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We explore the magnetic excitations of the spin- 1
2 triangular antiferromagnet Ba3CoSb2O9 in its 120◦

ordered phase using single-crystal high-resolution inelastic neutron scattering. Sharp magnons with no decay are
observed throughout reciprocal space, with a strongly renormalized dispersion and multiple soft modes compared
to linear spin-wave theory. We propose an empirical parametrization that can quantitatively capture the complete
dispersions in the three-dimensional Brillouin zone and explicitly show that the dispersion renormalizations
have the direct consequence that one →two magnon decays are avoided throughout reciprocal space, whereas
such decays would be allowed for the unrenormalized dispersions. At higher energies, we observe a very strong
continuum of excitations with highly structured intensity modulations extending up at least 4× the maximum
one-magnon energy. The one-magnon intensities decrease much faster upon increasing energy than predicted by
linear spin-wave theory and the higher-energy continuum contains much more intensity than can be accounted
for by a two-magnon cross-section, suggesting a significant transfer of spectral weight from the high-energy
magnons into the higher-energy continuum states. We attribute the strong dispersion renormalizations and
substantial transfer of spectral weight to continuum states to the effect of quantum fluctuations and interactions
beyond the spin-wave approximation, and we make connections to theoretical approaches that might capture
such effects. Finally, through measurements in a strong applied magnetic field, we find evidence for magnetic
domains with opposite senses for the spin rotation in the 120◦ ordered ground state, as expected in the absence
of Dzyaloshinskii-Moriya interactions, when the sense of spin rotation is selected via spontaneous symmetry
breaking.
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I. INTRODUCTION

Triangular lattice quantum antiferromagnets have been
much studied theoretically as potential hosts for frustration-
enhanced cooperative quantum effects, from the one-third
magnetization plateau phase in applied field protected by
a zero-point quantum gap [1–4] to strongly renormalized
magnon dispersions from nonlinear effects [5,6], to concep-
tual models of quantum spin liquid phases [7–9]. While it
is well-established that the nearest-neighbor (NN) triangular
lattice Heisenberg antiferromagnet (TLHAF) has noncollinear
120◦ magnetic order in the ground state [10–14], as expected
at the mean-field level, but with a reduced ordered moment,
less is known about the full energy spectrum and in particular
about the quantitative description of the intermediate- to high-
energy excitations. Higher-order spin-wave theory (SWT)
highlights that the noncollinear order induces strong nonlinear
effects and couplings between longitudinal and transverse
fluctuations, and as a consequence magnon dispersions are
expected to be strongly downward renormalized with soft ro-
tonlike minima near the M points (midedges of the hexagonal
Brillouin zone) compared to the linear spin-wave treatment
(LSWT) [6,15]. Such effects are also predicted by series
expansion calculations [5], and indeed experimental evidence
has been reported for rotonlike minima and also for SWT-
predicted finite magnon lifetime effects near the top of the
dispersion in the spin-2 TLHAF LuMnO3 [16].

Yet to be experimentally tested quantitatively is a SWT pre-
diction that, for the extreme quantum limit of spin- 1

2 , magnons
should decay over very large regions of reciprocal space
[15,17], with an alternative scenario proposed by DMRG [18]
and supported by dynamical variational Monte Carlo calcu-
lations [19] proposing instead avoided quasiparticle decay
due to strong quantum interactions that push the magnon
dispersions below the continuum states. Another important
unresolved aspect is the nature of the high-energy excitations
beyond one-magnon energies and to what extent those could
be captured quantitatively by two-magnon excitations within a
spin-wave expansion. Alternative approaches propose instead
that the higher-energy continuum excitations are better under-
stood in terms of pairs of unbound spin- 1

2 spinons [20,21],
with the magnons at low energies corresponding to two-
spinon bound states [19,22,23].

Motivated by these open theoretical questions, we have
revisited the magnetic excitations of Ba3CoSb2O9, proposed
to be one of the best realizations of a near-ideal spin- 1

2
TLHAF with full threefold lattice symmetry [25–27]. The
magnetic Co2+ ions are arranged in stacked triangular layers
as per Fig. 1(a) (hexagonal space group P63/mmc with lattice
parameters a = b = 5.835 Å and c = 14.448 Å at 1.7 K). The
combined effect of local octahedral crystal field and spin-
orbit coupling stabilize a Kramers doublet ground state with
pseudospin S = 1

2 [28]. Magnetic order occurs below 3.8 K
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FIG. 1. (a) Crystal structure of Ba3CoSb2O9 showing CoO6 octahedra (blue) in the ab plane separated by Ba2+ ions (green) and Sb2O9

double octahedra (red). There are two triangular CoO6 layers in the structural hexagonal unit cell (thin outline) related by a twofold screw
axis around c. (b) Co2+ spins (red arrows) are ordered antiferromagnetically along c due to the interlayer exchange Jz (dashed line). (c) In the
basal layers the ordered spins form a noncollinear 120◦ structure and two possible magnetic domains are illustrated here. In domain 1 (left
panel), the equilibrium spin direction rotates counterclockwise (sense indicated by the arrow on the circular envelope around the central site)
between sites whose coordinate along the horizontal axis increases from left to right (along a + b) when viewed from above (c is out-of-page).
In domain 2 (right panel), obtained from domain 1 by inversion on the central site, the rotation is in the opposite sense. Thick lines show
the nearest-neighbor J1 exchange path. The in-plane projection of the propagation vector Q and the direction of the magnetic field B ‖ c (for
Sec. IV) are also indicated. The diagrams were produced using VESTA [24].

in a noncollinear 120◦ structure [see Figs. 1(b) and 1(c)]
with spins confined to the basal plane by a small easy-plane
exchange anisotropy [29–32]. The high symmetry of the crys-
tal structure forbids Dzyaloshinskii-Moriya (DM) interactions
between any pair of Co sites located in the same ab plane
or relatively displaced along the c axis; thus DM interactions
are ruled out on all the bonds that are most likely to carry
significant exchange interactions. High-field measurements
observed clear evidence for a one-third magnetization plateau
for fields applied in the basal plane [26,29], as expected
for the up-up-down phase stabilized by quantum fluctuations
[1], a phase also observed in the spatially anisotropic system
Cs2CuBr4 [33]. Previous INS measurements in Ba3CoSb2O9

revealed a strong downward renormalization of the magnon
dispersion, a pronounced rotonlike minimum at the M points,
and an extended scattering continuum at higher energies
[27,32,34]. While the dispersion relations in the one-third
magnetization plateau phase could be well described by a
SWT + 1/S treatment for a spin Hamiltonian including easy-
plane exchange anisotropy and interlayer couplings [35], the
observed zero-field dispersions could not be quantitatively
described even after including magnon interactions at order
1/S in SWT [32], suggesting that quantum renormalization
effects in zero field are much stronger than in the one-third
plateau phase and are underestimated by a perturbative SWT
approach.

A quantitative parametrization of the dispersion relations
and knowledge of the energy and wave-vector dependence
of the continuum scattering intensity are key pieces of in-
formation required by any theoretical models of the many-
body quantum dynamics. Motivated by this, here we present
extensive studies of the magnetic excitations in large single
crystals of Ba3CoSb2O9 [36] with high-resolution inelastic
neutron scattering (INS) measurements spanning multiple
Brillouin zones, which reveal that the high-energy excitation
continuum displays highly structured intensity modulations in

momentum space with rings, hexagons and triangles appar-
ent at various energies. Below the energy threshold of the
continuum scattering, we observe sharp, resolution-limited
magnons with no decay throughout the extended reciprocal
space probed. We propose empirical wave-vector-dependent
renormalizations of the LSWT dispersion for a spin Hamil-
tonian with easy-plane exchange anisotropy, which allow us
to quantitatively capture all modulations of the experimen-
tally observed magnon dispersion relations in the full three-
dimensional Brillouin zone.

Our main results compared to previous studies [27,32,34]
are (i) the observation that magnons are sharp and do not
decay throughout reciprocal space, and (ii) a quantitative
parametrization of the complete magnon dispersion relations
in the full 3D Brillouin zone. For the observed strongly
renormalized dispersion, we find that one- and two-magnon
phase spaces in energy and wave vector never overlap, so the
magnon decays are in fact kinematically disallowed through-
out the Brillouin zone, consistent with the experimental ob-
servation of sharp magnons throughout the probed reciprocal
space. We note that while the absence of magnon decays
cannot be understood within a SWT approach for the spin- 1

2
TLHAF, it could in principle be explained if one assumes
substantial easy-plane exchange anisotropy, which gaps out
the primary one-magnon dispersion at the ordering wave
vector and thus reduces very rapidly the overlap phase space,
with no overlap expected for � � 0.92 (� = 1 is the Heisen-
berg exchange limit). However, as pointed out by previous
studies [32], the predicted magnon dispersions in this case
of substantial easy-plane anisotropy are not compatible with
the experimentally observed dispersions. This suggests that
quantum interaction effects between one-magnon and higher-
energy continuum states in the actual material are significantly
stronger than can be captured perturbatively by SWT at the
1/S level. This could be consistent with recent density matrix
renormalization group (DMRG) calculations, which proposed
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avoided quasiparticle decay due to strong interactions in spin-
1
2 models weakly perturbed away from the TLHAF limit
[18]. Furthermore, we also observe direct evidence for a
transfer of spectral weight from the one-magnon states to the
higher-energy continuum, which may be understood (at least
phenomenologically) as a further consequence of such strong
interactions.

