetic field of 60 T with a rise time of about 7 ms and a
total pulse duration of 25 ms. In our experiments the capacitor
module was charged to about two-thirds. The magnetization
was detected by the induction method using a coaxial pick-up
coil system surrounding the sample. The pulsed-field magne-
tometer was described in Ref. [9]. All pulsed-field data were
calibrated against the magnetization recorded in steady fields.

III. RESULTS

Figure 1 displays the magnetization curves of SmFe11Ti
measured at 300 K for three crystallographic directions, [100],
[110], and [001]. The magnetization in the easy direction,

FIG. 2. Magnetization curves of SmFe11Ti measured along the
principal crystallographic axes at T = 2 K. Solid lines represent the
theoretical calculations of Sec. IV.

[001], saturates at low magnetic field following steep initial
growth. There is no component of spontaneous magnetization
along [100] and [110], which reflects the high quality of the
crystal and its proper orientation. The uniaxial magnetocrys-
talline anisotropy field amounts to 10.5 T at 300 K. One
notices a significant anisotropy of the magnetic moment: The
hard-axis curve does not fully approach the easy-axis one
above the anisotropy field. A finite gap between the curves
persists to the highest field in Fig. 1.

Figure 2 presents magnetization curves taken along the
principal crystallographic axes at 2 K. (Theoretical curves
shown in Fig. 2 will be introduced and discussed below.) The
two curves in the basal plane, [100] and [110], are unusual
in two ways: (i) They are prominently S shaped and (ii)
they coincide with each other nearly perfectly. That is, within
the margin of error of our apparatus we cannot detect any
anisotropy in the basal plane. (The small difference in the
steepest part of the curves, at about 10 T, is probably caused
by the shape of the crystal.)

The magnetocrystalline anisotropy is of easy-axis type
across the entire temperature interval. Spontaneous magne-
tization MS was deduced from the easy-axis magnetization
curves by linear extrapolation to zero field (for T � 500 K).
Above 500 K MS was obtained from Arrott-Belov plots
[10,11] proceeding from the easy-axis data. The spontaneous
magnetization of SmFe11Ti is plotted in Fig. 3 as a function
of temperature. The continuous line is a fit to the following
expression [13]:

MS (T ) = M0

[
1 − s

(
T

TC

)3/2

− (1 − s)

(
T

TC

)5/2
]1/3

, (1)

with M0 = 138 A m2/kg, TC = 571 K, and s = 0.65. Such a
shape of MS vs T curve, with s = 0.65, is typical for Fe-based
ferromagnets [12–15].
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FIG. 3. Spontaneous magnetization of SmFe11Ti as a function of
temperature.

IV. CRYSTAL-FIELD ANALYSIS

Our analysis is limited to the low-temperature data (T =
2 K) and proceeds in two stages. At first, phenomenolog-
ical model parameters—anisotropy constants—are deduced
from the magnetization curve. The microscopic parameters—
exchange field on Sm, Bex, and CFP—are determined at the
second stage. This procedure guarantees uniqueness of the
parameters found.

A. Phenomenological description of the magnetization curve

We proceed from the standard expression for the energy of
a uniaxial ferromagnet [16,17] containing anisotropy terms of
orders 2–6, as well as a Zeeman term with H⊥ [001]:

E = K1sin2θ + K2sin4θ + K3sin6θ − μ0HM0 sin θ. (2)

Here θ is the angle between the fourfold symmetry axis
[001] and magnetization vector M. Within the model, |M| =
M0 = const. The energy (2) does not depend on the azimuthal
angle ϕ, as follows from the fact that the magnetization curves
measured along [100] and [110] coincide. Equilibrium orien-
tation of the magnetization vector is found by minimizing the
energy (2) with respect to sin θ . It is convenient to introduce a
special variable for that purpose,

m = sin θ = M · H
M0H

,

which is reduced magnetization in the direction of applied
magnetic field. The necessary condition for a minimum,
∂E/∂m = 0, is then written as follows:

μ0H = 2K1

M0
m + 4K2

M0
m3 + 6K3

M0
m5. (3)

This is just the magnetization curve expressed as H (m).
The initial set of anisotropy constants is obtained by as-

suming that the S-shaped anomaly is on the verge of be-
coming a discontinuity. Mathematically, this means that the
following two conditions must be fulfilled at the inflection

point (Hinf , minf ):

∂H

∂m
= 0 (4)

and

∂2H

∂m2
= 0. (5)

The third obvious condition is that the curve should pass
through the inflection point; i.e., Eq. (3) should be satisfied
for H = Hinf and m = minf .

