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Reduction of the sign problem near T = 0 in quantum Monte Carlo simulations
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Building on a recent investigation of the Shastry-Sutherland model [S. Wessel et al., Phys. Rev. B 98, 174432
(2018)], we develop a general strategy to eliminate the Monte Carlo sign problem near the zero-temperature
limit in frustrated quantum spin models. If the Hamiltonian of interest and the sign-problem-free Hamiltonian,
obtained by making all off-diagonal elements negative in a given basis, have the same ground state and this state
is a member of the computational basis, then the average sign returns to one as the temperature goes to zero. We
illustrate this technique by studying the triangular and kagome lattice Heisenberg antiferrromagnet in a magnetic
field above saturation, as well as the Heisenberg antiferromagnet on a modified Husimi cactus in the dimer basis.
We also provide detailed Appendices on using linear programming techniques to automatically generate efficient
directed loop updates in quantum Monte Carlo simulations.
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I. INTRODUCTION

The sign problem represents the biggest obstacle in apply-
ing Monte Carlo techniques to resolve quantum many-body
problems. When present, it renders Monte Carlo as a method
that trades the exponential scaling of the Hilbert space for an
exponential scaling of the simulation runtime. Even though a
general solution to the sign problem is unlikely [1], there exist
many examples where the sign problem has been overcome in
specific models [2–11].

One strategy that has been highly successful in eliminating
the sign problem from certain classes of frustrated magnets
has been the use of the dimer basis [9–15]. This has resulted
in the ability to efficiently simulate frustrated one-dimensional
(1D) ladder systems [9–12] and two-dimensional (2D) bi-
layer systems [10,13,15]. This technique was also applied
to frustrated systems such as the Shastry-Sutherland model
[16] that still suffer from a sign problem even in the dimer
basis [14]. However, here it was noted that the sign problem
is remarkably mild and even disappears at low temperatures
in the dimer singlet phase. A similar reduction of the sign
problem was previously observed in frustrated ladder systems
in the dimer basis [12]. This motivates the investigation of
whether or not such a reduction in the sign problem could
generically be used to efficiently study the physics of highly
frustrated quantum systems.

To address this question, our goal in this work is to explore
the easing of the sign problem at low temperatures in models
of frustrated magnets. We will specify the conditions that are
necessary for this situation to arise (as was pointed out in
[14]), and explore two models that demonstrate this behavior.
We use two-dimensional frustrated Heisenberg models in a
large magnetic field in the Sz basis as the simplest illustration
of the effect. For this case we also provide a comparison
of our statistically exact thermodynamic measurements with
a mean field treatment of the problem. We then move to
the dimer basis and study the Heisenberg antiferromagnet

on a modified Husimi cactus [17–19], which locally mim-
ics the kagome lattice. In Appendix A we provide details
on the Husimi Heisenberg Hamiltonian in the dimer basis.
Appendix B compares our thermodynamic measurements in
the signed versus the sign-problem-free Hamiltonians. Fi-
nally, in Appendix C we give explicit instructions on the lin-
ear programming technique suggested in [20], which greatly
facilitates the implementation of directed loop updates [21] in
the dimer basis. This technique can be used to fully automate
the simulation of arbitrarily complicated models, requiring
only the local Hamiltonian matrix as an input.

II. GENERAL CONDITIONS

Here, we outline the general conditions that will result in
an easing of the average sign at low temperatures, as was first
pointed out in [14]. We first require that the ground state of
the Hamiltonian of interest is a member of the computational
basis being used. Second, we require that this state is also the
ground state of the sign-problem-free Hamiltonian obtained
by making all off-diagonal matrix elements negative. The
sign-problem-free Hamiltonian is thus defined with respect
to the basis being used. With these two conditions met,
the ground-state energy of the originally signed Hamiltonian
(H-) and the sign-problem-free Hamiltonian (H+) will be the
same, leading to an average sign that returns to one at low
temperatures.

The average sign can be computed as a ratio of partition
functions that, using the fact that the ground-state energies are
the same, can be expressed as

〈sign〉 = Tr(e−βH-

)

Tr(e−βH+ )
= 1 + ∑

i e−β�-
i

1 + ∑
i e−β�+

i
, (1)

where β = 1/T is the inverse temperature and �+
i and �-

i are
the energy gaps for all excited states (relative to the ground-
state energy) in the spectrum of H+ and H-, respectively.
From here we can clearly see that 〈sign〉 → 1 as T → 0.
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FIG. 1. The average sign as a function of temperature for the
triangular lattice Heisenberg antiferromagnet in a large external field
(h = 10). At fields above the saturation threshold for H+ (h+

s = 6),
which is above the threshold for H- (h-

s = 4.5), the sign returns to
one at low temperatures.

Also, increasing the size of the gaps will equally cause an
easing of the sign. We will now demonstrate the utility of
these principles to study the thermodynamics of frustrated
Heisenberg models.