The rest of this paper is organized as follows. Section II
describes the experimental setup used for the single-crystal
INS measurements. The following section (Sec. III) presents
the results for the magnetic excitations in the 120◦ ordered
state at low temperatures and zero applied magnetic field,
starting in Sec. III A with an outline of the key features of the
dispersion relations and the intensity modulations in the high-
energy continuum scattering. Section III B reviews LSWT
predictions of the magnon dispersions for a spin Hamiltonian
with nearest-neighbor couplings and easy-plane exchange
anisotropy. Section III C proposes empirical renormalizations
of the analytic LSWT dispersion that can capture quanti-
tatively the observed magnon dispersions in the full three-
dimensional Brillouin zone and Sec. III D describes the fits
to the INS data. Section III E verifies that one →two magnon
decays are kinematically disallowed for the parametrized
one-magnon dispersion relation, thus providing a consistency
check for the observation of sharp magnons with no decay
throughout the reciprocal space probed. Section III F presents
a quantitative comparison of the high-energy continuum scat-
tering lineshapes with a two-magnon cross-section, highlight-
ing which features can and which cannot be captured by such
an approach. Section IV presents INS measurements of the
spin dynamics in the cone phase in a c-axis magnetic field;
the evolution of the dispersion relations with increasing field
are in good (qualitative) agreement with a LSWT description
when including symmetry-allowed magnetic domains with
opposite senses of spin rotation in the ab plane, as illustrated
in Fig. 1(c). Finally, conclusions are summarized in Sec. V.
The two appendices contain further technical details on the
analysis. Appendix A presents LSWT calculations for the
magnon dispersion relations and the one- and two-magnon
dynamical structure factor, and sum rules for the total scat-
tering used in the analysis to relate one- and two-magnon
intensities. Appendix B presents analytic expressions for the
wave-vector- and energy-dependent renormalizations used to
parametrize the observed magnon dispersions.

II. EXPERIMENTAL DETAILS

The spin dynamics of a sample of two coaligned single
crystals of Ba3CoSb2O9, grown via the floating zone tech-
nique [36] (total mass 4 g), was measured using the direct-
geometry time-of-flight neutron spectrometer LET at the ISIS
neutron source in the UK [37]. For the zero-field measure-
ments [38], the sample was cooled by a variable-temperature
insert with He4 exchange gas. Data were collected both at
a base temperature of 1.7 K, well below the magnetic or-
dering transition near 3.8 K [25,36], and at 32 K, deep in
the paramagnetic phase. The spectrometer was operated in
repetition rate multiplication (RRM) mode to collect the in-
elastic scattering simultaneously for monochromatic incident
neutrons with energies Ei = 3.53 and 7.01 meV, with energy

resolutions on the elastic line of 0.062(1) and 0.159(4) meV
(full width at half maximum, FWHM), respectively. The first
configuration provided high-resolution measurements of the
magnon dispersions, which extend up to ∼1.6 meV, whereas
the second configuration probed the higher-energy scattering
continuum extending up to at least 6 meV. The higher Ei data
were normalized to give matching magnetic intensities to the
lower Ei data in the overlapping region of energy transfers
near E � 2 meV, where the magnetic signal is a broad contin-
uum in both wave vector and energy. The sample was mounted
with the c axis normal to the horizontal scattering plane, to
probe the inelastic scattering in several Brillouin zones in the
hk0 plane and (via scattering through the vertical opening of
the cryostat windows) access also more than a full Brillouin
zone in the interlayer direction. The inelastic scattering was
collected in Horace scans by rotating the sample around the
vertical axis in an angular range of 140◦ in steps of 0.5◦.
Counting times for each orientation were 15 min at the base
temperature and 7 min in the paramagnetic phase, with an
average proton current of 40 μA.

The same sample and a similar setup were used to measure
the inelastic scattering in a magnetic field applied along the c
axis [39], provided by a vertical 9 T cryomagnet. In this case,
the sample was cooled using a dilution refrigerator and the
inelastic scattering was measured at 3, 6, and 9 T at a base
temperature of 0.1 K. The spectrometer was operated in RRM
mode for incident energies Ei = 2.24, 3.81, and 7.83 meV,
with resolutions on the elastic line of 0.030(1), 0.064(1), and
0.179(8) meV (FWHM), respectively. Data were collected
in Horace scans covering a similar range to zero-field mea-
surements with coarser angular steps and average counting
times of 8 min per orientation. The time-of-flight neutron data
were processed using the MANTID [40] and HORACE [41] data
analysis packages.

To maximize the counting statistics, for several of the plots
in the paper the intensities were averaged between pixels from
the full four-dimensional Horace scan with wave-vector trans-
fers k equivalent under symmetry operations of the crystal
lattice point group (6/mmm). All those operations conserved
|k|, so the intensities of all averaged pixels had the same
(spherical) magnetic form factor.

III. SPIN DYNAMICS IN ZERO FIELD

A. Key features of the magnon dispersions
and continuum scattering

We begin by presenting the results for the spin dynamics
in zero applied field at a base temperature of 1.7 K. It is
well established experimentally [29–32] that the magnetic
structure in the ground state has spins ordered at 120◦ relative
to nearest-neighbor sites in the triangular layers, as illustrated
in Fig. 1(c), and antiparallel between adjacent layers stacked
along c; see Fig. 1(b). Compared to the structural unit cell,
the magnetic unit cell is tripled in the ab plane, but is the
same length along c, with two triangular layers per unit
cell. The magnetic structure can be described in terms of
a single propagation vector Q = ( 1

3 , 1
3 , 1), where throughout

we index wave vectors in terms of reciprocal lattice units
(h, k, l) of the hexagonal structural unit cell. The in-plane
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components of Q capture the 120◦ order in a single layer and
the out-of-plane component captures the antiferromagnetic
order between layers spaced by c/2. In the absence of DM
interactions, the two senses of spin rotation in the triangular
layers [counterclockwise/clockwise illustrated in Fig. 1(c)
left/right panels] are degenerate, so one expects a macro-
scopic sample to contain magnetic domains of both types.
In the absence of bond-dependent spin-exchange anisotropies,
believed to be negligible here, the two magnetic domains have
identical excitation spectra in zero field. (We will show later in
Sec. IV that the two domains have different spectra in a finite
c-axis magnetic field.)

An overview of the observed excitation spectrum as a
function of energy and wave vector is shown in Fig. 2 along a
representative path in reciprocal space. Throughout this paper,
wave-vector labels �, M, and K refer to the conventional
high-symmetry points in the two-dimensional (2D) hexagonal
Brillouin zone, where an unprimed (primed) label indicates
l = 0 (l = 1) and numbered subscripts (as in M1,2) refer
to distinct points in reciprocal space that are related by a
symmetry operation of the lattice point group when reduced
to the first Brillouin zone. Figure 2 shows that the inelastic
scattering intensity is strongest near the magnetic Bragg wave
vectors K′

1,2, and two sharp, well-defined magnon branches
are clearly resolved: one gapless and linearly dispersing at
low energies, and the other one gapped (Egap � 0.7 meV) at
the magnetic Bragg position. These modes correspond to the
gapless Goldstone mode associated with rotation of the spins
in the ab plane and an out-of-plane mode that is gapped in the
presence of easy-plane (exchange) anisotropy, respectively.
In the center of the figure at the M′

2 point, there is a clear
local minimum (rotonlike soft mode) in the lower dispersive
branch, where the energy is ∼8% lower compared to that
of the nearby local maximum in that branch; a flattening
of the dispersion and a less pronounced soft mode (∼1%
relative dip) is also visible in the top branch. We will refer
to these later as the lower/higher soft modes, respectively. At
the energies of the soft modes, there is almost no detectable
dispersion along the interlayer direction, so we regard these
soft modes as a consequence of the two-dimensional physics
in the triangular layers.

Important features of the dispersions are also highlighted in
constant-energy intensity maps. In particular, the triangular-
shaped contours with threefold rotational symmetry around
the Brillouin zone corners in Figs. 3(f) and 3(g) are charac-
teristic of the spin-wave dispersion shape on the triangular
lattice, and the oval-shaped contours near the midpoints of the
zone in Fig. 3(g) are due to the soft mode at M points in the
lower magnon mode. Returning to Fig. 2, there is considerable
inelastic signal above the sharp magnon dispersions in the
form of a highly structured continuum, present already inside
the magnon dispersion cones (emerging out of the magnetic
Bragg peaks) and extending higher in energy up to at least
6 meV (data shown up to 4.5 meV in Fig. 2). The continuum
intensity is strongly modulated in both energy and wave vec-
tor. This is clearly illustrated in the intensity maps at constant
energy in Figs. 3(i)–3(l). At energies just above the top of the
one-magnon dispersions [panel (i)], the continuum intensity is
strongest above the magnon cones centered at K points with a
clear threefold symmetric pattern. At slightly higher energies

FIG. 2. Observed INS intensity (1.7 K) as a function of energy
and wave-vector transfer along a high-symmetry path in reciprocal
space that crosses two magnetic Bragg peak positions (K′

1,2). The
color shows the raw neutron counts in arbitrary units. Two sharp
magnon dispersion branches are clearly observed, accompanied by a
strong scattering continuum with a structured intensity pattern. The
brackets on the right-hand side labeled (e)–(l) indicate the energy
integration ranges for the hk slices with the same panel labels plotted
in Fig. 3. The wave-vector path is �′ (0, 1, 1) → K′

1 ( 1
3 , 1

3 , 1) →
M′

2 (0, 1
2 , 1) → K′

2 (− 1
3 , 2

3 , 1) → �′, illustrated by arrows in the
white bottom-left inset with the Brillouin zone boundaries repre-
sented by dashed lines. The data below 0.1 meV has been omitted as
it is dominated by incoherent quasielastic scattering. The data up to
1.7 meV (horizontal dotted line on the right-hand side) was collected
using Ei = 3.53 meV, and at higher energies with Ei = 7.01 meV,
scaled as described in the text. The wave-vector integration range in
the hk plane is ±0.05 Å−1, and along l is ±0.05 Å−1 for energies
E � 2.5 meV, ±0.1 Å−1 for 2.5 < E � 4 meV, and ±0.2 Å−1 for
E > 4 meV.

