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Berry curvature for coupled waves of magnons and electromagnetic waves
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In this paper, we introduce Berry curvature, topological Chern number, and topological chiral edge mode
that emerge from a hybridization between magnon and electromagnetic wave in a ferromagnet insulator. By
focusing on the energy conservation, we first reformulate the Landau-Lifshitz-Maxwell equation into a Hermitian
eigenvalue equation. From the eigenvalue equation, we define the Berry curvature of the magnon-photon coupled
waves. We show that the Berry curvature thus introduced shows a prominent peak around a hybridization point
between magnon mode and photon mode, and a massive hybrid mode takes a nonzero Chern number (±1) due
to the magnon-photon coupling. In accordance with the nonzero Chern number, the topological edge modes
emerge inside the hybridization gap at a domain wall between two ferromagnetic insulators with opposite
magnetizations.
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I. INTRODUCTION

Coupled waves between ferromagnetic moments and elec-
tromagnetic waves have been studied for a long time. Dis-
persion relations of the coupled waves of the magnon and
the electromagnetic wave in layered film structures consisting
of magnetic, ferroelectric, and insulating layers are studied
theoretically [1–3] and experimentally. In recent years, cou-
pling between quantum spins and photons have attracted much
attention both in theory and in experiment. The coupled wave
of spins and photons behaves differently depending on the
strength of the coupling. When the coupling is strong, the
wave is called a magnon polariton [4,5]. The magnon po-
lariton is promising for applications in quantum information
science and technology. Recently, strong coupling between
the Kittel mode and the cavity mode is studied in the YIG
sphere [6–8], film [9], and film split rings [10].

The Berry curvature in various physical systems has also
been attracting many researchers. A geometric character of
the Bloch wave function gives rise to new phenomena such as
topological electric and thermal Hall effect [11]. The Berry
curvature have been studied in electrons [12,13], photons
[14–19], magnons [20–26], and so forth. Recently, calcula-
tions of finite Berry curvature are reported in various coupled
systems such as systems with charge density and current
coupling [27,28], exciton-photon coupling [29], and magnon-
phonon coupling [30–34]. The hybridizations among these
degrees of freedom lead to topological bands and novel edge
states inside a hybridization gap. In the previous work, we
have calculated the Berry curvature of magnetoelastic wave by
formulating a Hermitian eigenvalue equation from an equation
of motion for the magnetoelastic wave [35].

In this paper, we formulate a Hermitian eigenvalue equa-
tion for coupled equations of motion for ferromagnetic

moments and electromagnetic waves. Based on the formula-
tion, we calculate the Berry curvature of the coupled waves
of magnons and electromagnetic waves [36]. We find that the
Berry curvature is prominently enhanced at a crossing point of
the dispersions and we clarify its asymptotic behavior around
the crossing point. We find that in the presence of the finite
hybridization, the topological Chern number of the coupled
wave becomes quantized to be nonzero integer. We show
that in accordance with the nonzero Chern number, nontrivial
topological edge modes of the coupled wave appear inside the
hybridization gap at a domain wall.

This paper is organized as follows. In Sec. II, we formulate
generalized Hermitian eigenvalue equations from the equa-
tions of motion of magnons and electromagnetic waves and
calculate eigenfrequencies. In Secs. III and IV, we calculate
the Berry curvature, the Chern number, and its edge modes
of the magnon and electromagnetic waves. We summarize the
paper in Sec. V.

II. FORMULATION OF EIGENVALUE EQUATION

We consider a three-dimensional ferromagnetic insulator
with isotropic electric permittivity. The saturation magnetiza-
tion M0 and the applied magnetic field H0 are parallel to each
other, and they are along the z direction. The magnon field
is described by a magnetization m in the xy plane (Fig. 1).
We assume that electromagnetic waves with the magnetic flux
density b and the electric field e transmit entirely through the
ferromagnetic insulator without dissipation. The amplitudes
of the magnon and the electromagnetic waves are propor-
tional to exp i(k · r − ωt ), with frequency ω and wave vec-
tor k ≡ (kx, ky, kz ) ≡ k(sin θ cos ϕ, sin θ sin ϕ, cos θ ) (Fig. 1).
Therefore, θ represents an angle between the wave vector
and the saturation magnetization. The coupled equations of
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FIG. 1. Schematic illustration of the magnons and the electro-
magnetic waves for (i) the wave vector perpendicular to the satura-
tion magnetization (θ = π/2) and (ii) the wave vector parallel to the
saturation magnetization θ = 0 (in Appendix A).

motions (EOM) consist of the Landau-Lifshitz equation and
the Maxwell equation [36,37]. In terms of the wave vector k,
the EOM take forms of

∂mx

∂t
= ωM

4π
by − ωsmy, (1)

∂my

∂t
= −ωM

4π
bx + ωsmx, (2)

∂b
∂t

= −icKe, (3)

∂e
∂t

= i
cK

ε
(b − 4πm), (4)

where ωs ≡ ωM + ωH , ωM ≡ 4πgM0, ωH ≡ gH0, g is gyro-
magnetic constant, c is the speed of light, ε is the permittivity,
and K is an antisymmetric matrix defined as

K =
⎛
⎝ 0 −kz ky

kz 0 −kx

−ky kx 0

⎞
⎠. (5)

For the later convenience, let us express Eqs. (1)–(4) as

i
∂

∂t
xk = Heff xk, (6)

where xk is the eigenvector, xk = t (mk,x, mk,y, bk, ek). The
8 × 8 matrix Heff is given by

Heff =

⎛
⎜⎝

ωsσ2 −ωM
4π

σ ′
2 0

0 0 cK

− 4πc
ε

(K ′)t − c
ε
K 0

⎞
⎟⎠ (7)

with a 2 × 2 matrix σ2 and 2 × 3 matrices I ′, σ ′
2, K ′:

I ′ =
(

1 0 0
0 1 0

)
, (8)

σ2 =
(

0 −i
i 0

)
, σ ′

2 =
(

0 −i 0
i 0 0

)
, (9)