III. FRUSTRATED HEISENBERG ANTIFERROMAGNETS
IN EXTERNAL FIELD

As the most simple demonstration of this effect, we first
consider frustrated Heisenberg antiferromagnets on the trian-
gular and kagome lattices in a strong magnetic field. Taking
the computational basis to be the standard Sz spin values, we
can write the Hamiltonians as

H∓ = J
∑
〈i j〉

(
Sz

i Sz
j ± 1

2
(S+

i S−
j + S−

i S+
j )

)
− h

∑
i

Sz
i . (2)

It is clear that H+ does not suffer from a sign problem
since the off-diagonal matrix elements are all negative. And,
importantly, for large enough values of the external field, H+

and H- will both have the fully polarized state as the ground
state with the same energy. Thus, in this limit we expect an
easing of the average sign as ensured by Eq. (1).

We have employed the stochastic series expansion algo-
rithm [22] using directed loops [21] to compute the finite-
temperature properties of the Hamiltonian in Eq. (2). We refer
the reader to Ref. [22] for definitions of the thermodynamic
measurements used throughout this work. In Fig. 1 we show
the temperature dependence of the average sign on L × L
triangular lattices in a large external field, h = 10 (setting
J = 1). To illustrate the point, we have chosen the field to
be well above the saturation thresholds h-s = 4.5 and h+s = 6
for H- and H+, respectively. One clearly sees an intermediate
temperature scale where the sign goes to zero upon increasing
the system size, however, at sufficiently low temperatures the
sign goes back to one as expected.

In Fig. 2 we show the specific heat and magnetic suscepti-
bility measured in the same runs as in Fig. 1. Most notably, we
see that the data show extremely small finite-size effects, such

FIG. 2. The specific heat and magnetic susceptibility measured
in the same simulations as Fig. 1. We note that the finite-size effects
in this large field are essentially negligible, and even the L = 3
system from exact diagonalization agrees with the thermodynamic
limit. The numerical data are also very close to the mean field
prediction (MF).

that even the L = 3 data obtained by exact diagonalization
are essentially converged to the thermodynamic limit. In fact,
a simple mean field treatment of the problem also gives
very good agreement at such high fields, as also depicted in
Fig. 2. In the following section we outline how this mean
field prediction was obtained and compare these results to
our numerical data at smaller fields, studying as well the
finite-size dependence.

IV. MEAN FIELD TREATMENT

We now perform a standard mean field decoupling of the
Heisenberg antiferromagnet in an external field, leading to a
mean field Hamiltonian of independent spins in an effective
field:

HMF = −JNsNcm2

2
− hm

∑
i

Sz
i . (3)

Here, Ns is the number of sites, Nc is the coordination number
of the lattice, m ≡ 〈Sz

i 〉 is the magnetization per site, and hm =
h − JNcm is the effective field. The self-consistency condition
is given by

m = 1

2
tanh

(
βhm

2

)
. (4)

Given this, one can derive the form of Cv and χ :

Cv = β2h2
m

4 cosh2
(

βhm

2

) + βJNc

, (5)

χ = β

4 cosh2
(

βhm

2

) + βJNc

. (6)

We have already seen that these mean field results compare
extremely well with the data obtained in very high external
fields. We would now like to make the comparison with
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FIG. 3. The average sign, specific heat, and magnetic susceptibil-
ity on small triangular lattice Heisenberg systems as compared with
the mean field prediction near the upper saturation threshold h+

s = 6.
We see that the mean field prediction agrees very well away from the
peaks in our measurements, and the strongest deviations are found
when the sign goes to zero and efficient simulations are no longer
possible. Finite-size effects are invisible even on these small systems
except when the sign is nearly zero.

fields close to h+s , where an easing of the sign first begins
to appear at low temperatures. Figure 3 shows the average
sign, specific heat, and magnetic susceptibility obtained on
two small triangular lattice systems as compared with the
mean field prediction. We have chosen small lattices here
in order to observe the presence of finite-size effects. We
find good agreement with mean field theory away from the
peaks of our measurements and, as expected, deviations are
largest where the sign tends toward zero. Finite-size effects
are again essentially absent, except below the threshold at low
temperatures where the sign is nearly zero.

In Fig. 4 we have performed the same type of comparison,
but this time for the kagome lattice. Here the saturation thresh-
olds for H- and H+ are h-s = 3 and h+s = 4, respectively. Here
we observe a similar absence of finite-size effects (except
where the sign is nearly zero), and agreement with mean field
away from the peaks in Cv and χ .

V. HUSIMI HEISENBERG MODEL IN DIMER BASIS

We now move to a more sophisticated example of the
easing of the average sign at low temperatures. Here, we
will be interested in ground states that are direct products
of singlets, and we will choose the computational basis of
dimers (singlet and triplet) for each pair of sites. Since the
“all singlets” product state is a member of the computational
basis, we will find an easing of the sign in the limit when the
antiferromagnetic intradimer coupling becomes large.