The first of these three conditions (4) is an approximate
one—the experimental curve is not really vertical at the
inflection point, albeit rather steep. At this stage precision
is sacrificed for the sake of uniqueness. The three conditions
lead to three simultaneous linear equations in K1, K2, and K3,
which have a unique solution:

K3 = μ0Hinf M0

16m5
inf

, (6)

K2 = −5m2
inf K3, (7)

K1 = −3m2
inf K2. (8)

Setting in the values found from the experiment in Sec. III,
M0 = 138 A m2/kg, μ0 Hinf = 10 T, minf = 0.6, we find

K3 = 1.11 kJ/kg, K2 = −2.00 kJ/kg, K1 = 2.16 kJ/kg.

(9)

This should be regarded as a starting set of anisotropy
constants. It is not yet optimal—the magnetization curve is
reproduced well near the inflection point but not necessar-
ily elsewhere. In particular, the anisotropy (saturation) field
comes out too low. To improve the overall agreement, the
starting set should be adjusted slightly, without compromising
the uniqueness. We proceeded as follows:

(i) K3 was treated as a free parameter;
(ii) K2 was linked to K3 by the condition that the ordinate

of the inflection point should remain unchanged, Eq. (5) or (7)
with minf = 0.6;

(iii) K1 was linked to K2 and K3 by the condition that the
magnetization curve (3) should pass through the inflection
point,

K1 = 1
2 m−1

inf μ0Hinf M0 − 2m2
inf K2 − 3m4

inf K3. (10)

The following best-fit parameters were found:

K3 = 0.97 kJ/kg, K2 = −1.74 kJ/kg, K1 = 2.03 kJ/kg.

(11)

These are rather close to the starting values (9); thus, K2

and K3 have been reduced by about 13% and K1 by just 6%.
The employed fitting procedure guarantees uniqueness. No
significantly different set of anisotropy constants can repro-
duce satisfactorily the low-temperature magnetization data.
The best-fit curve is shown in Fig. 2 (solid line).
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TABLE I. Exchange and crystal field parameters used in several
calculations. All values are in degrees Kelvin.

μBBex A0
2〈r2〉 A0

4〈r4〉 A0
6〈r6〉 Reference

240 –126 7.5 59 [3]
237 –129 8.9 73 [6]
237 –130 0 50 [7]
237 –120 2.5 55 [8]
245 –110 –6 70 This work

B. Determination of microscopic model parameters

Our first task is to determine the Fe-Sm exchange field
on Sm, Bex, which is an important quantity in the anisotropy
theory [5]. The most reliable way of finding Bex is to deduce it
from the spectroscopic data of Moze et al. [6], who observed
an intermultiplet transition at Einter = 175.5 meV. The neces-
sary formula was derived in Ref. [18]:

μBBex = 0.4257(Einter − �so) + 0.0281A0
2〈r2〉

+ 0.1000A0
4〈r4〉 − 0.0817A0

6〈r6〉. (12)

Here �so = 124 meV is the bare spin-orbit splitting be-
tween the ground (J = 5/2) and first excited (J = 7/2) mul-
tiplets of Sm, taken from Table 5.3 of Ref. [19]. As a matter of
principle, Eq. (12) can be used without the small crystal-field
corrections on the right-hand side; in this way Bex in SmFe11Ti
was estimated as 380 ± 40 T [18] (hence μB Bex = 254 K). A
more accurate estimate is obtained if the crystal-field terms
are included. We chose to use the CFP of Ref. [6] and got
μB Bex = 245 K. An a posteriori check with our own CFP
(from the last line of Table I) yielded the same value of
μB Bex.

Turning now to the theory of Magnani et al. [5], we
modified their Eqs. (16)–(19) in several ways.