K ′ =
(

0 −kz ky

kz 0 −kx

)
. (10)

We call Heff an effective Hamiltonian.
To define the Berry curvature for the coupled wave from

the EOM, let us assume that a constant Hermitian matrix γ

makes Heff to be Hermitian as H̃eff ≡ γ Heff = H̃†
eff . In terms

of these Hermitian matrices, the coupled EOM reduces to

iγ
∂xk

∂t
= H̃effxk. (11)

Define a ‘norm’ of xk in terms of the Hermitian matrix γ as
x†

kγ xk. Since γ and H̃eff are both Hermitian, one can see that
the norm is a constant of motion, ∂ (x†

kγ xk)/∂t = 0. Physically
speaking, the constant of motion must correspond to a total
energy density of the system. Thus, we choose the Hermitian
matrix γ as

γ =

⎛
⎜⎝

(4π )2ωs

ωM
I −4π I ′ 0

−4π (I ′)t I 0

0 0 εI

⎞
⎟⎠, (12)

with

H̃eff (k) = γ Heff (k)

=

⎛
⎜⎝

(4πωs )2

ωM
σ2 −4πωsσ

′
2 −4πcK ′

−4πωs(σ ′
2)† ωM
2 cK

−4πc(K ′)t −cK 0

⎞
⎟⎠, (13)

and a 3 by 3 matrix 
2,


2 =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠. (14)

Then, the norm is equal to the total energy density, consisting
of the energy density of the electric wave ue and that of the
magnetic wave um [38–40],

x†
kγ xk = ue + um, (15)

ue = e†
k

∂ (ωε̂)

∂ω
ek = ε|ek|2, (16)

um = h†
k

∂ (ωμ̂)

∂ω
hk = (4π )2 ωH

ωM
|mk|2 + |hk|2. (17)

Here ε̂ and μ̂ are an isotropic permittivity tensor and perme-
ability tensor defined by bk = μ̂hk where hk represents a mag-
netic field. We henceforth choose a normalization condition of
the eigenvector xk as x†

kγ xk = 1.
The eigenvalue equation (11) gives an equation for the

dispersion relation

ω6−(
2ω2

em + ω2
s

)
ω4 + ω2

em

(
ω2

em + 2ωHωs + ωMωs sin2 θ
)
ω2

−ωHω4
em(ωH + ωM sin2 θ ) = 0, (18)

where ωem = ck/
√

ε. The dispersion relation in Eq. (18) has
only six solutions, while the dimension of the eigenvalue
equation (6) is eight. The other two are nothing but two
zero modes that correspond to unphysical gauge degrees of
freedom. Namely, Eqs. (3) and (4) satisfy k · b = 0 and k · e =
0, respectively and correspondingly, Eq. (6) always has two
eigenvectors that belong to the zero eigenfrequency. The six
physical solutions consist of pairs of positive and negative
frequencies.

In the following, we only consider the case of (i) θ = π/2
as shown in Fig. 1(i). We leave the case of (ii) θ = 0 in
Appendix A.
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(d)(c)

(b)(a)

FIG. 2. Dispersions and Berry curvatures for coupled modes
between magnons and electromagnetic waves in a weak coupling
regime. (a) Dispersions of the ω+ and ω− branches and (b) Berry cur-
vatures of the ω+ and ω− branches as functions of k. The parameters
are set to be ωH/ωM = 103 with ωH = 5 [GHz]. Berry curvatures
for the ω− mode is shown for (c) ωM/ωM0 = 0.25, 0.5, 1.0 with
ωH/ωH0 = 1.0, and (d) ωH/ωH0 = 0.25, 0.5, 1.0 with ωM/ωM0 =
1.0, with ωM0 = 5 × 10−3 [GHz] and ωH0 = 5 [GHz].

III. BERRY CURVATURE OF COUPLED WAVES BETWEEN
MAGNONS AND ELECTROMAGNETIC WAVES FOR THE

CASE WITH θ = π/2 (kz = 0)

When k is perpendicular to the magnetization M0 (θ =
π/2), the wave vector becomes the two-dimensional vector,
k = (kx, ky) = k(cos ϕ, sin ϕ), and Eq. (18) reduces to[

ω4 − (
ω2

em + ω2
s

)
ω2 + ω2

emωsωH
][

ω2 − ω2
em

] = 0. (19)

The eigenfrequencies from the first and second parentheses
correspond to the set of components mx, my, bx, by, ez, and
that of bz, ex, ey, respectively. The decoupling between these
two sets is due to a mirror symmetry with respect to the xy
plane, under which the wave vector k is invariant for the
case with θ = π/2. The eigenmodes for mx, my, bx, by, and ez

are odd under mirror symmetry, corresponding to TE modes,
whereas the eigenmode for bz, ex, ey is even under mirror sym-
metry, corresponding to a TM mode. The first set comprises
the hybrid waves of a magnon and an electromagnetic wave,

ω2
± = ω2

s + ω2
em

2
±

√(
ω2

s − ω2
em

2

)2

+ (ζk)2. (20)

Meanwhile within the linearized EOM, the second set of the
fields (bz, ex, ey) represents a pure electromagnetic wave and
is free from the hybridization with magnon with its frequency
equal to ωem, satisfying ω− < ωem < ω+ [Figs. 2(a) and 3(a)].
Here

ζ ≡
√

ωMωs

ε
c (21)

stands for the hybridization strength between magnon and
electromagnetic waves. For the ω+ branch of Eq. (20), the
dispersion at k → ∞ and k → 0 has the following asymptotic

(d)(c)

(b)(a)

FIG. 3. Dispersions and Berry curvatures for coupled modes
between magnons and electromagnetic waves in strong coupling
regime. (a) Dispersions of the ω+ and ω− branches. (b) Berry cur-
vatures of the ω+ and ω− branches as functions of k. ωH/ωM = 2.0
with ωH = 5.0 (GHz). The Berry curvature of the ω+ mode is shown
for (c) ωH/ωM = 0.5, 1.0, 2.0, and the ω− mode for (d) ωH/ωM =
0.5, 1/

√
2, 1.0.

forms,

ω2
+ �

⎧⎨
⎩

ω2
em + (ζk)2

ω2
em

(k → ∞),

ω2
s + (ζk)2

ω2
s

(k → 0),
(22)

and for the ω− branch of Eq. (20) is

ω2
− �

{
ω2

s − (ζk)2

ω2
em

= ω2
mag (k → ∞),

ω2
em − (ζk)2

ω2
s

(k → 0),
(23)

where ω2
mag = ωHωs = ωH (ωH + ωM ) is the dispersion of the

magnon in the magnetostatic regime. At the k = 0 limit, the
magnon at ω = ωs and the electromagnetic waves become de-
coupled, as can be seen in the equations of motion. Therefore,
the electromagnetic wave with ω = ω− remains gapless even
in the presence of its coupling with the magnon.