We choose to work with a slightly modified Husimi cactus
(see Fig. 5) such that the exact ground state of the Heisenberg
antiferromagnet is a product of singlets. The Husimi cactus
has been widely used as a means to approach the physics of
the kagome lattice antiferromagnet, whose structure it locally
mimics [17–19,23–27].

FIG. 4. This figure is similar to Fig. 3, except on the kagome
lattice where the saturation thresholds are h-

s = 3 and h+
s = 4 for H-

and H+, respectively. We find a similar agreement with the mean field
prediction away from the peaks in Cv and χ , with better agreement
at higher fields. Finite-size effects on these small system sizes are
equally absent except where the sign is nearly zero.

Since the ground state is an exact product state, the goal
will be to study the thermodynamic behavior at finite tem-
peratures. We have also introduced an intradimer (JD) and
interdimer coupling (J), which will further allow us to control
the average sign. The Heisenberg Hamiltonian is then simply
written as

(7)

It is worth noting the zero-temperature phase diagram of
this model. As we have mentioned, the ground state of this

FIG. 5. A modified Husimi cactus (Nleaf = 4, Nsite = 62), which
is centered on a bond instead of a site. The antiferromagnetic
Heisenberg model on this lattice has an exact product ground state
of singlets on the dimers (thick bonds) when all bonds have equal
strength. The energy gap above this ground state can be increased
by introducing intradimer couplings (JD) and interdimer couplings
(J) with JD/J > 1. This allows us to tame the average sign at
intermediate temperatures.
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model with JD/J � 1 is a product state of dimer singlets.
In fact, this phase persists on the finite clusters that we
have studied to JD/J < 1 as well. With exact diagonalization
we have verified on clusters with Nleaf = 1 and 2 that the
phase boundary is JD/J ≈ 0.767 and JD/J ≈ 0.857, respec-
tively. This can be compared to the same phase boundary
in the sign-problem-free model (in the dimer basis), which
occurs at JD/J ≈ 0.829 and JD/J ≈ 0.949 for Nleaf = 1 and 2,
respectively.

In the limit JD/J → 0 this model reduces to the Heisen-
berg antiferromagnet on a bond-centered Cayley tree (with
the center bond missing). This is a bipartite lattice, and in
this limit we expect long-range antiferromagnetic order in
the ground state [28–32]. To the best of our knowledge the
phase diagram at intermediate values of JD/J is unknown,
and unfortunately the present method does not allow us to
address this question. In what follows, we will consider only
the regime where JD/J � 1.

The Hamiltonian can be expressed in the dimer basis
as we detail in Appendix A. A phase of −1 is also given
to Sz = 0 triplets on one sublattice to render the minimum
number of positive off-diagonal matrix elements in H-. Due
to the laboriousness of solving the directed loop equations by
hand, we have implemented the linear programming technique
suggested in [20] that automatically determines all possi-
ble loop updating moves and probabilities given the local
Hamiltonian matrix elements as input. We provide a detailed
explanation of this approach in Appendix C. Additionally,
because the Hamiltonian conserves the total spin on each
dimer at the edge of the lattice, we find that efficient sam-
pling of the total spin quantum numbers requires parallel
tempering [33,34].

We now demonstrate the easing of the sign in the dimer
basis for the modified Husimi lattice in Fig. 6. Here we
consider several lattice sizes, labeled by Nleaf , which specifies
how many generations of leaves have been added to the central
dimer (Ndimer = 2Nleaf+1 − 1). We have made measurements of
the specific heat and magnetic susceptibility as a function of
temperature for different values of the intradimer coupling JD

(setting J = 1). As expected, we find the sign going back
to one as T → 0 in all cases. We note, however, that the
low-temperature region for efficient simulations may coincide
with the region where Cv and χ are approximately zero. This
is the case when the sign problem at intermediate temperatures
is most severe, at JD = 1. Perhaps more importantly than the
sign returning to one at low T is the fact that the sign can be
controlled by increasing the value of JD. This allows for the
simulation of larger lattices. However, finite-size effects are
also smaller in this limit.

Interestingly, we find the presence of a double-peak struc-
ture in the specific heat, which becomes more pronounced
as JD approaches J from above. This structure persists on
larger lattices, ruling out the possibility of a finite-size effect.
The same features in the specific heat have been previously
observed in small Husimi cactus clusters [17] as well as on
the infinite Husimi lattice [25]. Similarly for the kagome
lattice, various studies have observed two distinct maxima
[35–43] or a pronounced shoulder feature [43–46], which can
be attributed to the presence of many low-lying singlet states
[47].