(i) Substituted J = 5/2, as proper for Sm.
(ii) Corrected a misprint in the expression δ6 = −5 ×

17/(34 × 7 × 112 × 132 × 211/2) for Sm.
(iii) Took the limit T → 0 (x → ∞) by using Eq. (2.76)

of Ref. [20].
(iv) Changed from Wybourne’s normalization of the

CFP (used in Refs. [5,7,8]) to that of Stevens (used in
Refs. [4,6,18]). More specifically, the crystal-field Hamilto-
nian used in this work is the same as in Ref. [18],

ĤCF = A0
2

∑
i

(
3z2

i − r2
i

) + A0
4

∑
i

(
35z4

i − 30z2
i r2

i + 3r4
i

)

+ A0
6

∑
i

(
231z6

i − 315z4
i r2

i + 105z2
i r4

i − 5r6
i

)
, (13)

with i running over the electrons of the 4 f shell of Sm.
(v) The resulting expressions for the anisotropy constants

have been regrouped so as to have a single CFP on the right:

K1 − KFe + 8

7
K2 + 8

7
K3 = −13

21

(
1 + 20

7

μBBex

�so

)
A0

2〈r2〉,
(14)

K2 + 18

11
K3 = 65

99

(
1 + 1200

77

μBBex

�so

)
A0

4〈r4〉, (15)

FIG. 4. Sketches of S-shaped magnetization curves (a) with and
(b) without a discontinuity (FOMP).

K3 = 3400

429

μBBex

�so
A0

6〈r6〉. (16)

Here the ratio μBBex/�so = 0.170 describes the intensity
of J mixing. Equation (14) takes account of the fact that
a certain contribution to K1 comes from the iron sublattice
(KFe = 25 K/f.u., as measured on YFe11Ti). Converting the
anisotropy constants found in the previous section (11) to
K/f.u. and setting them in Eqs. (14)–(16), one finally arrives
at the CFPs presented in the last line of Table I.

V. DISCUSSION

Reviewing the data compiled in Table I, we find our model
parameters consistent with those of the other authors. The
difference, however, is that our parameter set was calculated
by hand and is unique by construction. (Uniqueness is not a
trivial matter since multiple sets of CFP can fit the same mag-
netic data, even if the symmetry is as high as tetragonal [21].)
This should be viewed as a success of the theory of Magnani
et al. [5], which has been demonstrated to perform on a par
with large-scale numerical calculations. The demonstration is
still limited to a few compounds: Apart from SmFe11Ti, the
model has been tested on Sm2Co17 [5] as well as on actinide
dioxides [22]. Many more tests are necessary.

Our theory gives a simple explanation to the old mys-
tery that A0

4 ≈ 0 in SmFe11Ti. By Eqs. (7) and (15), A0
4 =

0 if minf =
√

18
55 = 0.572. Whenever the hard-axis curve of

a uniaxial magnet has an inflection point situated at about
0.57 times saturation magnetization, then inevitably A0

4 ≈ 0.
It does not matter whether the magnetization curve is con-
tinuous at the inflection point, as shown in Fig. 4(b), or a
discontinuity (a first-order phase transition, FOMP of type
II [16,17]) takes place, as in Fig. 4(a). Equation (7), which
follows from Eq. (5), holds in either case. These statements
are valid irrespective of the kind of rare earth or the strength
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of J mixing. All that matters is that the value inside the
parentheses on the right-hand side of Eq. (15) is nonzero.
The factor of K3 on the left of Eq. (15), 18

11 , is a universal
constant originating from Legendre polynomials. (The above
analysis applies to easy-axis magnets being magnetized in the
basal plane; for an easy-plane material, devoid of in-plane
anisotropy and being magnetized along the hard axis, A0

4 = 0

if minf =
√

3
11 = 0.522.) It thus turns out that the values of

A0
4 in Table I present nothing but experimental noise; A0

4
may be as well set to zero, as in Ref. [7]. The crux of the
matter is the exact value of minf . We took minf = 0.6, which is
slightly above 0.57, so our A0

4 is negative. Apparently, other
authors used values of minf less than 0.57 and got A0

4 > 0.
The particular difficulty in the case of SmFe11Ti is to decide
what should be taken for spontaneous magnetization. In our
work MS was determined by extrapolation of the easy-axis
magnetization curve to zero external field. Alternative def-
initions of MS—as the highest M measured, or else as ex-
trapolated to infinite field—result in higher values of MS and
therefore, lower minf . We believe that magnetization rotation
is essentially complete above 20 T. Further growth in higher
fields is due to paraprocess—lengthening of the magnetization
vector—as opposed to rotation. This growth is not described
by our model (or indeed by the models used in Refs. [3,6–
8]) and should be excluded. An added difficulty comes from
the magnetization anisotropy mentioned in Sec. III. All these
factors make the determination of minf in SmFe11Ti somewhat
less accurate and so we prefer to use a rounded-off value,
minf = 0.6.