[panel (j)], ring patterns around K become apparent, and these
transform [in panel (k)] into triangular contours with corners
touching at M points. At even higher energies [panel (l)], the
signal near M points has spread out in the direction normal to
the Brillouin zone edges, such that the intensity is strongest
along hexagonal contours centered at � and connected across
M points between adjacent Brillouin zones. All the above
features become overdamped in the paramagnetic phase at
32 K (not shown), confirming their magnetic character.
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FIG. 3. INS intensity maps as a function of momentum in the hk plane at a series of constant energies, compared with model calculations.
(e)–(h) Intensity maps up to 1.6 meV showing constant-energy contours of the one-magnon dispersions. (a)–(d) Corresponding calculations
for the best-fit spin-wave model with renormalized dispersions described in the text. The model is the one-magnon cross-section, including the
magnetic form factor for Co2+ ions, the neutron polarization factor, the finite-temperature Bose factor and convolution with the instrumental
resolution (for details see Appendix A). (i)–(l) Intensity maps through the continuum scattering at higher energies (above 1.8 meV). The data
were collected at 1.7 K with Ei = 3.53 meV for (e)–(h) and 7.01 meV for (i)–(l). In all data panels, the color shows the raw neutron counts
in arbitrary units. In all panels, dashed lines indicate hexagonal Brillouin zone boundaries. In panel (a), gray arrows show the projections of
b∗ and Q wave vectors, and labels K1–3, M1,2, and � indicate high-symmetry points referred to in the rest of the paper. The energy integration
ranges of the data panels are given in the panel titles and also indicated by the labeled brackets on the right of Fig. 2.

B. Magnon dispersions within linear spin-wave theory

To parametrize the dispersion relations, following previous
studies [29,32] we consider the minimal spin Hamiltonian

H = J1

NN∑
〈i j〉

Sx
i Sx

j + Sy
i Sy

j + �Sz
i Sz

j

+ Jz

interlayer∑
〈mn〉

Sx
mSx

n + Sy
mSy

n + �Sz
mSz

n, (1)

where the nearest-neighbor intralayer exchange J1, the inter-
layer exchange Jz (both antiferromagnetic), and the orienta-
tion of the (x, y, z) axes are all illustrated in Figs. 1(b) and 1(c).
� < 1 parametrizes the easy-plane exchange anisotropy. This
spin Hamiltonian has continuous rotational symmetry about
the z axis in spin space. The crystal structure however has only
discrete rotational symmetries, so we have neglected in the
above Hamiltonian symmetry-allowed bond-dependent ex-
change anisotropy terms, such as different exchange couplings

for the in-plane spin components along and perpendicular to a
NN bond.

The mean-field ground state of the Hamiltonian in Eq. (1)
has 120◦ spin order in the layers and AFM stacking along
c, as illustrated in Figs. 1(b) and 1(c). The derivation of
the dispersion relations and dynamical structure factor within
LSWT is reviewed in Appendix A. Three magnon modes are
expected for a general wave vector k: a primary mode ω(k)
and two secondary modes ω±(k) ≡ ω(k ± Q), where Q is
the propagation vector of the magnetic structure. For a given
wave vector k, in general only two out of the three modes
carry significant weight (for the dynamical structure factor
calculation see Appendix A).

We discuss below the key properties of the primary mode,
as the secondary modes are easily obtained by wave-vector
translations. The primary mode is gapless at the origin k = 0,
corresponding to the Goldstone mode of spin rotations in
the xy plane. For finite easy-plane anisotropy (� < 1), the
primary mode has a gap at the magnetic Bragg peak positions
k = ±Q of magnitude Egap = 3

√
3/2 J1S

√
1 − � for Jz = 0.

064421-5



DAVID MACDOUGAL et al. PHYSICAL REVIEW B 102, 064421 (2020)

FIG. 4. Illustration of the renormalizations applied to the bare
LSWT dispersion to capture the experimental magnon dispersion.
For simplicity, all calculations are for the special case of the isotropic
2D TLHAF model (Jz = 0, � = 1). Dashed magenta lines show the
bare dispersion h̄ωLSWT in Eq. (A2) plotted along a high-symmetry
path in the Brillouin zone [schematically shown in the bottom left
inset]. The soft modes at M and near K/2 are introduced by adding a
virtual interaction with fictitious parabolic modes h̄�M (blue dashed
line) and h̄�K/2 (green dashed line). The resulting renormalized
dispersion h̄ω (solid magenta line) is fitted to the experimental
magnon dispersion.

The interlayer coupling Jz leads to a finite dispersion along l
with a zone boundary energy at (001) of magnitude 6S

√
J1Jz

for � = 1. Previous studies [32,34] have shown that LSWT
for the above spin Hamiltonian can be used to parametrize
well the low-energy dispersions in Ba3CoSb2O9 up to an
energy of the order of the interlayer zone boundary energy.
However the dispersions at higher energies, in particular close
to the top of the dispersions, could not be accounted for
[32]. Even when including magnon interaction effects to order
1/S, the maximum magnon energy was overestimated by
about 45%, suggesting that quantum renormalization effects
on the magnon dispersions are stronger than can be captured
perturbatively at order 1/S in SWT. In the following, to
make progress we propose an empirical parametrization of the
dispersion relations.

C. Proposed empirical parametrization of the observed
magnon dispersions

From general arguments, one expects that the physical
magnon dispersion would satisfy the same periodicity in re-
ciprocal space and the same lattice point group symmetries as
the LSWT dispersion, but that it may be squeezed, stretched,
or otherwise deformed compared to the LSWT prediction at
various momenta and/or energies. In this spirit, we introduce
below wave-vector-dependent renormalizations that preserve
the lattice point group symmetries and allow us to quanti-
tatively capture all dispersion modulations in the full three-
dimensional Brillouin zone. All operations are performed on

the primary magnon dispersion, as the secondary modes are
obtained simply by a wave-vector shift. The complete analyt-
ical forms of the renormalization functions used are given in
Appendix B; here we discuss their physical motivation and
qualitative features.

Wave-vector-dependent modifications are introduced to re-
produce the local minima (soft modes) observed in Fig. 2
near the M′

2 point. The lower soft mode occurs in the primary
magnon dispersion. LSWT predicts a saddle point at this po-
sition with a local maximum in the M-K direction and a local
minimum in the M-� direction, see Fig. 5(a). To obtain a local
minimum in both in-plane directions, we consider in Fig. 4 the
mixing of the bare dispersion h̄ωLSWT (dashed magenta line)
with a fictitious gapped mode h̄�M (dashed blue line) centered
at M and parabolic in the hk plane; the resulting lower mode
after mixing (magenta solid line) has the desired qualitative
feature of a smooth local minimum at M. To parametrize
the upper soft mode visible in Fig. 2 near M′

2, we first note
that this feature occurs in the secondary modes ω±(k), which
nearly overlap in this wave-vector region and furthermore
trade intensity with each other, such that effectively a single
higher-energy magnon branch is visible. The corresponding
location in reciprocal space where the primary mode would
display such a soft mode is near kM ± Q, symmetry equivalent
to Q/2, i.e., located half-way between � and K; we will refer
to this as K/2 from now on (in the notation of the theoretical
Refs. [18,19], this is the Y1 point). We illustrate in Fig. 4 the
procedure to obtain a local soft minimum via mixing with
a virtual parabolic mode h̄�K/2 centered near K/2 (dashed
green line); the lower mode after mixing (magenta solid
line) displays the desired local soft mode feature. To obtain
the “final” renormalized dispersion h̄ω that was fitted to the

FIG. 5. (a) Contour map in the (hk0) plane of (a) the LSWT
dispersion h̄ωLSWT(k) and (b) the best-fit renormalized dispersion
h̄ω(k), using parameters in Table I in Appendix B. Dashed lines
show the hexagonal Brillouin zone boundaries. The separate color
maps in the two panels highlight relevant features of the two distinct
dispersion surfaces. The maximum in h̄ωLSWT(k) occurs on a circle
centered at � and passing near the six K/2 wave vectors; this
is replaced in the renormalized dispersion by a near-plateau in a
wide annular region with shallow local minima near the set of six
K/2 points. h̄ωLSWT(k) has saddle points at the M zone-boundary
points, whereas at those positions the renormalized dispersion h̄ω has
oval-shaped local minima. The triangular-shaped contours around
K and oval-shaped ones around M in (b) are clearly visible in the
constant-energy INS intensity map in Fig. 3(g).
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FIG. 6. Comparison of (a) INS data (1.7 K, Ei = 3.53 meV) with (b) the best-fit spin-wave model with renormalized dispersions, along a
high-symmetry path in the (hk1) plane crossing two magnetic Bragg peaks at K′

1,2. The color in (a) shows the raw neutron counts in arbitrary
units. The calculation in (b) includes both the one-magnon and two-magnon (2M) cross-sections (the latter multiplied by a factor of 5 for
better visibility). The white circles in (a) are experimental dispersion points (error bars smaller than the size of symbols), extracted by fitting
Gaussian peaks to constant energy or constant wave-vector scans through the sharp modes; their positions are well described by the model
dispersions, shown by the solid, dashed, and dotted magenta lines for the ω(k), ω(k − Q) and ω(k + Q) modes, respectively. The wave-vector
path is �′ (0, 1, 1) → K′

1 ( 1
3 , 1

3 , 1) → M′
2 (0, 1

2 , 1) → K′
2 (− 1

3 , 2
3 , 1) → �′, illustrated by thick arrows in the white bottom-right inset with the

Brillouin zone boundaries represented by dashed lines. The integration width for the data in the hk plane is ±0.05 Å−1 and along l is ±0.05 Å−1.
The quasielastic scattering below 0.1 meV has been omitted.

data, h̄ωLSWT was mixed with many virtual paraboloids at
equivalent M and K/2-type positions (up to reciprocal lattice
translations or lattice point group symmetry operations) at the
same l value, to ensure the final result is a smooth function that
still respects all lattice point group symmetries. Figure 5(b)
shows a contour map of the renormalized dispersion surface
in the (hk0) plane, which highlights the location of soft modes
at M and near K/2 points, not present for the bare h̄ωLSWT

dispersion in panel (a).