FIG. 6. The average sign, specific heat, and magnetic suscep-
tibility for the Husimi lattice antiferromagnet with the interdimer
coupling J = 1. Here, we use clusters of size Nleaf (Nsite) = 2(14),
3(30), and 4(62) in big red, medium orange, and small green markers,
respectively. The black line is obtained by exact diagonalization for
Nleaf = 2, showing perfect agreement with the quantum Monte Carlo
(QMC). In each case, the sign returns to one at low T , though the
severity of the sign problem at intermediate temperatures for JD = 1
prohibits the largest cluster. Interestingly, we see the appearance of
two distinct features in the specific heat (see main text).

VI. CONCLUSIONS

We have demonstrated, in two specific cases involving
frustrated Heisenberg antiferromagnets, the reduction of the
sign problem in QMC simulations at low temperatures when
the original signed and the sign-problem-free Hamiltonians
have the same ground state and this state is a member of the
computational basis. As a first illustrative example of this,
we considered the Heisenberg antiferromagnet on the trian-
gular and kagome lattices in a large external field. Although
this example simply demonstrates the general principle, it is
not clear to what extent it could be used to illuminate the
thermodynamics of frustrated antiferromagnets. In fields well
above saturation, where efficient Monte Carlo simulations
become possible, we found good agreement with the mean
field prediction and an almost complete absence of any finite-
size effects.

In the second example involving the Heisenberg antiferro-
magnet on the modified Husimi cactus in the dimer basis, the
results seem more promising. First, in the standard Sz basis,
the sign problem would be much stronger, most likely prevent-
ing any of the results that we have obtained. More importantly,
although the sign returns to one away from the prominent
features in Cv and χ , we have a means of controlling the
magnitude of the sign by slightly favoring the intradimer
coupling. This allows us to ensure efficient simulations, while
still being able to observe interesting features in our physical
observables, including two broad peaks in the specific heat.

Possible extensions of this work would involve finding
other more exotic ground states that could be incorporated
into a computational basis, such as the Affleck-Kennedy-Lieb-
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Tasaki (AKLT) state [48]. Ideally this basis should be chosen
such that it not only satisfies the general criteria that we have
outlined, but also so that the positive off-diagonal elements
of the Hamiltonian are minimized [49]. This would ensure
that the sign problem at intermediate temperatures would be
as mild as possible.
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APPENDIX A: HUSIMI DIMER HAMILTONIAN

Here we will give details on expressing the Hamiltonian
in Eq. (7) in the dimer basis. First, we can express the
Hamiltonian bond operator in terms of the total �Ti = �Sia + �Sib

and difference �Di = �Sia − �Sib operators:

Hi j = JD

2ni

(
�Ti · �Ti − 3

2

)
+ JD

2n j

(
�Tj · �Tj − 3

2

)

+ J

2
�Ti · ( �Tj ± �Dj ) −

(
J

2
+ JD

4ni
+ JD

4n j
+ �

)
. (A1)

We indicate that there are two types of bond operators that
differ in off-diagonal signs depending on the dimer orienta-
tion. One corresponds to taking + �Dj , and the other to − �Dj .
Furthermore, since all Hamiltonian terms have been lumped
into bond operators, the single dimer terms depend on the
coordination number for that dimer (ni and n j for dimer i and
dimer j). We have also subtracted a constant to render all of
the diagonal matrix elements negative or zero, and � � 0 can
be used to further shift the matrix elements for efficient QMC
sampling (here we have taken � = 0.2 in our simulations).

FIG. 7. Here, on an Nleaf = 3 system, we indicate the orientation
of the singlets (arrows) and −1 phases of the Sz = 0 triplet (blue
circles) that have been chosen for the dimers. This results in an off-
diagonal sign structure of either type 0 [Eq. (A3)] or type 1 [Eq. (A4)]
in the Hamiltonian bond operator. The corresponding types for this
arrangement are indicated between the dimers.

Once the �Ti and �Di operators have been expressed in the
dimer basis, we find that phases need to be introduced on one
sublattice of the (bipartite) binary tree lattice formed by the
dimers. This results in a minimum number of positive off-
diagonal (sign-problem causing) matrix elements. In Fig. 7 we
depict the orientation and phase structure that we have used
on the Husimi cactus. Here, arrows represent the orientation
of the dimers, and circled arrows mean that the Sz = 0 triplet
on that dimer has been given a phase −1. This results in
Hamiltonian bond operators that have a sign structure labeled
by either 0 or 1 [see Eqs. (A3) and (A4)]. Notice that arrows
always point to type 0 and away from type 1, while circled
arrows point to type 1 and away from type 0.