Let k∗ and ω̃ denote the wave number and frequency at a
crossing point between the dispersions of the magnon ωs and
the electromagnetic wave ωem without the coupling (ζ = 0);

ωs = ωem(k∗) ≡ ω̃, k∗ ≡
√

εωs

c
. (24)

The frequencies of the coupled wave at the crossing point
k = k∗ is given by

ω± =
√

ω̃2 ± ω̃�ω, �ω ≡ ζk∗

ω̃
, (25)

where �ω is defined as a hybridization gap at the crossing
point. Note that the crossing point is located outside the
magnetostatic regime. By using Eqs. (3)–(4), the magnetic
field and the magnetization are written as [37]

hk = 4π

1 − ω2/ω2
em

(
−k · mk

k2
k + ω2

ω2
em

mk

)
, (26)

k × hk = ω2/ω2
em

1 − ω2/ω2
em

k × mk. (27)
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The magnetostatic regime is defined by ω 	 ωem, where the
magnetic field becomes approximately rotation free, hk �
−4π (k · mk)k/k2 and k × hk � 0. It is obvious that the cross-
ing point (ω � ωem) sits far outside the magnetostatic regime.
In the following, we will show that the Berry curvature of
the coupled modes shows a prominent peak near the crossing
point outside the magnetostatic regime.

The coupled modes between magnons and electromagnetic
waves involve the components mx, my, bx, by, and ez. The
eigenvalue equation for the coupled modes is given by a 5 × 5
matrix extracted from H̃eff :

H̃⊥
eff (k)xk,± = ω±γ ⊥xk,±, (28)

with

H̃⊥
eff (k)=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −i (4π )2ω2
s

ωM
0 4π iωs −4πcky

i (4π )2ω2
s

ωM
0 −4π iωs 0 4πckx

0 4π iωs 0 −iωM cky

−4π iωs 0 iωM 0 −ckx

−4πcky 4πckx cky −ckx 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(29)

The energy density of the hybridized modes is given
by a norm of a five-components eigenvector, xk ≡
t (mk,x, mk,y, bk,x, bk,y, ek,z ). The norm is given by x†

kγ
⊥xk,

where γ ⊥ is a 5 × 5 hermitian matrix extracted from the
matrix γ : with

γ ⊥ ≡

⎛
⎜⎜⎜⎜⎝

(4π )2ωs

ωM
0 −4π 0 0

0 (4π )2ωs

ωM
0 −4π 0

−4π 0 1 0 0
0 −4π 0 1 0
0 0 0 0 ε

⎞
⎟⎟⎟⎟⎠. (30)

Based on this normalization, the Berry curvature of the cou-
pled modes for the ω± branches is defined as

z,n(k) = iεαβ

∂x†
k,n

∂kα

γ ⊥ ∂xk,n

∂kβ

(31)

for n = ±, k = (kx, ky) = k(cos ϕ, sin ϕ), and α, β = x, y
with x†

k,nγ
⊥xk,n = 1. Here εαβ is the antisymmetric tensor

with εxy = −εyx = 1. After a lengthy calculation, we find that
the Berry curvature depends only on k;

z,±(k) = 1

k

∂

∂k

(
ω±
ωs

(
ω2

± − ω2
em

)
(
2ω2± − ω2

s − ω2
em

)
)

. (32)

The details of the derivation are shown in Appendix B. By
the similar procedure as in the magnetoelastic wave [35],
we henceforth calculate the Berry curvature in the regimes
with weak and strong coupling defined by �ω/ω̃ 	 1 and
�ω/ω̃ � 1, respectively.

A. Weak coupling regime

The weak-coupling regime between magnon and electro-
magnetic wave is expressed as ωM 	 ωs from Eqs. (21), (24),
and (25). To satisfy this condition, we set ωM 	 ωH to calcu-
late the Berry curvature. When ωM 	 ωH , the hybridization

gap is approximately evaluate as

�ω � √
ωMωH . (33)

The gap is much smaller than ω̃ under this condition. We
show the results of the numerical calculation of the dispersion
and the Berry curvature in Figs. 2(a) and 2(b). The Berry
curvatures for ω± show a strong peak and are localized at the
crossing point of the dispersions.

The peak value of the Berry curvature at the crossing point
(k = k∗) is approximately evaluated as

z,±(k = k∗) = ∓ ω̃2

2k∗3ζ
= ∓ 1

2k∗2�ω/ω̃
. (34)

In terms of ω̃ � ωH , and �ω � √
ωMωH , we can see that

the Berry curvature is proportional to ±(k∗) ∝ 1/ω
1/2
M and

1/ω
3/2
H . The dependences of the Berry curvature on ωM and

ωH agree with Figs. 2(c) and 2(d). This result has the same
form as the result of the magnetoelastic wave with respect
to the hybridization gap except for some coefficients [35]. It
means that the main effect of the Berry curvature induced by
the hybridization has a universal feature around the hybridiza-
tion gap in the weak coupling regime.

B. Strong coupling regime

To calculate the Berry curvature in the strong-coupling
regime, we set ωM � ωs. The results of the dispersion and
the Berry curvature are shown in Fig. 3. When the coupling
between magnon and electromagnetic wave is strong, the
peak of the Berry curvature at k = k∗ broadens as shown in
Figs. 3(a) and 3(b).