D. Fits of INS data to the spin-wave model
with renormalized dispersions

The above spin-wave model with renormalized dispersions
was fitted to the experimental data as follows. First, an initial
parametrization of the dispersion relation was obtained by

fitting the functional form of the renormalized spin-wave
dispersion to a set of (h, k, l, E ) dispersion points, extracted
by fitting Gaussian peaks to constant energy or constant
wave-vector scans through the INS data in regions where the
magnon modes were clearly separated from one another and
where the character of each mode [whether ω(k), ω+(k) or
ω−(k)] could be unambiguously identified from the dispersion
trends. This dispersion parametrization was then used as a
starting point and further refined by performing a global fit
of the full one-magnon cross-section model, including all
three magnon branches, to selected slices and cuts through
the four-dimensional INS data along many symmetry-distinct
directions in reciprocal space (representative slices shown in
Figs. 6 and 7). To ensure the model fitted only the one-magnon
intensity data, the regions with clear continuum scattering in
those slices were masked in the fit; for example, data pixels

FIG. 7. Same as Fig. 6, but for a wave-vector path that probes the interlayer l dispersion: K2 (− 1
3 , 2

3 , 0) → M2 (0, 1
2 , 0) → � (0, 1, 0) →

K2 → K′
2 (− 1

3 , 2
3 , 1) → M′

2 (0, 1
2 , 1) → �′ (0, 1, 1), illustrated in the white bottom-right inset. The integration width in the hk plane is

±0.05 Å−1 for panels 1–3 and 6, and ±0.02 Å−1 for panels 4 and 5, and along l is ±0.1 Å−1 for panels 1, 3, and 5, and ±0.3 Å−1 for
panels 2 and 6.
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contributing to the gapped “cones” of continuum scattering
at high energies near K′

1,2 points in Fig. 6(a) were excluded
from the fit. The one-magnon cross-section model included
the effects of the finite-temperature Bose factor, the magnetic
form factor for Co2+ ions, the neutron polarization factor,
and a parametrization of the experimental energy resolution
(for details, see Appendix A). The linewidth of the observed
sharp one-magnon modes in constant wave-vector scans was
well accounted for by the parametrized instrumental energy
resolution, suggesting that the magnons are long-lived with
no evidence of lifetime broadening. Model parameters ob-
tained through this fitting procedure are listed in Table I
(Appendix B) and include the two exchange parameters J1

and Jz, the exchange anisotropy �, the relative in-plane/out-
of-plane magnon intensity prefactor Zη/Zξ , and parameters
to describe the two types of soft modes at M and near K/2.
The Hamiltonian parameters were constrained to reproduce
the observed magnetization saturation field [35],

gμBBsatS
−1 = (3 + 6�)J1 + 2(1 + �)Jz, (2)

with Bsat = 32.8 T and g factor g = 3.87.
This model provides an excellent description of the exper-

imental dispersion relations at all energies and wave vectors
probed, as illustrated by comparing (a) the data and (b) the
parametrization plots in Fig. 6 for wave-vector directions in
the (hk1) plane and Fig. 7 for wave vectors also probing
the interlayer l dispersions. Open white circles in Fig. 6(a)
correspond to empirical peak centers extracted from Gaussian
fits to constant energy or constant wave-vector scans; their
close agreement with the overplotted dispersion relations (ma-
genta lines) emphasises the level of quantitative agreement
between data and model. All key features of the dispersion
are quantitatively reproduced, including the energy of the
gapped mode at the magnetic Bragg peak positions K′

1,2, the
dispersion along the interlayer K2-K′

2 direction in Fig. 7,
the relative flattening of the dispersions near the maximum
energy, and the dispersion shapes near the soft modes at M
and near K/2 points.

Although the present analysis focuses on capturing the
intermediate to high-energy features of the dispersions, where
the spin-wave peaks are most accurately determined exper-
imentally as they are well separated in energy and momen-
tum, the parametrization also captures well the low-energy
behavior. In particular, the steep linearly dispersive spin-wave
cones emerging out of the magnetic Bragg peak positions
K′

1 and K′
2 in Fig. 6, attributed to the gapless ω−(k) and

ω+(k) modes, respectively, are consistent between the data
and the model parametrization. We note however that the
spin-wave peaks are barely resolved at low energies due to the
very steep dispersion combined with the finite instrumental
resolution, so changes in the spin-wave velocity of order 10%
compared to the LSWT result as predicted by SWT + 1/S
treatments [42] could also be consistent with the data in this
low-energy region. Testing quantitatively for such spin-wave
renormalization effects in the limit ω → 0 would require a
more sophisticated analysis, including theoretical predictions
of the complete wave vector and energy-dependent quantum
renormalization of the dispersions and intensities for the full
Hamiltonian in Eq. (1), which is beyond the scope of the
present empirical parametrization.

Turning now to the magnon intensities, the strongest signal
in Figs. 6 and 7 is observed near K points with intensities
decreasing rapidly approaching the � points, and this gen-
eral trend is well reproduced by the model. However, close
inspection of the intensity variation, in particular as a function
of energy, reveals a discrepancy between the data and model;
namely, if the overall intensity scale in the calculation is set
to match the intensities of the low-energy magnons in those
figures, then the intensity of the high-energy magnons is much
lower in the data than in the calculation, compare Figs. 6(a)
with 6(b), also Fig. 7(a) with 7(b), and Fig. 3(h) with 3(d).
(Unless otherwise specified, the overall intensity scale is cho-
sen to match the observed low-energy signal for all calculated
intensity color maps throughout the paper.) We propose that
this discrepancy between the spin-wave model and data is
evidence of a transfer of spectral weight from the one-magnon
modes to the higher-energy continuum scattering that is not
captured by the model; such a transfer of spectral weight is
expected from general considerations as a consequence of the
interaction between the high-energy magnons and the higher-
energy continuum states, expected to result in a downward
renormalization of the magnon energies and a simultaneous
transfer of intensity from the high-energy magnons to the
continuum states. Further support for this interpretation will
be provided later in Sec. III F, where we compare directly
the observed scattering lineshapes with predictions of the
spin-wave model for both one- and two-magnon excitations.

E. Why are magnons sharp and do not decay?

We find experimentally that the magnons are sharp, with
resolution-limited lineshapes throughout the extensive region
of reciprocal space probed with no evidence of intrinsic
broadening, indicating that magnon decay processes do not
occur. This is a nontrivial result, as SWT + 1/S theoretical
studies have predicted extended regions of one →two magnon
decays for the spin- 1

2 TLHAF limit [17]. We review below
the requirements for magnon decays following Ref. [15] and
find that they are not satisfied in Ba3CoSb2O9. In particular,
we find that the shape of the magnon dispersion is quite
different from that of the TLHAF model and is such that over-
lap between one- and two-magnon phase spaces is avoided
throughout reciprocal space, so no decay can occur.

Specifically, decay processes require that (i) the spin
Hamiltonian has finite matrix elements for mixing between
one- and two-magnon states, and (ii) energy and momentum
are conserved during the decay, i.e., a magnon at wave vector
k can kinematically decay into a pair of magnons with wave
vectors k1 and k2 if

k = k1 + k2 and ω(k) = ω(k1) + ω(k2).

The finite matrix element requirement for decay is naturally
satisfied due to the noncollinear nature of the 120◦ order in the
ground state, which leads to couplings between longitudinal
spin fluctuations on one site and transverse fluctuations on
neighboring sites (defining longitudinal and transverse as
along and perpendicular to the local ordered spin direction,
respectively), which in turn mixes one- and two-magnon
states [15]. The kinematic constraint is most transparently
tested by working in the rotating reference frame that follows
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FIG. 8. Phase space (shaded area) for two-magnon excitations along high-symmetry wave-vector directions, compared with the one-
magnon dispersion relation h̄ω(k) (magenta solid line). When overlap occurs, magnons are unstable to decay, and those regions are indicated
by the horizontal double-arrowed lines labeled “Decay.” The four figure panels correspond to different two-dimensional spin-wave models
related to the Hamiltonian in Eq. (1) with Jz = 0. (a) 2D Heisenberg (� = 1) model within LSWT, for which decay is expected along the
whole �-K line and also a finite wave-vector range starting from � toward M. (b) Easy-plane XXZ (� = 0.95) model within LSWT, where the
anisotropy opens a gap at K. The phase space for magnon decay is much reduced compared to panel (a), but is still present near the top of the
�-K dispersion. Panels (c) and (d) are the same as panels (a) and (b) but with the empirical renormalizations applied to the LSWT dispersions,
as described in Sec. III C. In panel (c) the renormalizations have not greatly affected the decay regions compared to panel (a), whereas in
panel (d) the decay regions are completely eliminated, meaning magnons are sharp everywhere. The exchange and dispersion renormalization
parameters used are listed in Table I in Appendix B. As explained in the text, the plots are for the rotating reference frame, where a single
magnon mode is present with dispersion h̄ω(k).

the local ordered spin orientation, in which the ground state
is ferromagnetic and there is a single magnon mode with
dispersion ω(k) (for more details see Appendix A). The phase
space of two-magnon excitations in this rotating frame is il-
lustrated by the shaded area in Fig. 8(a) for the 2D Heisenberg
model described within LSWT. Decay is expected where the
one-magnon dispersion (magenta solid line) overlaps with the
shaded area, which occurs throughout the �-K line and over a
significant portion of the �-M line. In addition to the magnon
dispersion ω(k), the figure also shows the wave-vector-shifted
dispersions ω(k ± Q) (dotted cyan/dashed green lines), which
helps to emphasize that the lower boundary of the two-
magnon continuum at a fixed wave vector k is the minimum
energy of those three curves. This occurs because the lower
boundary corresponds to creating one of the two magnons at
zero energy at either the � point (k1 = 0) or at one of the two
K points (k1 = ∓Q), thus placing the other magnon in the pair
at wave vector k2 = k with energy ω(k) or at k2 = k ± Q with
energy ω(k ± Q), respectively. If an easy-plane anisotropy is
added, as in Fig. 8(b), then the dispersion becomes gapped
at the ordering wave vector (K points), which increases the
minimum energy cost of creating two-magnon states and

therefore reduces the regions of overlap between one- and
two-magnon states. Despite this, a finite decay region is still
expected near the top of the �-K dispersion, if the dispersion
shape is given by the LSWT result.