We choose to order the states in the two-dimer Hilbert
space as {|•〉, |0〉, |+〉, |−〉}⊗2. The diagonal part of the bond
Hamiltonian is then expressed as

Hd
i j = −J

2
− JD

ni
− JD

n j
− � + diag

(
0,

JD

n j
,

JD

n j
,

JD

n j
,

JD

ni
,

JD

ni
+ JD

n j
,

JD

ni
+ JD

n j
,

JD

ni
+ JD

n j
,

JD

ni
,

JD

ni
+ JD

n j
,

J

2
+ JD

ni
+ JD

n j
,−J

2
+ JD

ni
+ JD

n j
,

JD

ni
,

JD

ni
+ JD

n j
,−J

2
+ JD

ni
+ JD

n j
,

J

2
+ JD

ni
+ J

n j

)
. (A2)

The off-diagonal part of the Hamiltonian can be expressed in the subspace {|0•〉, |00〉, |0+〉, |0−〉, | + •〉, | + 0〉, | + −〉, | −
•〉, | − 0〉, | − +〉} as

H0∓
i j = −J

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 0 0 ∓1
0 0 0 0 0 0 1 0 0 1
0 0 0 0 ∓1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 ∓1 0 0 ∓1 0 0 0 0
0 0 1 0 ∓1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0

∓1 1 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3)
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corresponding to the sign structure of type 0 in Fig. 7, and the type 1 is given by

H1∓
i j = −J

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 ∓1 0 0 1
0 0 0 0 0 0 1 0 0 1
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 ∓1 1 0
0 0 1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0

∓1 1 0 0 0 0 0 0 0 0
0 0 0 ∓1 0 0 0 0 ∓1 0
0 0 0 1 0 0 0 ∓1 0 0
1 1 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A4)

We have also indicated the signed (−) and sign-free (+)
Hamiltonian by using a superscript ∓.

APPENDIX B: OBSERVABLES WITH H− VERSUS H+

In this Appendix we would like to make a simple compar-
ison between the measurements obtained by using the signed
Hamiltonian H− versus the measurements obtained with the
sign-problem-free Hamiltonian H+. Here the aim is to see the
magnitude of the effect of negatively signed configurations
on our thermodynamic measurements in the region where
efficient simulations with the sign problem become possible.
In Fig. 8 we compare the specific heat and magnetic suscep-
tibility of H− and H+ in the Husimi model using our largest
system size, Nleaf = 4. We have used the same two values of
JD appearing in the main text, where simulations using this
system size become efficient enough to resolve both broad
peaks in the specific heat. From this we observe that the

FIG. 8. Here, we show a comparison of our thermodynamic
measurements using the signed Hamiltonian (H−) versus the sign-
problem-free Hamiltonian (H+). We use the Husimi model with
Nleaf = 4 for two values of the intradimer coupling JD, where efficient
simulations are possible on this system size. We see significant
differences between the two sets of measurements, indicating that
we are indeed working in a regime where the sign problem plays an
important role.

measurements using H− versus H+ show a significant dis-
crepancy, which expectedly becomes more pronounced with
decreasing JD. This indicates that our technique is applicable
in a regime where the sign problem plays an important role.
Finally, it is interesting to note that even the sign-problem-free
model defined by H+ shows two broad peaks in the specific
heat.

APPENDIX C: LINEAR PROGRAMMING QMC

1. Generalities

As we have seen in Appendix A, the Hamiltonian in the
dimer basis is quite complicated. It is a 16 × 16 matrix with
all diagonal matrix elements nonzero. Furthermore, since all
of the interactions have been gathered into bond operators,
the bond operators depend on the coordination numbers of the
sites.

In order to efficiently sample the partition function for
this model, one needs to solve the directed loop equations
[21] associated with each matrix element in the Hamiltonian.
For this to be carried out by hand is overly tedious, and
prone to human error. We have therefore implemented a linear
programming technique suggested in [20] that, given a Hamil-
tonian matrix element and a loop operator type, automatically
determines the possible update moves and probabilities with
a minimal chance of bouncing. This is computed for every
matrix element during the initialization of the simulation, and
these probabilities are then used during the loop updates. We
now describe the necessary ingredients for implementing this
technique.

2. Worm types

We begin by assuming that we have a loop operator type
defined by T (s) = s+, T †(s) = s-, also referred to as a worm
[20]. We also have that T (s-) = T †(s+) = s. This defines a
loop type that will be used to update the spin states (s) attached
to matrix elements in the imaginary-time configuration. The
notion of an operator and its conjugate is important since
this defines the transformation that happens to spin states
depending on whether the worm is moving up or down in
imaginary time. When the worm is moving up, one uses T
to transform the spin and when the worm is moving down one
uses T † (or vice versa). As an example, the bounce process
corresponds to changing one spin on a matrix element using
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FIG. 9. The general set of processes that are required to satisfy
detailed balance among themselves. Here, each process and its
conjugate are listed (ai j and aji for i 
= j, where i and j label the
rows and columns in the table). The bounce processes are along the
diagonal aii. Here, the color refers to the direction of travel for the
worm head. Green means traveling up (transform spin with T ), red
means traveling down (transform spin with T †), and yellow means
bounce (do not change the spin). The Wi are the values of the matrix
elements appearing in each row (some of which may be zero).