The Berry curvature of the coupled wave is affected by
the hybridization even at k 	 k∗. By using Eq. (32) and the
dispersions Eqs. (22) and (23), we obtain the Berry curvature
for k 	 k∗

z,+(k) ∼ − ζ 2

ω4
s

, (35)

z,−(k) ∼ 3ζ 2c′k
ω5

s

, (36)

where c′ = √
c2/ε − ζ 2/ω2

s . These results show that the Berry
curvature for k 	 k∗ is strongly affected by the coupling ζ .
The Berry curvature z,+ is finite at k → 0, while the Berry
curvature z,− is zero at k → 0. The analytical results agree
with the result of Figs. 3(c) and 3(d).

The asymptotic behavior of z,− around k � 0 comes from
the linearly polarized nature of the magnetic field and flux
in the vicinity of k = 0. For simplicity, we choose the wave
vector k = key where ey is a unit vector along the y axis. A
relation between hx and hy is written for the ωem mode as [37]

hy

hx
= − iωωM

ω2
mag − ω2

. (37)

Thus, the magnetic field becomes linearly polarized along
the x direction when k → 0. In addition, the magnetic flux
also becomes linearly polarized along x at k → 0, because
the nondiagonal component of the permeability tensor μxy

becomes smaller at k → 0. These behaviors are the same for
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an arbitrary direction of k. Thus, the eigenvector becomes
asymptotically independent of k and the Berry curvature
z,−(k) becomes zero at k → 0. This asymptotic behavior of
the Berry curvature for the ω = ω− mode is totally different
from that of the magnetoelastic wave ω = ω+ in the strong
coupling, where the Berry curvature of the linearly dispersive
branch diverges toward k = 0.

IV. TOPOLOGICAL EDGE MODES AT kz = 0

A. Chern number

Let us define an integral of the Berry curvature for the ωn

branch over the two-dimensional momentum space [41,42];

Chn =
∫ +∞

−∞

∫ +∞

−∞
z,n(k)

dkxdky

2π
, (38)

with n = ±. The integral is quantized to be an integer (Chern
number), when the ωn branch is separated from the other
branches by a direct gap for any k = (kx, ky). The quantized
integer is identical with a number of topological chiral edge
modes inside the gap [43]. The edge modes are localized along
a boundary of the system within the xy plane. Using Eq. (32),
we obtain

Chn =
∫ ∞

0
dk

∂

∂k

(
ωn
ωs

(
ω2

n − ω2
em

)
(
2ω2

n − ω2
s − ω2

em

)
)

= Nn(∞) − Nn(0), (39)

where

Nn(k0) ≡
(

ωn
ωs

(
ω2

n − ω2
em

)
(
2ω2

n − ω2
s − ω2

em

)
)∣∣∣∣∣

k→k0

. (40)

Using Eqs. (22) and (23), we have

N+(k) =
{

0 (k → ∞)
1 (k → 0) , (41)

and

N−(k) =
{ωmag

ωs
(k → ∞)

0 (k → 0)
. (42)

Thus, the Chern number for the ω+ branch is −1,

Ch+ = −1. (43)

The dispersion and its Chern number are illustrated in
Fig. 4(a). From the quantization of the Chern number, we
expect that a chiral edge mode with kz = 0 appears inside the
hybridization gap between the ω+ branch and ω− branch.

The integral of the Berry curvature for the ω− branch is
not quantized to an integer. This is because the ω− branch in
the particle space (ω = ω− � 0) and its hole counterpart (ω =
−ω− � 0) forms a band touching at k = 0; ω−(k = 0) = 0.
In the eigenvalue equation (6), the branch with the positive
frequency and that with the negative frequency are coupled
with each other. Due to the band touching at k = 0, the Chern
number for the ω− branch is not well defined. As a result, the
sum of the Chern number over the branches with the positive
frequency region is not zero either, unlike the cases with a gap
between the positive ω and the negative ω branches [26].

(d)(c)

(b)(a)

FIG. 4. Topological Chern number and topological edge modes
of coupled waves between magnons and electromagnetic waves.
(a) Dispersions of the ω+ and ω− branches with the Chern number for
the ω+ branch. (b) Schematic picture of two ferromagnetic regions
with opposite magnetization and magnetic field. In region I, the
Chern number of the ω+ branch is +1 with H = (0, 0,−H0 ), and
in region II it is −1 with H = (0, 0, H0 ). The boundary between the
two regions is parallel to the y axis. We define the surface momentum
along y as ky. (c) Dispersions for the edge modes (orange lines)
with ω0

H = ω0
M = 5.0 (GHz). Gray-colored regions show projections

of the dispersions of the bulk modes ω+ and ω− onto the surface
momentum ky. (d) Ferromagnetic insulator slab with a metalized
surface. A chiral mode appears only in the ky < 0 on the metalized
surface.

B. Chiral edge modes

From the quantization of the Chern number of the ω+
branch, we expect that a chiral edge mode with kz = 0 appears
inside the hybridization gap. The mode is localized at a bound-
ary between topologically different regions. Here, we show
an emergence of such topological chiral edge modes at an
interface between two regions with opposite magnetizations.
We consider a domain wall as schematically illustrated in
Fig. 4(b). The magnetization and magnetic field is directed
along −z direction in region I (x < 0) and +z direction in
region II (x > 0). Namely, H = (0, 0, H0), M = (0, 0, M0) in
region II and H = (0, 0,−H0), M = (0, 0,−M0) in region
I, where H0 and M0 are positive. This means ωH = ω0

H ≡
gH0, ωM = ω0

M ≡ 4πgM0, and ωs = ω0
s ≡ ω0

H + ω0
M in region

II and ωH = −ω0
H , ωM = −ω0

M , and ωs = −ω0
s in region I.

From Eq. (32), the Berry curvature for the ωn branch changes
its sign from region I to region II. Thus, the Chern number for
the ω+ branch in region I is +1, while that in region II is −1.