The above analysis is, however, oversimplified, as the ex-
perimental dispersion relations are in fact strongly renormal-
ized in nontrivial ways compared to the LSWT prediction, as
found in the preceding Sec. III D. This is physically attributed
to the effect of magnon interactions and quantum fluctuations
beyond the linear spin-wave approximation. In Fig. 8(c), the
solid magenta line is the dispersion relation from Fig. 8(a)
after applying the same wave-vector-dependent renormaliza-
tions as for the full model fitted to the experimental data,
using the parameters in Table I but with Jz = 0 and � = 1.
In other words, we assume that the empirically determined
dispersion renormalizations are unaffected by the weak 3D
couplings and the small easy-plane anisotropy. Figure 8(c)
shows that the overlap regions are not changed much by these
renormalizations and so extended decay regions are predicted.
Finally, in Fig. 8(d) we consider a spin-wave model with
finite easy-plane anisotropy and dispersion renormalizations
included, which is closer to experimental observations. In
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this case, we find that the magnon dispersion ω(k) defines
the lower boundary of the two-magnon continuum but never
enters it, so decay regions are completely eliminated. For
finite values of the interlayer coupling Jz that are consistent
with the experimental data, there are only very small changes
to cases in Figs. 8(c) and 8(d) and the qualitative content is
unaffected, i.e., extended decay regions are still present in
Fig. 8(c) but remain absent in Fig. 8(d). As the 3D couplings
have only very small effects on the magnon decay regions,
Fig. 8(d) captures the essential physics of avoided magnon
decays in the present system.

The above analysis of the different models suggests that
magnon decays do not occur in Ba3CoSb2O9 because of the
combined effect of the small, but finite easy-plane anisotropy
(� < 1) and the strong dispersion renormalizations from
quantum effects, with both effects playing a rôle.

We note that recent theoretical work [18], based on DMRG
calculations for gapped spin models slightly perturbed away
from the TLHAF limit, proposed that strong quantum inter-
actions lead to an avoidance of the LSWT-predicted overlap
between the one-magnon dispersion and the higher-energy
two-magnon continuum scattering; the resulting magnon dis-
persion is renormalized downward and has a much reduced
spectral weight, due to a transfer of weight to the higher-
energy continuum states via the aforementioned interactions.
It would be interesting if such calculations could be extended
to the weak easy-plane anisotropy case relevant here where
the spectrum is gapless, and also much closer to the isotropic
Heisenberg limit, to test if the same picture applies. In addi-
tion, recent variational dynamical Monte Carlo calculations
proposed that magnons remain sharp throughout the Brillouin
zone in the fully isotropic Heisenberg limit [19].

F. Continuum scattering compared
with a two-magnon cross-section

An overview of the complete magnetic excitation spectrum
is plotted in Fig. 9(a). Sharp spin-wave modes are visible up
to 1.6 meV, followed by a continuum of scattering, which
appears to emerge from inside the spin-wave cones centered
at wave vectors K1,3 and extends in energy up to at least
the top of the plotted range. Inside the continuum, highly
dispersive intensity modulations are clearly visible, in the
form of two successive cones of intensity in different energy
ranges, both centered at the K points and dispersing in energy
with maxima at M points. Panel (b) shows the corresponding
calculation for the best-fit renormalized spin-wave model. The
magnon dispersions are well captured, but the predicted two-
magnon (2M) continuum (shown with intensity scaled up by
a factor of 5 for visibility) is not able to account for the large
scattering weight in the experimentally observed continuum.
Nor can it explain the highly structured intensity modulations,
predicting just one filled cone of intensity centered at K points
and dispersing in energy up to M, shifted in energy com-
pared to the experimentally observed intensity modulations in
panel (a).

Figure 10(a) presents a quantitative data versus model
lineshape comparison for an energy scan at a wave-vector
equivalent to M1 [near the center of Fig. 9(a)]. The two
sharp peaks on the low-energy side are well accounted for

FIG. 9. (a) INS data (1.7 K, Ei = 7.01 meV) showing the full
extent of the magnetic excitation spectrum, compared in panel
(b) with the renormalized spin-wave model. The wave-vector path is
(h ∓ 0.05, h ± 0.05, ±2.39), where the ± signs indicate the data in-
tegration range. The color shows the raw neutron counts in arbitrary
units. The calculation in panel (b) includes both the one-magnon and
two-magnon (2M) cross-sections (the latter multiplied by a factor
of 5 for better visibility). The intensity scale factor in panel (b) is
chosen to reproduce the observed intensities of the sharp magnons
near M1 in panel (a).

by resolution-limited magnons, where the first peak is iden-
tified with the out-of-plane ω(k) mode and the second with
degenerate in-plane ω±(k) magnons. However, the large con-
tinuum scattering at higher energies (emphasized by the gray
shading) is much underestimated by the two-magnon cross-
section (pink shading). (For details of the calculation, see
Appendix A.) Note that the two prominent broad peaks in the
continuum near 2.3 and 3.5 meV correspond to the two broad
intensity maxima near the center of Fig. 9(a).

Another useful comparison is provided in Fig. 10(b) by an
energy scan at a magnetic Bragg peak position (K′

2 in Fig. 2).
Key features of the one-magnon spectrum are well reproduced
(red line), such as the flat signal at the lowest energies, due
to the gapless ω+(k) mode, and the rapid intensity increase
near 0.7 meV, due to intersecting the gapped ω(k) mode.
However, the relative intensity between high- and low-energy
magnons is overestimated, i.e., if the intensity scale were set
to match the signal below 0.7 meV in Fig. 10(b), then the
high-energy magnons would have been greatly overestimated;
we interpret this as evidence for a transfer of spectral weight
from the high-energy magnons to the higher-energy contin-
uum scattering, not captured by the spin-wave model. The
gray shading highlights the continuum scattering contribution,
which is much underestimated by the two-magnon calculation
(pink shading with dashed line envelope). We propose that the
enhanced scattering continuum is at least partially due to the
transfer of spectral weight from the high-energy magnons.

Close inspection of Fig. 2 shows that the continuum of
scattering appears to be separated in energy from the one-
magnon modes at lower energies. We propose below that
the most likely explanation of this effect is a suppression of
the density of states for two-particle continuum scattering,
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FIG. 10. Energy scans through the INS data (filled symbols,
1.7 K) (a) at an M zone boundary point [equivalent to M1 in
Fig. 9(a)] and (b) near a magnetic Bragg wave vector (K′

2 in Fig. 2),
compared with the renormalized spin-wave model (red line and
pink shading represent one-magnon and two-magnon excitations,
respectively). Data points are raw neutron counts with an estimate
of an energy-dependent nonmagnetic background subtracted. The
accuracy of the background subtraction is illustrated by the open
symbols, which show the resulting intensities in regions of wave
vector and energy where no magnetic scattering is expected. Circles
(diamonds) correspond to Ei = 3.53 meV (7.01 meV) data. The
wave-vector integration range extends over the full available l range
(several zones), and in the hk plane is centered at the nominal wave
vector; the range in (a) is ±0.075 along both (1,0,0) and (− 1

2 , 1, 0),
and in (b) it is a circular region illustrated in Fig. 2 (lower-left inset).

rather than a genuine energy gap between the two types of
excitations. The energy separation is most apparent in the
center of the figure at M′

2, where the highest-energy magnon
is at 1.65 meV, whereas significant continuum scattering starts
only above about 1.8 meV. This separation is reduced (but still
present) inside the spin-wave cones centered at K′

1,2, as signif-
icant continuum scattering does not start immediately above
the sharp modes and there is a clear drop in intensity between
the two scattering signals. Note that an energy separation
between the two-magnon continuum and the magnon modes
is also clearly visible in the spin-wave model calculation in

Figs. 7(b) and 9(b). This apparent separation in the calculation
seems to be at odds with the fact that the magnon spectrum is
gapless [as there is a Goldstone mode at the � point ω(0) = 0
associated with rotations of the ordered spins in the ab plane],
so one can always create a magnon pair excitation at the
wave vector and energy of a single magnon (by creating one
magnon in the pair at the origin); therefore, no energy gap
is expected between one-magnon states and the two-magnon
continuum, as illustrated in Fig. 8(d). Indeed, close inspection
of energy scans through Figs. 7(b) and 9(b) shows that no
finite gap is present, the continuum intensity is just very
small immediately above the one-magnon dispersions. This
is because the relevant two-magnon states that contribute just
above the lower boundary of the continuum are dominated
by pairs where one magnon is created close to zero energy
near the origin; since the dispersion there is very steep [see
Fig. 7(b) solid line near �], the density of states in energy
for such two-magnon processes is very small, leading to
an apparent suppression of the two-magnon signal near the
lower boundary. This is illustrated in Fig. 11, where the
gray shadings separated by black lines in the top half of
the graph illustrate a contour map (on a log scale) of the
two-magnon density of states D̃(k, ω) in Eq. (A7). Note that
the region immediately above the lower boundary onset (the
lower of the dashed green and dotted cyan lines) is below the
plotted gray range, indicating a very low density of states.
The sparsely distributed red dots correspond to two-magnon
states where one magnon is near the origin, showing that
two-magnon continuum states do exist just above the magnon
dispersions. However, their density is very low compared to
higher energies, for example above the lowest black contour
line, where new scattering channels become available and
there is a significant contribution from pair states with one
magnon near the (gapped) K point (blue dots). Based on
this analysis, we conclude that the apparent separation in the
data between the higher-energy continuum scattering and the
lower-energy sharp spin-wave modes is consistent with the
assumed gapless spin-wave spectrum and is most likely due
to a suppression of intensity toward the lower boundary of the
continuum due to a reduced density of states in that region.