T (s) = s+, then immediately reversing direction (switching
to the conjugate operator) and changing the spin back using
T †(s+) = s. Several worm types may need to be defined in
order to make the simulation ergodic. In practice, this means
that repeatedly using the various worm types allows for the
generation of any matrix element in the Hamiltonian given any
starting matrix element. We have found that our simulations of
the Husimi Heisenberg model in the dimer basis are ergodic if
we define two worm types:

T1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 1
0 1 0 0
0 0 0 0

⎤
⎥⎥⎦, T2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦, (C1)

where again the basis is ordered as {|•〉, |0〉, |+〉, |−〉}. T1

simply raises the z component of the spin in the triplet sector,
and T2 converts |−〉 → |0〉 and |•〉 → |+〉. There are other
combinations of worm types that are ergodic, and it would be
interesting to explore which combinations are most efficient.

3. Matrix elements and detailed balance

We now consider a specific matrix element of the bond
Hamiltonian, labeled by spin values s1, s2, s3, s4. Here s1 and
s2 label the incoming bond state and s3 and s4 label the
outgoing bond state. This matrix element is used to generate
a table of update processes that together will be required to
satisfy detailed balance (Fig. 9). This is done by selecting an
incoming spin (for example s1) and a worm type. In Fig. 9,
green means the worm is traveling up (use T to transform
spin), red means down (use T †), and yellow means bounce
(do not change the spin). The Wi label the values of the
matrix elements appearing in each row. Each process can be

TABLE I. The simplex tableau in canonical form, with the
bounces listed to the left as dependent variables. Setting the inde-
pendent variables to zero ai j = 0 (i < j) (in the top row) gives the
initial feasible solution, which is the least optimal. In this solution
the bounce amplitudes are given by the values in the last column
and the bounce probabilities are all maximal. The “−2” values in the
last row are the negative of the coefficients in the objective function,
and the bottom right corner gives the value of the objective function
evaluated at the solution.

a12 a13 a14 a23 a24 a34

a11 1 1 1 0 0 0 W1

a22 1 0 0 1 1 0 W2

a33 0 1 0 1 0 1 W3

a44 0 0 1 0 1 1 W4

z −2 −2 −2 −2 −2 −2 −∑
i Wi

assigned an amplitude ai j , where i j labels the row and column
in Fig. 9. The probabilities are defined as Pi j = ai j/Wi. We
then enforce

∑
j ai j = Wi which ensures that the probability

for all processes in a row add up to one. Finally, to satisfy
detailed balance we set ai j = a ji [21], resulting in only 10 free
parameters (a11, a12, a13, a14, a22, a23, a24, a33, a34, a44).

4. Simplex tableau

We shall organize all of the information as follows:

a11 + a12 + a13 + a14 = W1, (C2)

a22 + a12 + a23 + a24 = W2, (C3)

a33 + a13 + a23 + a34 = W3, (C4)

a44 + a14 + a24 + a34 = W4, (C5)

z − 2
∑
i< j

ai j = −
∑

i

Wi, (C6)

where we have introduced the objective function z = −∑
i aii

that we wish to maximize (the same as minimizing the total
bounce probability) and have reexpressed it using the first
four equations. We have organized the equations so that the
bounces are listed only in the leftmost column. As such, the
bounces should be regarded as dependent variables and are
determined once the independent variables ai j (i < j) are
specified.

In Table I we have arranged the same information into a
simplex tableau [50,51]. The variables appearing on the top
row are regarded as independent, whereas the variables in the
left column are dependent. The values “−2” appearing in the
last row are the negative of the coefficients in the objective
function z, and −∑

i Wi is the value of the objective function
when the independent variables are set to zero.

We see that setting the independent variables equal to zero
constitutes a solution to the tableau (solving the directed loop
equations). In this solution, the bounce amplitudes (aii) are
determined by the rightmost column (aii = Wi and Pii = 1).
Although this is a feasible solution, it is the least optimal. We
can therefore look for another feasible solution that increases
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TABLE II. A summary of the rules for pivoting the simplex
tableau. The pivot element goes into its reciprocal, the pivot row
(except the pivot) gets divided by the pivot, the pivot column (except
the pivot) gets divided by the pivot and multiplied by −1, and all
other elements q get reduced by q → q − (rc)/p. Here, r is the
element that shares the same row as the pivot and the same column
as q, and c shares the same column as the pivot and the same row as
q.

the value of the objective function. It is clear that the objective
function can be increased because the values in the last row
are negative. This means that the coefficients in the objective
function are positive, so increasing the independent variables
increases the function. Conversely, if we had all positive
entries in the bottom row (except the bottom right corner),
we would find an optimal solution by setting the independent
variables equal to zero. This would mean that the coefficients
of the objective function are negative, and so the best we can
do to maximize it is to set the independent variables to zero.