The number of chiral edge modes at an interface with
two regions with different Chern numbers equals to the
difference of the two Chern numbers between the two re-
gions [43]. It is independent of the details of the inter-
face. Since the Chern number in region I and in region
II are 1 and −1, respectively, two chiral edge modes are
expected to emerge at the interface. To see them, we note
that the wave number ky along the edge (y axis) is con-
served, while we should replace kx by −i∂x in Eq. (29).
We then calculate eigenmodes of Eq. (28) at the boundary.
The eigenmodes localized at the boundary is proportional to
eikyy+κx for x < 0 and eikyy−κx for x > 0 with κ > 0. From
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the boundary conditions for the electromagnetic waves bx, hy,
and ez, we obtain two edge-mode solutions ω = ω

(1)
edge, ω

(2)
edge

inside the gap between ω+ and ω− (see Appendix E),
and their dispersion relations are shown in Fig. 4(c). The
dispersions of the edge modes are written as

(
ω

(1)
edge

)2 = ω2
mag + ω2

em

2
+

√√√√(
ω2

mag + ω2
em

2

)2

− ω2
Hω2

em

(ky > 0), (44)

ω
(2)
edge = ω0

s (ky < 0), (45)

with ωem = cky/
√

ε and ky > 0. The dispersion ω
(1)
edge touches

at ky = 0 the top of the ω− branch of the bulk mode. The dis-
persion quadratically increases in small ky for ky ∼ k∗ due to
the magnon, while it linearly increases for ky � k∗ because
the electromagnetic wave is dominant. The other edge mode
ω

(2)
edge shows a flat dispersion as in Fig. 4(c) with ky < 0.

An edge mode with a flat dispersion similar to Eq. (45) was
also reported in a previous study of topological edge mag-
netoplasmon [27]. The magnetoplasmon is a coupled wave
between the charge density and electric current density in a
two-dimensional electron gas (2DEG) under a high magnetic
field. The previous study [27] found two distinct edge modes
in the 2DEG under the magnetic field, one edge mode with a
flat dispersion and the other edge mode with a linear (chiral)
dispersion. The edge mode with the flat dispersion carries only
the electric current component, while the other edge mode car-
ries both charge density and current components. Similarly to
the topological magnetoedgeplasmon, the edge mode with the
flat dispersion in the present system, Eq. (45), carries only
the magnetization and the magnetic field components but not
the electric field component (see Appendix E). Meanwhile,
the edge mode with the chiral dispersion, Eq. (44), is a cou-
pled mode among magnetization, magnetic field, and electric
field (see Appendix E1).

The edge mode with the flat dispersion in Eq. (45) can be
regarded as the Damon-Eshbach surface mode in a ferromag-
netic insulator slab with its surface being metalized [44]. A
dispersion of the surface mode of the surface-metalized ferro-
magnetic insulator slab with a finite thickness d exists only in
the ky < 0 region in Fig. 4(d). When the thickness becomes
much larger than the wavelength (|kyd| � 1), the dispersion
becomes flat when the exchange interaction is neglected [44]
and the saturated dispersion equals to Eq. (45). Note also
that the boundary condition for the magnetic flux in the
edge mode with the flat dispersion ω = ω0

s (see Appendix E)
is the same as that in the surface-metalized ferromagnet,
where the magnetic flux density along the x direction at the
surface is zero due to the metalized surface [44].

C. Discussion

In this section, we first discuss the case with θ �= 0 (kz is
nonzero). The Chern number is defined only when the bands
are separated by a full gap for the entire k space within the
kx-ky plane. When θ = π/2 (kz = 0), electromagnetic waves
are classified into TE and TM modes by their properties under
the mirror symmetry. Only the TE mode is coupled with the

FIG. 5. Schematic illustration of excitations of chiral edge modes
by (a) injecting electromagnetic waves (photons) and (b) injecting
magnons via an antenna.

magnon in this situation. There is always a gap between the
magnon and the TE mode, and the Chern number can be
defined as explained above. When θ �= 0 (kz is nonzero), the
two modes of electromagnetic waves are coupled with the
magnon, and there is no full gap. Therefore, the Chern number
cannot be defined, and topological edge modes do not exist in
a strict sense.

Next, we discuss how to detect the chiral edge modes in
experiments. We only focus on the dispersive chiral edge
mode, namely the coupled wave between the magnon and the
electromagnetic wave. There are generally two methods of
generating chiral edge modes into a magnetic material: one
is by injecting electromagnetic waves [45–47] and the other
is by exciting magnons via an antenna. These two methods
are shown schematically in Figs. 5(a) and 5(b), respectively.
In the former method, electromagnetic waves can be injected
into the ferromagnet directly when the edge mode considered
is inside the light cone (ω > ck/

√
ε). On the other hand, when

the edge mode is outside the light cone (ω < ck/
√

ε), we
need to use a particular method to inject the electromagnetic
wave into the ferromagnet. For example, we can use a prism
similar to the Kretschmann configuration, used for exciting
surface plasmon modes. Electromagnetic waves are injected
along the domain wall through the prism and hybridized with
the magnons to generate a chiral edge mode. Then the chiral
edge mode can either be measured as a magnon by several
methods for magnon detection (such as Brillouin light scat-
tering) or as an electromagnetic wave via the same methods
as the injection. The predicted chiral nature can be verified by
changing the injection and observation points on the edges in
the experimental setup.

As mentioned above, chiral edge modes are defined only
for kz = 0 because of the separation between the TE and TM
modes. When kz is nonzero, topological edge modes do not
appear because the Chern number is not defined. However,
the edge modes do not disappear immediately when kz is
changed from zero to nonzero. The edge modes will remain as
a transient mode, which gradually leaks into the bulk modes.
This leakage will be prominent when kz is away from zero.