IV. MAGNON DISPERSIONS IN THE CONE PHASE IN
C-AXIS MAGNETIC FIELD

Here we present INS measurements of the magnetic exci-
tations as a function of magnetic field applied along the c axis,
which are sensitive to the presence of multiple magnetic do-
mains. For the Hamiltonian in Eq. (1), the mean-field ground
state has ordered spins rotating by 120◦ between NN sites
in the triangular layers, with two possible senses of rotation
illustrated in Fig. 1(c) left/right panel, corresponding to a
counterclockwise/clockwise rotation between sites displaced
along the a + b direction (labeled “domain 1”/“domain 2”),
respectively. The two structures are degenerate in the absence
of DM interactions, so a macroscopic sample would be ex-
pected to contain magnetic domains of both types, selected
via spontaneous symmetry breaking when cooling through
the magnetic ordering temperature. In zero magnetic field,
the two domains have identical dispersion relations and dy-
namical structure factors. In a c-axis applied magnetic field,

064421-11



DAVID MACDOUGAL et al. PHYSICAL REVIEW B 102, 064421 (2020)

FIG. 11. Gray shaded contour plot (log10 scale) of the two-
magnon density of states in Eq. (A7) along a wave-vector path
equivalent to the one in Fig. 7(b). The density of states is very
small (below the plotted gray range) in the region immediately above
the lower continuum boundary, given by the lower energy of the
curves ω−(k) and ω+(k), plotted by dashed green and dotted cyan
lines, respectively. The dominant two-magnon states that contribute
in this region have one of the magnons near the origin, with a
very low density of states in energy (sparsely distributed red dots).
At higher energy, more two-magnon scattering channels become
available, such as having one magnon near K (blue dots), leading
to a significant increase in the density of states above the lowest
black contour line. The colored dotted regions near � and K1 in
the bottom-right diagram indicate the phase spaces sampled by the
two-magnon events plotted as dots in the main panel.

spins cant toward the field while their in-plane component
continues to rotate in the ab plane, forming a cone structure.
The two domains remain degenerate in applied field, but
their excitation spectrum is different, as the primary magnon
dispersion ω(k) acquires an additive term [Ck in Eqs. (A1)
and (A2) in Appendix A] that changes sign between the two
domain types. Previous magnetization [29], nuclear magnetic
resonance [30], and ultrasound velocity [31] measurements in
c-axis applied field have indicated that the cone phase persists
up to 12 T. Here we present measurements well within this
field range (up to 9 T) to test whether the sample contains
both types of domains, selected via spontaneous symmetry
breaking, as expected in the absence of DM interactions.

Figure 12 (top row) shows how the magnetic excitations
along a representative wave-vector path evolve upon increas-
ing the applied field. In zero field [Fig. 12(a)], the spectrum
has mirror symmetry around the zone boundary M1 point

with two intense, gapped spin-wave modes visible, clearly
separated at M1 and nearly overlapping near the K1,3 points,
followed by continuum scattering at higher energies. In the
following we focus on the sharp spin-wave modes, as they
contain the key information about the domain type. At 3 T
[Fig. 12(b)], there are clearly three modes resolved near the
K points, which separate further upon increasing field to 6,
then 9 T [Figs. 12(c) and 12(d)], with the mirror symmetry
of the spectrum around M1 preserved throughout. The data
presented have contributions from pixels at wave vectors k not
only along the nominal (110) scan direction, but also along
other directions in the (hk0) plane that are equivalent up to
symmetry operations of the crystal lattice point group; this
was performed for the purpose of improving the counting
statistics. We have explicitly verified that slices through the
raw, unsymmetrized data display all the same features.

To interpret the observed behavior, we compare in Fig. 13
the predicted spectrum within LSWT for magnetic domains
of both types at a representative intermediate field where the
mode splitting is large enough to clearly observe the key
features. Figure 13(a) shows the spectrum for domain 1, which
predicts a strong asymmetry of the spectrum between the two
K points, with only two modes carrying weight at each wave
vector. Domain 2 would have a mirror-reversed spectrum
around M1, again with only two modes visible at a general
wave vector. The behavior of a single magnetic domain of
either type is clearly incompatible with the data in Fig. 12 (top
row), which shows three modes at a general wave vector, with
mirror symmetry of the spectrum around M1. Assuming the
sample contains coexisting, equal-weight magnetic domains
of both types, the spectrum would be the sum of Figs. 13(a)
and 13(b) plotted in Fig. 12(g), which restores the mirror
symmetry around M1 and gives three modes at a general wave
vector, as in the data.

To test the two magnetic domains scenario further, we plot
in Fig. 12 (bottom row) the LSWT-predicted evolution of
the spectrum as a function of field. The plotted fields were
selected for best agreement with the data in the panels above,
for energy scans at the K1 point. Comparison with the data
shows that the key features, such as the number of visible
modes, their trend as a function of field, and the overall
symmetry of the intensity pattern, are well reproduced, pro-
viding clear evidence that the sample contains equal-weight
magnetic domains of both types, as expected in the absence
of DM interactions. We attribute the remaining quantitative
discrepancies between the precise experimental dispersion
shapes and the model calculations, and the fact that the best
agreement is obtained for fields slightly different (by about
10%) from the actual values, to quantum effects beyond the
LSWT approximation, which we have already established in
Sec. III C need to be included to quantitatively reproduce the
dispersions.

V. CONCLUSIONS

To summarize, we have reported extensive single-crystal
high-resolution inelastic neutron scattering measurements of
the spin dynamics in the pseudospin- 1

2 triangular antiferro-
magnet Ba3CoSb2O9 in the 120◦ ordered phase. We have
observed sharp, resolution-limited magnons throughout recip-
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FIG. 12. INS data (top row) as a function of c-axis applied magnetic field, compared with the predicted spin-wave spectrum (bottom row)
for a sample containing equal-weight magnetic domains of types 1 and 2 in Fig. 1(c). The color is the intensity in arbitrary units and the
wave-vector path is (h ∓ 0.05, h ± 0.05, ±0.3), where ± values indicate the integration ranges. Panel (a) was collected with Ei = 3.53 meV
at 1.7 K, and panels (b)–(d) with Ei = 3.81 meV at 0.1 K. (e)–(h) Corresponding spin-wave spectra within LSWT using the Hamiltonian
parameters [34] J1 = 1.67 meV, Jz = 0.08 meV, g = 4, and � = 0.954, assuming no quantum renormalizations of the dispersions. For each
panel, the intensity scale and magnetic field value (listed in the panel titles) were selected to give the best agreement with the data for energy
scans at K1. The quasielastic scattering below 0.2 meV has been omitted.

rocal space with no decay, but with a strongly renormalized
dispersion and much reduced intensities at high energies
compared to linear spin-wave theory. At higher energies, we
have observed a very strong continuum of magnetic scat-
tering extending up at least 4× the maximum one-magnon
energy. The relatively large intensity in the continuum is much
underestimated by linear spin-wave theory, and only some
limited low-energy features are captured qualitatively by a
two-magnon cross-section, leaving unexplained a rich struc-
ture of intensity modulations in the continuum as a function
of both energy and wave vector. We have proposed empiri-
cal wave-vector-dependent renormalizations that parametrize
quantitatively the experimental dispersion in the full three-
dimensional Brillouin zone, and we have explicitly verified
that magnon decays are kinematically disallowed for the
observed strongly renormalized dispersion, explaining why
magnons are sharp throughout the Brillouin zone. Based on
a quantitative comparison of the measured intensities with
the spin-wave dynamical structure factor, we have proposed
that a transfer of spectral weight occurs from the high-energy
magnons (whose energy is strongly renormalized downward)

to the higher-energy continuum. The experimental observa-
tion of strong dispersion renormalizations and an enhanced-
intensity scattering continuum with structured intensity mod-
ulations suggests that quantum fluctuations and interaction
effects are well beyond what can be captured by the spin-
wave approximation. Finally, through measurements of the
dispersion relations in c-axis applied magnetic field, we have
determined the presence of equal-weight magnetic domains
with opposite senses for the spin rotation in the ground state,
as expected in the absence of Dzyaloshinskii-Moriya inter-
actions, when the sense of spin rotation in the 120◦ ordered
ground state is selected via spontaneous symmetry breaking.