The simplex algorithm [50,51] (this Appendix follows
Ref. [51]) allows us to cycle through the possible solutions,
while systematically approaching an optimal solution. This
is done by exchanging dependent variables with independent
variables via the pivot operation. Once one has pivoted such
that all the “−2” values in the last row become numbers
greater than or equal to zero, an optimal solution is found.
The amplitudes in the top row are zero and the amplitudes in
the left column are given by the values in the right column.

5. Pivoting

We now describe the process of exchanging a dependent
variable for an independent variable, which is referred to
as pivoting. This corresponds to solving one equation for

FIG. 10. The directed loop moves for a set of matrix elements
of the Heisenberg model in a uniform magnetic field. Unshaded
(shaded) circles mean spin up (down), and the color represents the
travel direction for the worm. Green is traveling up, red is down,
and yellow is bounce. The weights on the right are the values of the
matrix elements in each row.

TABLE III. The initial tableau in canonical form. The first pivot
is chosen at (2,1).

a12 a13 a14 a23 a24 a34

a11 1 1 1 0 0 0 2hb

a22 1© 0 0 1 1 0 0
a33 0 1 0 1 0 1 J

2 + hb

a44 0 0 1 0 1 1 J
2

z −2 −2 −2 −2 −2 −2 −(J + 3hb)

an independent variable (say a12) and using this equation to
replace the occurrences of a12 in all other equations, including
the objective function.

Two things happen to the simplex tableau during a pivot
operation. First, the dependent and independent variables
trade places in the tableau. So, if we chose to exchange a12

with a11, then a12 would be written in the left column in the
original location of a11 and similarly a11 would be written on
the top row in the original location of a12.

The other thing that happens during a pivot is that the
values in the tableau will change. This includes the weights
in the right column, the negative coefficients of the objective
function in the bottom row, and the value of the objective
function evaluated at the solution (bottom right corner).

There is a simple set of rules to describe how these val-
ues change after a pivot, which is summarized in Table II.
Here, p is the pivot element itself, which is in the row of a
dependent variable and a column of an independent variable.
After pivoting, this element goes into the reciprocal of itself.
All elements in the same row (except the pivot element) get
divided by the pivot. All elements in the same column (except
the pivot element) get divided by the pivot and multiplied by
−1. And finally, all elements q that are neither in the same
row nor the same column change to q − (rc)/p, were r is the
element that shares the same row as the pivot (above or below
q) and c is the element that shares the same column as the
pivot (to the left or right of q). Again, these rules are to be
applied to all of the values appearing in the tableau (excluding
the cells that label the names of the variables).

6. Simplex algorithm

We now have all of the ingredients to perform the simplex
algorithm to systematically approach an optimal solution.
This tells us how to choose our pivots so as to improve the
solution. The rule is the following: take any column j (corre-
sponding to an independent variable) where the value in the
last row is negative, this is the pivot column. Next, consider

TABLE IV. After the first pivot. The next pivot is (1,2).

a22 a13 a14 a23 a24 a34

a11 −1 1© 1 −1 −1 0 2hb

a12 1 0 0 1 1 0 0
a33 0 1 0 1 0 1 J

2 + hb

a44 0 0 1 0 1 1 J
2

z 2 −2 −2 0 0 −2 −(J + 3hb)
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TABLE V. After the second pivot. The next pivot is (2,4).

a22 a11 a14 a23 a24 a34

a13 −1 1 1 −1 −1 0 2hb

a12 1 0 0 1© 1 0 0
a33 1 −1 −1 2 1 1 J

2 − hb

a44 0 0 1 0 1 1 J
2

z 0 2 0 −2 −2 −2 −(J − hb)

all the possible pivots pi j > 0 in column j (corresponding
to different dependent variables). The one with the smallest
value W̃i/pi j is chosen as the pivot, and if there is a tie any
one can be chosen. Here, W̃i designates the current value in
the last column of row i. This procedure is iterated until all
the values in the last row (except the bottom right corner)
are positive or zero. When an optimal solution is found, the
independent variables are zero and the dependent variables
take on the values in the last column.

We can notice some properties about this algorithm. First,
all of the weights W̃i remain positive. This comes from always
choosing the pivot with the smallest value W̃i/pi j . Also, the
value of the objective function in the bottom right corner will
always increase or stay the same. This comes from the fact
that W̃i is always positive (or zero) and we always choose a
pivot column with the last entry negative. We are guaranteed
to be able to apply the rules of the simplex algorithm. For
example, one will not encounter a situation where the pivot
column contains only negative elements. If this is the case,
then the problem is unbounded feasible, which will not occur
here.