V. CONCLUSION

In this paper, we discuss the Berry curvature and topolog-
ical edge modes that emerge from a hybridization between a
magnon and an electromagnetic wave in a ferromagnetic in-
sulator. By introducing a norm of eigenvector for the coupled
wave based on the energy conservation, we reformulated the
Landau-Lifshitz-Maxwell equation into a Hermitian eigen-
value equation. From the eigenvalue equation, we introduced
the Berry curvature of the coupled waves between the magnon
and the electromagnetic wave. When the wave vector of the
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coupled wave k is perpendicular to the magnetic field and
magnetization, we found that the Berry curvature shows a
prominent peak around a hybridization point between the
magnon and the electromagnetic modes. The hybridization
leads to two relevant hybrid modes; one is a magnonlike
massive mode (ω = ω+) at k = 0 and the other is a photonlike
massless mode (ω = ω−) at k = 0. Around k � 0, the Berry
curvature for the massless mode converges to zero, while that
for the massive mode converges to a nonzero value. We found
that the Chern number for the massive mode takes a nonzero
integer (±1), and consequently two chiral edge modes emerge
inside the hybridization gap at a domain wall between two
ferromagnetic insulators with opposite magnetizations. One
of the two edge modes carries both a magnon and an electro-
magnetic wave, while the other edge mode is purely magnetic
and can be regarded as the Damon-Eschbach surface chiral
mode of the surface-metalized ferromagnetic insulator slab.

Recently, the surface mode of the ferromagnet film in the
dipole-exchange regime immune to backscattering is reported
[48]. Our work provides an insight for the search of the
chiral edge modes and stimulates future simulational and
experimental studies on coupled waves between magnons and
electromagnetic waves.
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APPENDIX A: DERIVATION OF THE EQUATIONS OF
MOTION FOR THE COUPLED WAVE BETWEEN THE

MAGNON AND THE ELECTROMAGNETIC WAVE

In this Appendix, we derive dynamical equations of motion
of magnons and electromagnetic waves with an arbitrary angle
between the saturation magnetization and the wave vector in
a ferromagnetic insulator. We assume the saturation magneti-
zation M0 and the applied magnetic field H0 are along the z
direction. The magnon is represented as a small vector m in
the xy plane: M = m + M0ez. So does the magnetic field H
as H = h + H0ez, where h is a small magnetic field (|h| 	
H0). The system is dielectrically isotropic and an energy
dissipation is neglected. We consider only Zeeman interaction
and fluctuation of the magnetic field oscillation as fields acting
onto magnons. We neglect an exchange interaction because
the wave number at the crossing between the magnon and
the electromagnetic waves is typically much smaller than an
inverse of a lattice constant of crystalline magnetic material.
The effective field Heff is written as

Heff = h − H0

M0
m. (A1)

The equation of motion for magnons are given by the Landau-
Lifshitz equation:

∂M
∂t

= −gM × Heff , (A2)

where g is the gyromagnetic ratio. The electromagnetic fields
are determined by the Maxwell equation:

∂b
∂t

= −c∇ × e, (A3)

ε
∂e
∂t

= c∇ × h, (A4)

where c is the speed of light. Assuming the magnetization
m, and the electromagnetic fields h and e are proportional to
exp (ik · x), where k is a wave vector, and expanding Eq. (A2)
to the linear order in h and m, we obtain Eqs. (1)–(4) with
b = h + 4πm.

In Sec. III, we calculate the dispersion relation where
the wave vector is perpendicular to the magnetization. In
this Appendix A, we consider the case with k ‖ M0. From
Eq. (18), the dispersion relation reduces to[

ω
(
ω2 − ω2

em

) − (
ωsω

2 − ωHω2
em

)]
× [

ω
(
ω2 − ω2

em

) + ωsω
2 − ωHω2

em

] = 0. (A5)

From this, we obtain the dispersion relations for three
branches shown in Ref. [37]. Let ωi (i = 1, 2, 3) be the eigen-
frequencies of the waves with 0 < ω1 < ω2 < ω3. Among
the three modes with positive frequencies, one is massive at
k = 0, ω(k = 0) �= 0, while the other two are massless at k =
0. The dispersions of the massless modes take the following
asymptotic forms around k = 0,

ω1 ≈ ωem

√
ωH

ωs
− ωMω2

em

2ω2
s

, (A6)

and

ω2 ≈ ωem

√
ωH

ωs
+ ωMω2

em

2ω2
s

. (A7)

The dispersion of the massive mode has the following asymp-
totic form near k = 0,

ω3 ≈ ωs + ωMω2
em

ω2
s

. (A8)

APPENDIX B: CALCULATION OF THE BERRY
CURVATURE OF THE COUPLED WAVE BETWEEN THE

MAGNON AND THE ELECTROMAGNETIC WAVE

In this Appendix, we give a detailed calculation of the
Berry curvature for the coupled modes between a magnon
and an electromagnetic wave for the case with k ⊥ M0. Let
M0 to be along the z axis. The two relevant branches with
ω = ω± represent hybridized waves of mx, my, bx, by, and
ez. The eigenvalue equation for these five components, xk ≡
t (mk,x, mk,y, bk,x, bk,y, ek,z ), is given by:

H̃⊥
eff (k, ϕ)xk = ωγ ⊥xk, (B1)
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where

H̃⊥
eff (k, ϕ) = γ ⊥Heff (k, ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −i (4π )2ω2
s

ωM
0 4π iωs −4πcky

i (4π )2ω2
s

ωM
0 −4π iωs 0 4πckx

0 4π iωs 0 −iωM cky

−4π iωs 0 iωM 0 −ckx

−4πcky 4πckx cky −ckx 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B2)

Here k ≡ k(cos ϕ, sin ϕ) is within the xy plane, with ϕ being
the angle between the x axis (see Fig. 1). The norm of the
eigenvector is defined through the Hermitian matrix γ ⊥;

γ ⊥ =

⎛
⎜⎜⎜⎜⎜⎜⎝

(4π )2ωs

ωM
0 −4π 0 0

0 (4π )2ωs

ωM
0 −4π 0

−4π 0 1 0 0

0 −4π 0 1 0

0 0 0 0 ε

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B3)