It is highly unusual that SmFe11Ti has practically no
anisotropy in the basal plane. This important fact has not
been clearly documented in the literature. For an unknown
reason it was not addressed directly by Kaneko et al. [3]. One
is left to guess if their crystal was twinned (or suspected of
being twinned) or they simply attached no importance to this
fact as being irrelevant to industrial application. They were
certainly not unaware of it and it was on these grounds that
the nonaxial CFPs were excluded from the outset: A4

4 = 0,
A4

6 = 0.
In our analysis, too, the uniaxial symmetry of SmFe11Ti

is heavily relied on. However, most permanent-magnet ma-
terials do possess a non-negligible anisotropy in the basal
plane and so a question arises if our main finding—that an
inextricable connection exists between the presence of an
inflection point at minf = 0.57 and A0

4 being nil—is valid
for such materials. It can be readily demonstrated that if
the magnetization curves in the two principal basal-plane
directions have inflection points, both situated at minf = 0.57
(the abscissas may well be different), then inevitably A0

4 =
0. For hexagonal magnets it is not even necessary that the
ordinates of both inflection points be equal. If they are differ-
ent, minf [100] �= minf [120], and the effective ordinate equals
0.57, then still A0

4 = 0. The effective inflection ordinate is
defined by m−2

eff = 1
2 (m−2

inf [100] + m−2
inf [120]). One can expect

that more materials will be found where the smallness of A0
4

can be established by visual inspection of the magnetization
curves.

Finally, we would like to compare SmFe11Ti with a similar
compound, DyFe11Ti. Apart from being crystallographically
identical, both compounds have in common having been
thoroughly studied on single crystals. Both systems have some
rare features that facilitate unambiguous determination of
their CFPs. (For example, DyFe11Ti undergoes two distinct
spontaneous spin reorientation transitions, one of first and
one of second order [23].) Moreover, certain characteristics
of their CFPs can be read off directly from the magnetization
curves. Thus, DyFe11Ti has an unusually strong anisotropy
in the basal plane, which persists up to room temperature and
above. Accordingly, A4

4 of DyFe11Ti is indisputably large [23].
As opposed to that, SmFe11Ti has practically no anisotropy in
the basal plane down to the lowest temperature; therefore, its
A4

4 is imperceptibly small. At the same time, both compounds
are perfectly isomorphous members of the RFe11Ti family
and, by a long-standing intuitive principle, their CFPs should
be close. This venerable principle has been in use since the
earliest days of rare-earth research to predict CFP values in
situations where experimental data alone did not suffice. It
would have deserved being called an empirical law—if it were
true, because the example of SmFe11Ti and DyFe11Ti proves
it wrong.

VI. CONCLUSION

The most extraordinary fact about SmFe11Ti is that most
of its CFPs (three out of five) can be determined without
any calculations at all, just by looking at the experimental
magnetization curves. Thus, A4

4 = 0 and A4
6 = 0 because there

is no anisotropy in the basal plane and A0
4 = 0 because there

is an inflection point at minf ≈ 0.6. The determination of
sign and, to a lesser degree, magnitude of A0

2 from magnetic
anisotropy is rather straightforward. What remains as a more
or less free parameter is A0

6; its sole responsibility is to bring
about the S-shaped anomaly in the hard-axis curve. As a result
of this unusual simplicity, the CFPs of SmFe11Ti are known
with a high degree of confidence. One is equally sure about
the CFP of DyFe11Ti, especially as regards its very large A4

4
[23], because the anisotropy in the basal plane is large—even
at room temperature—and cannot be accounted for by any
other CFP. The two compounds together, SmFe11Ti with A4

4 =
0 and DyFe11Ti where A4

4 is unusually large, constitute an
example that shatters the naive belief that the CFP of RFe11Ti
should depend little, if at all, on R. This belief has been
the basis of CFP determination ever since the investigation
of rare-earth magnets began in the mid-20th century. Now,
for RFe11Ti at least, it proves to be as wrong as wrong can
be—and, what is false for RFe11Ti cannot be true for other
families of isomorphous RFe or RCo compounds.
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