7. Example problem

We would like to illustrate the simplex algorithm in action
by providing an explicit example. We will consider a set
of matrix elements and update moves that appear in the
Heisenberg antiferromagnet in a magnetic field:

H =
∑
〈i j〉

(
J �Si · �S j − hb

(
Sz

i + Sz
j

))
. (C7)

Here, the hb = h/Nc (the external field divided by the coordi-
nation number). On a bipartite lattice the Hamiltonian is sign
free, and by a constant shift of −( J

4 + hb) and a sublattice

TABLE VI. After the third pivot. The next pivot is (3,6).

a22 a11 a14 a12 a24 a34

a13 0 1 1 1 0 0 2hb

a23 1 0 0 1 1 0 0
a33 −1 −1 −1 −2 −1 1© J

2 − hb

a44 0 0 1 0 1 1 J
2

z 2 2 0 2 0 −2 −(J − hb)

TABLE VII. After the fourth pivot. The next pivot is (4,3).

a22 a11 a14 a12 a24 a33

a13 0 1 1 1 0 0 2hb

a23 1 0 0 1 1 0 0
a34 −1 −1 −1 −2 −1 1 J

2 − hb

a44 1 1 2© 2 2 −1 hb

z 0 0 −2 −2 −2 2 −hb

rotation, can be written as

Hi j = −

⎡
⎢⎢⎢⎣

2hb 0 0 0

0 J
2 + hb

J
2 0

0 J
2

J
2 + hb 0

0 0 0 0

⎤
⎥⎥⎥⎦. (C8)

One then needs to consider the table of update moves in
Fig. 10, where the up spin is denoted as an unshaded circle
and the down spin is shaded. Again, the colors indicate the
direction of the traveling worm head (green is up, red is down,
and yellow is a bounce). The worm type in this case is chosen
as the σ x operator (T = T † = σ x).

To determine the update amplitudes ai j of the processes
contained in the table, we initialize the simplex tableau as
in Table III. Here we have circled the first pivot, and in the
following pivots (Tables IV, V, VI, VII, and VIII) we assume
hb � J . In this limit an optimal solution is thus given by
a13 = 3hb

2 , a14 = hb
2 , a34 = J

2 − hb
2 , with the other amplitudes

zero. Here the bounces can be completely excluded, as seen by
the value of the objective function in the final tableau.

If instead one considers the case hb � J , a different se-
quence of pivots, given by (2,1), (3,2), (4,3), gives an optimal
solution with a11 = hb − J, a13 = J

2 + hb, a14 = J
2 , and the

rest zero. Here, bouncing cannot be avoided, though in prac-
tice one could further shift the Hamiltonian which we have not
done here for the purpose of illustration. We note that we have
just chosen these two limiting cases to illustrate the method. In
reality, the simplex rules are applied for any numerical values
of the couplings.

8. Cycling

We would finally like to comment on one possible issue
that could arise in the general use of this algorithm, although
we have not encountered the problem in our usage. For con-
venience we have always assumed a 4 × 4 matrix of update
moves, where some matrix elements could be zero. We see
that pivoting on these rows does not change the value of

TABLE VIII. The final tableau with an optimal solution.

a22 a11 a44 a12 a24 a33

a13 − 1
2

1
2 − 1

2 0 −1 1
2

3hb
2

a23 1 0 0 1 1 0 0

a34 − 1
2 − 1

2
1
2 −1 0 1

2
J
2 − hb

2

a14
1
2

1
2

1
2 1 1 − 1

2
hb
2

z 1 1 1 0 0 1 0
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the objective function, and it could happen that a sequence
of moves returns the tableau to a previous state. This would
result in an infinite loop where the simplex algorithm fails to
terminate.

This can be remedied relatively easily by increasing the
size of the simplex tableau. One regards the elements in the
last column of the tableau as being row vectors, and replaces
those initial elements with W1 → (W1, 1, 0, 0, 0), W2 →
(W2, 0, 1, 0, 0), W3 → (W3, 0, 0, 1, 0), W4 → (W4, 0, 0, 0, 1),
−∑

i Wi → (−∑
i Wi, 0, 0, 0, 0). We then compare vectors

by their lexicographical order, meaning Wi < W j if the first
differing element between the two is smaller for Wi. For
example, (0,1,1,3,4) < (0,1,2,2,4).

Now, the only change to the simplex algorithm is that when
we select the pivot row, we must choose the pivot pi j > 0
with the lexicographically smallest W̃i/pi j . It can be shown
that pivoting according to the rules of the simplex algorithm
always increases the lexicographical value of the objective
function. Since the value always increases, this process must
terminate with an optimal solution, else the problem is un-
bounded, which is never the case here.

It also seems likely, and certainly more simple, to avoid
cycling by choosing possible pivot columns randomly as
opposed to sequentially. Again, we have not needed to take
such precautions as this issue has not come up in the various
contexts where we have used this algorithm.
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