From the O(2) rotational symmetry in the Landau-Lifshitz-
Maxwell equation, the eigenvector at finite ϕ is related to that
at ϕ = 0 by the O(2) transformation,

H̃⊥
eff (k, ϕ = 0)x̃k = ωγ ⊥x̃k, (B4)

xk =
⎛
⎝U2(ϕ)

U2(ϕ)
1

⎞
⎠x̃k, (B5)

where

U2(ϕ) =
(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)
. (B6)

The dependence on ϕ and k in xk is now factorized into U2(ϕ)
and x̃k . x̃k is an eigenstate of the following Hermitian matrix,

H̃⊥
eff (k, ϕ = 0)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −i (4π )2ω2
s

ωM
0 4π iωs 0

i (4π )2ω2
s

ωM
0 −4π iωs 0 4πck

0 4π iωs 0 −iωM 0

−4π iωs 0 iωM 0 −ck

0 4πck 0 −ck 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(B7)

By using the factorized form for xk, the Berry curvature is
calculated as

z,n(k) = iεαβ

∂x†
k

∂kα

γ ⊥ ∂xk

∂kβ

= 1

k

∂

∂k
(x̃†

k�x̃k ), (B8)

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 − (4π )2ωs

ωM
0 4π 0

(4π )2ωs

ωM
0 −4π 0 0

0 4π 0 −1 0

−4π 0 1 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B9)

with the normalization condition x̃†
kγ

⊥x̃k = 1. To evaluate
Eq. (B8), it is convenient to introduce an unnormalized eigen-
state X̃ k , which is related to x̃k by

x̃k ≡ X̃ k√
X̃

†
kγ

⊥X̃ k

. (B10)

In terms of the unnormalized eigenstate, the Berry curvature
is given by

z,n(k) = 1

k

∂

∂k

(
X̃ k�X̃ k

X̃ kγ ⊥X̃ k

)
. (B11)

From the Hermitian eigenvalue equation, the eigenstate satis-
fies⎛

⎜⎜⎜⎜⎜⎜⎝

− (4π )2ωsω

ωM
−i (4π )2ω2

s
ωM

4πω 4π iωs 0

i (4π )2ω2
s

ωM
− (4π )2ωsω

ωM
−4π iωs 4πω 4πck

4πω 4π iωs −ω −iωM 0

−4π iωs 4πω iωM −ω −ck

0 4πck 0 −ck −εω

⎞
⎟⎟⎟⎟⎟⎟⎠

X̃ k =0.

(B12)

Thus, we have

X̃ k =

⎛
⎜⎜⎜⎜⎜⎝

−i ωM ck
4π (ω2−ω2

s )
ωsωM ck

4πω(ω2−ω2
s )

0

− ck
ω

1

⎞
⎟⎟⎟⎟⎟⎠. (B13)

By using this wave function and Eq. (B11), we obtain the
Berry curvature for the two eigenmodes with ω = ω±:

z,±(k) = 1

k

∂

∂k

(
ω±
ωs

(
ω2

± − ω2
em

)
(
2ω2± − ω2

s − ω2
em

)
)

. (B14)

APPENDIX C: WAVE NUMBER AND BERRY CURVATURE
AT THE CROSSING POINT OF THE DISPERSIONS FOR
THE ELECTROMAGNETIC WAVE AND THE MAGNON

Here we present a detailed calculation of the peak value
of the Berry curvature at the crossing point between magnon
and photon mode. The wave vector at the crossing point k∗ is
defined by

k∗ =
√

ε

c2
(ωH + ωM ). (C1)
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The dispersion and the Berry curvature around k = k∗ are
given by

ω± �
√

c2(k2 + k∗2)

2ε

×
⎛
⎝1 ± 1

(k2 + k∗2)

√
(k2 − k∗2)2

4
+

(
εζk

c2

)2
⎞
⎠.

(C2)

Using Eqs. (B14) and (C2), we obtain peak values of the Berry
curvature;

z,±(k = k∗) = ∓ ω̃2

2k∗3ζ
= ∓ 1

2k∗2�ω/ω̃
. (C3)

APPENDIX D: HERMITIAN EIGENVALUE PROBLEMS
IN THE OTHER BASES

In the main text, we use the basis for the eigenvector as
xk,1 ≡ (mk, bk, ek)t . Using bk = hk + 4πmk, one can change
the basis for the eigenvector into either xk,2 ≡ (mk, hk, ek)t or
xk,3 ≡ (bk, hk, ek)t . In terms of xk,2, the Hermitian Hamilto-
nian in the eigenvalue problem changes into

H2(k)=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −i (4π )2ω2
H

ωM
0 4π iωH 0

i (4π )2ω2
H

ωM
0 −4π iωH 0 0

0 4π iωH 0 −iωM cky

−4π iωH 0 iωM 0 −ckx

0 0 cky −ckx 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(D1)

In the new basis, a norm of the eigenvectors should be
redefined as 〈xk,2|γ2|xk,2〉 with

γ2 =

⎛
⎜⎜⎜⎜⎝

(4π )2ωH

ωM
0 0 0 0

0 (4π )2ωH

ωM
0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 ε

⎞
⎟⎟⎟⎟⎠ (D2)

(compare this with Eqs. (15), (16), and (17). We can also
choose another basis, xk,3 ≡ (bk, hk, ek)t , with

H3(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −i ω2
H

ωM
0 i ωH ωs

ωM
0

i ω2
H

ωM
0 −i ωH ωs

ωM
0 0

0 i ωH ωs
ωM

0 −i ω2
s

ωM
cky

−i ωH ωs
ωM

0 i ω2
s

ωM
0 −ckx

0 0 cky −ckx 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(D3)

and

γ3 =

⎛
⎜⎜⎜⎜⎜⎝

ωH
ωM

0 − ωH
ωM

0 0

0 ωH
ωM

0 − ωH
ωM

0

− ωH
ωM

0 ωs
ωM

0 0

0 − ωH
ωM

0 ωs
ωM

0

0 0 0 0 ε

⎞
⎟⎟⎟⎟⎟⎠. (D4)

The norm in this basis is defined as 〈xk,3|γ3|xk,3〉. In accor-
dance with the change of the norm, the Berry curvature in
these new bases are defined by Eq. (31) with a replacement of
γ ⊥ and xk by γ2 and xk,2 or by γ3 and xk,3, respectively. It is
important to note that these different formulae give the same
calculation result of the Berry curvature as Eq. (32).