ACKNOWLEDGMENTS

We thank R. Moessner, R. D. Johnson, L. Balents, F.
Pollmann, and R. Verresen for useful discussions and their
interest in the work. We especially thank C. D. Batista for
a careful reading of the manuscript and for useful comments.
This research was partially supported by the European Re-
search Council (ERC) under the European Union’s Horizon

064421-13



DAVID MACDOUGAL et al. PHYSICAL REVIEW B 102, 064421 (2020)

FIG. 13. Spin-wave spectrum in the cone phase in a c-axis applied field for (a) domain 1 and (b) domain 2, to be compared with the
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APPENDIX A: DISPERSION RELATIONS AND
DYNAMICAL STRUCTURE FACTOR IN LINEAR

SPIN-WAVE THEORY

This section outlines the LSWT calculation of the dis-
persion relation and dynamical structure factor used in the
analysis of the INS data. Based on previous electron spin
resonance [29], nuclear magnetic resonance [30], ultrasound
velocity [31], and neutron diffraction [32] measurements of
Ba3CoSb2O9, we assume antiferromagnetic XXZ interactions
between NN sites within the triangular layers (intralayer
exchanges) and an antiferromagnetic XXZ interaction be-
tween NN sites on adjacent layers (interlayer exchange), as
per Eq. (1). Figures 1(b) and 1(c) illustrate the exchange
paths and the spin alignments in the ground state in zero
applied magnetic field. Ordered spins are confined to the
ab plane, are antiparallel along c, and rotate by 120◦ be-
tween the three sites of every in-plane triangle. The propa-
gation vector for the magnetic structure is Q = ( 1

3 , 1
3 , 1). The

left/right panels in Fig. 1(c) show the magnetic domains with
counterclockwise/clockwise rotation.

In a magnetic field applied along the c axis, the Hamilto-
nian in Eq. (1) acquires the additional Zeeman term,

HZ = −gμBB
∑

i

Sz
i ,

where g is the g factor and to describe the spin axes we use
the Cartesian coordinate system (x, y, z) with x̂ ‖ (a + b) and
ẑ ‖ c, as illustrated in Fig. 1(c) (bottom left). The magnetic
structure in applied field is a cone, where the ordered spins
cant out of the xy plane by an angle θ , with the in-plane com-
ponents continuing to have the same pattern as in Fig. 1(c).
The two magnetic domains with opposite senses of rotation in
the xy plane are degenerate throughout the cone phase. The
canting angle θ is obtained from minimizing the mean-field
ground-state energy (per spin),

EMF = [J (Q) cos2 θ + �J (0) sin2 θ ]S2 − gμBBS sin θ,

which gives

sin θ = gμBB

2S[�J (0) − J (Q)]
.

Here J (k) is the Fourier transform of the in-plane exchange
interactions, given by

J (k) = J1[cos 2πh + cos 2πk + cos 2π (h + k)] + Jz cos π l

for a general wave vector k indexed as (h, k, l ) in reciprocal
lattice units of the structural unit cell, i.e. k = ha∗ + kb∗ +
lc∗. The canting angle θ increases up to the saturation field
Bsat = 2S[�J (0) − J (Q)]/(gμB), above which spins are en-
tirely polarized along the field (θ = π/2 for B � Bsat).

For the analytic spin-wave calculations in the cone phase,
we follow previous works [44,45]. It is convenient to perform
the calculations using a right-handed reference frame (ξ, η, ζ )
that follows the ordered spin precession in the ground state,
such that ζ is along the local ordered spin direction and ξ
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is perpendicular to the ordered spin in the helical plane. For
concreteness, we first discuss the calculation for domain 1
with counterclockwise rotation in Fig. 1(c) (left panel). In
this case, the transformation from the rotating reference frame
to the global (x, y, z) frame is obtained by first performing
a rotation in the ζη plane by the canting angle θ , and then
rotating in the xy plane by the helical angle φi = Q · ri + �,
where ri is the position of the ith spin and � is the phase of
the spin at the origin [� = π

2 for both domains illustrated in
Fig. 1(c)]. The transformation of the spin operators is then
given by

Sx
i = Sζ

i cos θ cos φi − Sξ
i sin φi − Sη

i sin θ cos φi,

Sy
i = Sζ

i cos θ sin φi + Sξ
i cos φi − Sη

i sin θ sin φi,

Sz
i = Sζ

i sin θ + Sη
i cos θ.

The spin Hamiltonian for the NN intralayer interactions [first
term of Eq. (1)] in the rotating reference frame has the form

HNN = J1

∑
〈i j〉

[
(cos2 θ cos φi j + � sin2 θ )Sζ

i Sζ
j

+ cos φi jS
ξ
i Sξ

j + (sin2 θ cos φi j + � cos2 θ )Sη
i Sη

j

+ sin θ sin φi j
(
Sξ

i Sη
j − Sη

i Sξ
j

)]
,

where φi j = φi − φ j . A similar expression describes the inter-
layer interactions. The advantage of working in the rotating
frame is that all spins are ferromagnetically aligned and
the calculation is reduced to one magnetic sublattice and a
reduced hexagonal unit cell a × b × (c/2).

Using a Holstein-Primakoff transformation [46], a Fourier
transformation, and neglecting terms higher than quadratic
order in the boson operators, the spin Hamiltonian in the
rotating frame is obtained as [47]

H = 1

2

∑
k

X†HX − NgμBB(S + 1/2) sin θ

+ N[J (Q) cos2 θ + �J (0) sin2 θ ]S(S + 1),

where the sum is over all wave vectors k in the first Brillouin
zone of the reduced unit cell and N is the total number of spin
sites. The operator basis is chosen to be X† = (α†

k α−k),
where α

†
k (αk) creates (annihilates) a plane-wave magnon. The

Hamiltonian matrix then has the form

H =
(

Ak + Ck Bk

Bk Ak − Ck

)
,

where

Ak = S(ak + bk),

Bk = S(ak − bk),

Ck = S sin θ [J (k + Q) − J (k − Q)], (A1)

and

ak = [�J (k) − J (Q)] cos2 θ + bk sin2 θ,

bk = 1
2 [J (k − Q) + J (k + Q)] − J (Q).

Using standard methods to diagonalize the bilinear boson
Hamiltonian [48], the dispersion relation is obtained as

h̄ω(k) =
√

A2
k − B2

k + Ck, (A2)

which by periodicity holds for a general wave vector k in
reciprocal space. The one-magnon excitations are polarized
transverse to the ordered spin direction ζ , and the dynamical
structure factors (per spin) are obtained as

Sξξ (k, ω) = Zξ S

2
(uk + vk)2δ[h̄ω − h̄ω(k)]

= Zξ S

2

Ak + Bk

h̄ω(k)
δ[h̄ω − h̄ω(k)], (A3)

Sηη(k, ω) = ZηS

2
(uk − vk)2δ[h̄ω − h̄ω(k)]

= ZηS

2

Ak − Bk

h̄ω(k)
δ[h̄ω − h̄ω(k)], (A4)

Sξη(k, ω) = −Sηξ (k, ω) = i
S

2
δ[h̄ω − h̄ω(k)], (A5)

where uk = cosh �k, vk = sinh �k and tanh 2�k = Bk/Ak.
The intensity prefactors for in-plane (Zξ ) and out-of-plane
magnons (Zη) are both unity in LSWT; they are introduced
here as a way to parametrize an intensity renormalization due
to effects beyond the LSWT approximation.

The two-magnon (2M) excitations are polarized longitu-
dinal to the spin direction, and the dynamical structure factor
(per spin) is obtained as

Sζ ζ

2M(k, ω) = Zζ

2N

∑
k1,k2

(
u−k1vk2 + uk2v−k1

)2

× δ[h̄ω − h̄ω(k1) − h̄ω(k2)]

× δ(k + k1 − k2 + τ), (A6)

with the density of states (meV−1Co−1) for two-magnon
excitations given by

D(k, ω) = 1

N

∑
k1,k2

δ[h̄ω − h̄ω(k1) − h̄ω(k2)]

× δ(k + k1 − k2 + τ ),

where τ is a reciprocal lattice vector of the reduced unit
cell. Similar to the expressions for the one-magnon dynamical
structure factor, we introduce in Eq. (A6) a two-magnon
intensity prefactor Zζ to parametrize an intensity renormal-
ization attributed to effects beyond the LSWT approxima-
tion. Following Ref. [17], we neglect the mixed transverse-
longitudinal correlations (such as Sξζ ), as for the TLHAF
model they have relatively negligible weight compared to the
purely transverse or purely longitudinal correlations.

For a spin- 1
2 system, the dynamical structure factor com-

ponents are required to satisfy the sum rule [49]

1

N

∑
k

∫ ∞

−∞
d (h̄ω) Sαα (k, ω) = 1

4
,

where α = ξ, η, ζ and the sum is over all wave vectors in
the first Brillouin zone of the reduced unit cell. Note that the
longitudinal component Sζ ζ includes two-magnon scattering
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Sζ ζ

2M and elastic Bragg scattering (S − �S)2, which gives the
following sum rule for the two-magnon contribution:

1

N

∑
k

∫ ∞

−∞
d (h̄ω) Sζ ζ

2M(k, ω) = 1

4
− (S − �S)2,

where �S is the reduction in the ordered spin moment in
the ground state due to zero-point spin-wave fluctuations. For
the Hamiltonian parameters in Table I, �S = 0.152 and the
above sum rules are satisfied for intensity prefactor values
Zξ = 0.804, Zη = 0.734, and Zζ = 0.733. In the fits to the
experimental spin-wave data, we allowed the relative intensity
of in-plane to out-of-plane magnons to vary unconstrained,
with the best overall agreement found for Zη/Zξ = 0.60, to
be compared with 0.91 imposed by the sum rule constraints
and 1 in LSWT. In all calculations, the two-magnon scattering
intensity was scaled to the in-plane one-magnon intensity
assuming both satisfy the sum rule constraints, which give
Zζ /Zξ = 0.91.