APPENDIX E: CALCULATION OF THE EDGE-MODE
SOLUTIONS OF THE COUPLED WAVE BETWEEN THE

MAGNON AND THE ELECTROMAGNETIC WAVE

In the main text, we discuss the emergence of the chiral
edge modes at the boundary between the two ferromagnetic
regions with an opposite magnetization and magnetic field.
In the following, we will give a detailed derivation of the
edge modes and their dispersions. From Eq. (19) with the
replacement of kx by ±iκ (κ > 0), the eigenfrequencies of
the edge modes should satisfy the following equation,

ω4 − (
ω̃2

em + ω2
s

)
ω2 + ω̃2

emω2
mag = 0, (E1)

ω̃2
em ≡ c2

(
k2

y − κ2
)

ε
. (E2)

Unnormalized eigenvectors for the edge modes are obtained
from Eqs. (B13) and (B5) with the replacement of kx by
+iκ (κ > 0) for region II (x > 0) and by −iκ for region I (x <

0); Eqs. (B13) and (B5) give the unnormalized eigenvectors at
the both sides of the boundary,

ψky (x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

mx,ky

my,ky

bx,ky

by,ky

ez,ky

⎞
⎟⎟⎟⎟⎟⎟⎠

= C±

⎛
⎜⎜⎜⎜⎜⎜⎝

±ωM cκ
4π

− ωsωM cky

4πω

−i ωM cky

4π
± i ωsωM cκ

4πω
cky

ω
(ω2 − ω2

s )

∓i cκ
ω

(ω2 − ω2
s )

(ω2 − ω2
s )

⎞
⎟⎟⎟⎟⎟⎟⎠

e∓κx+ikyy,

(x > 0 (x < 0)) (E3)

where C± are constants. Here, we note that ωH = ω0
H ≡ gH0,

ωM = ω0
M ≡ 4πgM0, and ωs = ω0

s ≡ ω0
H + ω0

M for x > 0 and
ωH = −ω0

H , ωM = −ω0
M , and ωs = −ω0

s for x < 0. Next, we
need to determine the constant factors C± so as to satisfy the
appropriate boundary conditions:

bx(x = 0+) = bx(x = 0−), (E4)

ez(x = 0+) = ez(x = 0−), (E5)

hy(x = 0+) = hy(x = 0−). (E6)

In the following, to calculate edge-modes solutions, we study
the case of ω �= ω0

s and the case of ω = ω0
s separately.

1. Edge-mode solution with ω �= ω0
s

Let us first consider an edge-mode solution with ω �= ω0
s .

From Eq. (E3), to satisfy the boundary conditions for bx and
ez at x = 0 we need to set C+ = C−. Then the boundary
condition for hy at x = 0 gives a relation between κ and ky,

κ = ω0
M ω

ω2 − ω2
mag

ky. (E7)
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A substitution of Eq. (E7) into Eqs. (E1) and (E2) leads to the
dispersion relation between ky and ω for localized modes:

ω4 − (
ω2

mag + ω2
em

)
ω2 + ω2

Hω2
em = 0, (E8)

with ωem ≡ cky/
√

ε for ω �= ωmag. It gives the chiral disper-
sion, Eq. (44), where ky > 0 is required by the positiveness
of κ .

The edge mode with the chiral dispersion involves both
a magnetization and an electric field. For ky → 0, the chiral
edge mode becomes magnonic,

⎛
⎜⎜⎜⎝

mx,ky (x, y)
my,ky (x, y)
bx,ky (x, y)
by,ky (x, y)
ez,ky (x, y)

⎞
⎟⎟⎟⎠ = C±

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
4π

√
2

√
ωM
ωs

∓ i
4π

√
2

√
ωM
ωH

0

∓ i√
2

√
ωM
ωH

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

e∓κx+ikyy,

(x > 0 (x < 0)). (E9)

For ky � k∗, the chiral mode becomes photonic,⎛
⎜⎜⎜⎝

mx,ky (x, y)
my,ky (x, y)
bx,ky (x, y)
by,ky (x, y)
ez,ky (x, y)

⎞
⎟⎟⎟⎠ = C±

⎛
⎜⎜⎜⎜⎝

0
0

1/
√

2
0

1/
√

2ε

⎞
⎟⎟⎟⎟⎠e∓κx+ikyy,

(x > 0 (x < 0)). (E10)

2. Edge-mode solution with ω = ω0
s

First, Eq. (E3) satisfies the boundary conditions for bx and
ez, while the boundary condition for hy is satisfied by setting
C− = −C+. Then, by combining ω = ω0

s with Eqs. (E1) and
(E2), we relate ky to κ as

ω̃2
em ≡ c2

(
k2

y − κ2
)

ε
= 0, ⇒ ky = ±κ. (E11)

A case with ky = +κ (> 0) makes all the components in
Eq. (E3) be zero, giving no physical solution. The other case
with ky = −κ (< 0) gives a physical edge-mode solution with
the flat dispersion, Eq. (45). From Eq. (E3), the edge mode
with the flat dispersion involves only the magnetization and
the magnetic field;

⎛
⎜⎜⎜⎝

mx,ky (x, y)
my,ky (x, y)
bx,ky (x, y)
by,ky (x, y)
ez,ky (x, y)

⎞
⎟⎟⎟⎠ = C±

⎛
⎜⎜⎜⎜⎜⎜⎝

± 1
4
√

2π

√
ωM
ωs

i 1
4
√

2π

√
ωM
ωs

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

e∓κx+ikyy,

(x > 0 (x < 0)). (E12)
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