Rotating back to the fixed global frame, the dynamical
structure factors for one-magnon (1M) and two-magnon
(2M) excitations are as follows:

Szz
1M(k, ω) = Sηη(k, ω) cos2 θ,

Szz
2M(k, ω) = Sζ ζ

2M(k, ω) sin2 θ,

Sxx
1M(k, ω) = 1

4
[Sξξ (k − Q, ω) + Sξξ (k + Q, ω)]

+ 1

4
sin2 θ [Sηη(k − Q, ω) + Sηη(k + Q, ω)]

+ i

2
sin θ [Sξη(k + Q, ω) − Sξη(k − Q, ω)],

Sxx
2M(k, ω) = 1

4
cos2 θ

[
Sζ ζ

2M(k − Q, ω) + Sζ ζ

2M(k + Q, ω)
]
,

where by symmetry Sxx(k, ω) = Syy(k, ω). The two-magnon
density of states in the global frame is obtained as

D̃(k, ω) = 1
2 [D(k − Q, ω) + D(k + Q, ω)]. (A7)

The above analytic expressions for the dispersion relations
and dynamical structure factor were checked explicitly against
numerical calculations performed using SPINW [50]. The in-
terpretation of the above equations for the one-magnon dy-
namical structure factor is that in the global frame there are
two in-plane-polarized modes ω(k − Q) ≡ ω−(k) and ω(k +
Q) ≡ ω+(k) and one out-of-plane mode ω(k), so there are
three dispersion branches for a general wave vector k.

All the above expressions for the dispersion relation and
dynamical structure factor are for the magnetic domain 1 in
Fig. 1(c) (left panel); the results for domain 2 (right panel)
are obtained by replacing Q with −Q in Eq. (A1), which
changes the sign of the Ck term in Eq. (A2) with the Ak and Bk

terms unchanged. This implies that in zero field, when θ = 0
and Ck = 0, the two domains have identical dispersions and
dynamical structure factors, and so cannot be distinguished
experimentally. However, for finite field B, the Ck term is finite
and the two domains have different primary mode dispersions.
This is illustrated in Fig. 13, which presents the calculated
spin-wave spectrum in finite field [Figs. 13(a) and 13(b) for
domains 1 and 2, respectively], showing that the primary

magnon dispersion (magenta solid line) is different in the
two cases, with soft modes at different wave vectors [K1 in
Fig. 13(a) and K3 in Fig. 13(b)].

Finally, the total neutron scattering cross-section including
the neutron polarization factor is

I (k, ω) = Z[n(h̄ω) + 1] f 2(|k|)
∑

α

(
1 − k2

α

|k|2
)

Sαα (k, ω),

(A8)
where Z is an overall intensity scale factor, n(h̄ω) =
1/(eh̄ω/kBT − 1) is the finite-temperature Bose factor, f (|k|)
is the spherical magnetic form factor for Co2+ ions, and
kα denotes the α = x, y, z component of the wave-vector
transfer k.

In the fits to the experimental data, we used the renormal-
ized dispersion (see Appendix B) in place of h̄ω(k) in the
dynamical structure factor expressions in Eqs. (A3)–(A5). The
effects of the instrumental energy resolution were included
by replacing the delta functions in the same equations with
a lineshape of finite energy width that could describe well
the observed profile of the incoherent elastic line. For each
separate instrument configuration, the appropriate energy res-
olution lineshape was parametrized by a main Gaussian with
an additional less intense Gaussian on the low-energy side, to
reproduce the observed slightly asymmetric energy lineshape.
In the fits, the resolution profile was assumed constant as a
function of energy transfer.

APPENDIX B: EMPIRICAL RENORMALIZATIONS OF
THE LSWT DISPERSION

In this section, we detail the empirical renormalizations
applied to the analytic LSWT dispersion relation to fit the
experimental magnon dispersion. In particular, we consider
the introduction of soft modes in the dispersion at the M and
near K/2 points.

To introduce local minima in the dispersion, we consider
the virtual mixing of the bare dispersion h̄ωLSWT in Eq. (A2)
with fictitious gapped parabolic modes h̄�i, centered near
wave-vector positions i = M and K/2. This mixing can be
parametrized in the basis of the two modes by a 2 × 2 Hamil-
tonian matrix

H =
(

h̄ωLSWT ci

ci h̄�i

)
,

where the off-diagonal coupling term is defined as ci ≡
δi h̄ωLSWT, with δi a dimensionless parameter. This form en-
sures the coupling ci is largest near the top of the dispersion
and becomes negligibly small at low energies. The above
Hamiltonian can then be diagonalized to obtain the eigenen-
ergies

λ± = h̄ωLSWT + h̄�i

2
±

√(
h̄ωLSWT − h̄�i

2

)2

+ c2
i ,

where the lower mode λ− is a smoothly varying function that
inherits a local minimum from the gapped virtual mode h̄�i

and interpolates toward the unperturbed h̄ωLSWT in the regions
away from the soft mode. This is graphically illustrated in
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Fig. 4; compare the solid magenta line (λ−) with the dashed
magenta line (h̄ωLSWT).

The fictitious gapped modes were parametrized by the
general dispersion form

h̄�i = αi + βi cos π l + γi[(qx − qix )2 + κi(qy − qiy)2],

where the first term (αi) parametrizes the overall energy
gap, the second term allows for a dispersion along the in-
terlayer l direction, and γi is the coefficient of the in-plane
quadratic dispersion. (qix, qiy ) are the in-plane wave-vector
coordinates (in Å−1) of the paraboloid center (minimum
energy gap) in a Cartesian reference frame, where the qy

coordinate is along the direction from the closest � point to
the paraboloid center and qx is transverse to qy in the hk
plane. κi parametrizes the relative dispersions along the two
orthogonal in-plane directions, i.e., κi = 1 corresponds to an
isotropic dispersion with circular constant-energy contours
and κi > 1 corresponds to elliptical constant-energy contours
elongated along the transverse qx direction. Figure 3(g) shows
clear oval-shaped contours around the M points, elongated
along the hexagonal zone-boundary contour (dashed white
line), and this elongation was parametrized in the fit by the
ellipticity parameter κM � 1.3. For the soft modes near K/2,
we found an isotropic description to be sufficient, so we fixed
κK/2 = 1 in the fit. As expected for a quasi-2D system, the
fitted interlayer dispersion is almost negligible at the relatively
high energies of the soft modes (|βi|/αi � 0.01 for both i = M
and K/2).

The procedure for obtaining the renormalized magnon
dispersion h̄ω from the bare h̄ωLSWT after considering the
couplings with both types of virtual parabolic modes is il-
lustrated in Fig. 4, where the lower (magenta) solid line
has the desired soft modes at both types of positions with
symmetric dispersions around the local minima, as seen in the
experimental data. Note that the original magnon dispersion is
not perfectly sinusoidal along the �-K line, with the maximum
slightly offset from the halfway position K/2; so to obtain an
approximately symmetric shape for the dispersion near the
soft mode along the �-K direction, the paraboloid h̄�K/2
was centered at position ε(a∗ + b∗), with ε slightly offset (see
Table I) from the value 1/6 that corresponds to the exact K/2
wave-vector position. Using the latter position would have
resulted in a highly asymmetric shape of the dispersion near
the upper soft mode, not compatible with the experimental
data in Fig. 2.

To calculate the renormalized dispersion relation, it is suf-
ficient to work in the minimal Brillouin zone sector �-M-K-�
in the hk plane and 0 � l < 1, as any general wave vector
k can be remapped to this volume using reciprocal lattice
translations followed by symmetry operations of the 6/mmm
lattice point group. For wave vectors within this minimal
reciprocal space volume, we calculated iteratively the mixing
of h̄ωLSWT with virtual paraboloids located at equivalent (up to
reciprocal lattice translations or lattice point group symmetry
operations) M and K/2-type positions within a large radius
in the two-dimensional reciprocal space at the same l value;

TABLE I. Parameter values for the best fit to the observed one-
magnon dispersion relations, obtained from a global fit to several
selected scans through the four-dimensional INS data. In the fit, the
Hamiltonian parameters (J1, Jz, �) were constrained to reproduce the
saturation magnetization field as per Eq. (2). The dagger † indicates
parameter values kept fixed in the global fit. The table omits the
overall intensity scale Z , the parametrization of the nonmagnetic
background, and the instrumental energy resolution, as these vary
between different measurement configurations and are discussed
elsewhere. For descriptions of the listed parameters, see Appendices
A and B.

Parameter Value

J1 1.653 meV
Jz 0.082 meV
� 0.949

Zη/Zξ 0.60
αM 1.434 meV
βM 0.019 meV
γM 17.18 meVÅ2

δM 0.151
κM 1.333
αK/2 2.040 meV
βK/2 −0.025 meV
γK/2 13.12 meVÅ2

δK/2 0.192
κK/2 1†

ε 0.1566†

Zζ /Zξ 0.91†

in this way, we ensured the “final” renormalized dispersion
(that is fitted to the experimental data) still satisfies all lattice
point group symmetries and is numerically smooth (so there
is no step change in gradient across the minimal volume
boundaries). A contour map of the renormalized dispersion
surface in the (hk0) plane is shown in Fig. 5(b).

The Hamiltonian and dispersion renormalization parame-
ters obtained from a best fit to the experimental data are listed
in Table I, and code to generate the dispersion relation from
these parameters is available from Ref. [43].

We note that to capture all modulations of the full magnon
dispersion surface in a transparent way that can also be easily
implemented analytically, several empirical parameters have
been introduced: three Hamiltonian parameters (J1, Jz,�),
five parameters (αi, βi, γi, δi, κi) for each of the soft modes
at M and near K/2, in addition to independent intensity scale
factors for the in-plane and out-of-plane magnons. Although
some parameters were kept fixed in the fit and additional
constraints were imposed, this still left a very large number
of degrees of freedom in the fit (over 10) and in practice
many parameters were strongly correlated. Therefore, Table I
parameter values are to be interpreted as representative values
for the best level of agreement that can be obtained with
the data; the meaningful result of the analysis is the final
parametrized dispersion surface obtained with those parame-
ters and its specific features, not the individual values of each
of the parameters.
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