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Coherent multimode conversion from microwave to optical wave via a magnon-cavity hybrid system
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Coherent conversion from microwave to optical wave opens new research avenues towards a long distance
quantum network covering quantum communication, computing, and sensing out of the laboratory. Especially a
multimode enabled system is essential for practical applications. Here we experimentally demonstrate coherent
multimode conversion from the microwave to optical wave via collective spin excitation in a single crystal
yttrium iron garnet (YIG, Y3Fe5O12) which is strongly coupled to a microwave cavity mode in a three-
dimensional rectangular cavity. Expanding a collective spin excitation mode of our magnon-cavity hybrid system
from Kittel to multimagnetostatic modes, we verify that the size of the YIG sphere predominantly plays a crucial
role for the microwave-to-optical multimode conversion efficiency at resonant conditions. We also find that the
coupling strength between multimagnetostatic modes and a cavity mode is manipulated by the position of a
YIG inside the cavity. It is expected to be valuable for designing a magnon-hybrid system that can be used for
coherent conversion between microwave and optical photons.
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I. INTRODUCTION

Strong coupling induced by resonant light-matter interac-
tion can give rise to coherent information transfer between
distinct physical systems in quantum and classical infor-
mation processing [1–3]. The coherent transfer of quantum
state is a key role in realizing large-scale quantum optical
networks and long distance quantum sensing and imaging
[4–9] since it allows quantum information to be exchanged
between different systems that operate at different energy
scales. A platform for transferring multimode states will be
attractive to the practical application of quantum-enhanced
metrology and communication [10,11]. After the first demon-
stration of optical frequency conversion [12], the photon
frequency conversion has been implemented with crystals in
the optical domain, and with superconducting circuits in the
microwave domain [13,14]. Since it has great potential in
realizing large-scale quantum optical networks with super-
conducting qubits, recently the microwave to optical field
conversion has been intensively attracted and experimentally
demonstrated by using intermediate systems, such as op-
tomechanical systems [15–20], electro-optical systems [21],
atomic ensembles [22–25], and magnons [26]. So far the
maximum microwave-to-optical (MO) conversion efficiency
has been demonstrated in a nanomechanical resonator system
employing a nanomembrane that is combined with an optical
cavity while it is coupled to a superconducting microwave
resonator. Its conversion efficiency reached 47% at low tem-
perature [16,17]. A ferromagnetic material, a yttrium iron
garnet (YIG), in a microwave cavity offers strong interaction
between magnon and microwave cavity modes at both low
and room temperatures since YIG has a Curie temperature
of 560 K and a net spin density of 2.1 × 1022μB cm−3
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(μB Bohr magneton) that is a few orders of magnitude higher
than a net spin density of 1016–1018μB cm−3 in paramagnetic
materials. A high Verdet constant with a sharp linewidth of
electron spin resonance in microwave domain also makes YIG
noticeable in the Faraday effect [27,28]. Recently, YIG based
materials have been studied in a novel concept for ultrafast
magneto-optic polarization modulation with frequencies up
to THz orders [29,30]. Longer spin excitation time than a
paramagnetic spin system is another advantage of YIG and
its hybrid system [31,32]. In this hybrid system, the MO
conversion is achieved through the Faraday effect and Purcell
effect. The magnetization oscillation induced and amplified
by the Purcell effect of a microwave cavity mode creates the
sidebands to the incidental optical wave, resulting in coherent
conversion between a microwave and optical wave. So far the
MO conversion via the YIG-cavity system has been focused
only for the Kittel mode.

In this paper we report coherent multimode conversion
from the microwave to optical wave fields, which is based
on a hybrid system consisting of a sphere of YIG and a
three-dimensional rectangular microwave cavity. We experi-
mentally demonstrate and verify that the size of YIG is a dom-
inant factor of the coherent multimode conversion efficiency.
The conversion efficiency is theoretically derived by using
the interaction Hamiltonian with the ferromagnetic-resonance
(FRM) or Kittel mode (KM) and a higher magnetostatic mode
(MSM) and experimentally characterized by normal-mode
splitting, coupling strengths of the ferromagnetic-resonance,
and magnetostatic modes. For the near-uniform microwave
cavity field, all the spins in the YIG sphere precess in phase
that is called Kittel mode, and therefore the whole YIG sphere
can be treated as a giant spin [33,34]. As the YIG sphere size
increases, the microwave cavity field can no longer be treated
as a uniform field, leading to the higher order magnon modes
which are observed [35–37]. By positioning a YIG off the
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FIG. 1. (a) Schematic of hybrid system for coherent conversion
from microwave to light, where a YIG sphere is inserted into a
rectangular microwave cavity. (b) Magnon-cavity hybrid model. In
the hybrid system, magnon mode ŝm and a microwave cavity mode â
are strongly coupled with a coupling strength gm. Here κi and γm

present internal cavity loss and intrinsic loss for magnon modes,
respectively. A microwave field mode âi is coupled to a microwave
cavity mode at a rate κe, while a traveling optical wave field mode b̂i

is coupled to the magnon mode at a rate δm. Through this process, the
microwave field is converted to the traveling optical wave field with
a conversion efficiency ηt .

uniform microwave cavity field region, we can manipulate the
coupling strength between multimagnetostatic modes and a
cavity. As a result, it is shown that KM and MSM manifested
in each YIG sample are successfully transferred through the
conversion process from microwave field to optical wave field.

II. THEORETICAL CONVERSION MODEL

Figure 1(a) shows the main part of our hybrid system, a
YIG sphere and a 3D rectangular microwave cavity. Due to the
magnetic and optical properties, a highly polished YIG sphere
can serve as an excellent magnon resonator at microwave
frequencies. A 3D rectangular microwave cavity intrinsically
maintains a low damping rate compatible with one of magnon
mode at room temperature and enhances the coupling rate be-
tween a magnon mode and a cavity mode through the Purcell
effect. Then the linearly polarized light travels through a YIG
perpendicular to the magnetization direction along the static

magnetic field. Finally the Faraday effect creates the optical
sidebands or polarization oscillations of the light induced
by the magnetization oscillations [26,38,39]. Figure 1(b) de-
scribes the schematic diagram for coherent conversion from
microwave photons to optical photons. The total Hamiltonian
(Ĥt ) describing the conversion process including the KM and
a higher MSM can be given by

Ĥt = Ĥc + Ĥs + Ĥo,

Ĥc = −i
√

2κe
[
â†âi(t ) − â†

i (t )â
]
,

Ĥs = ωcâ†â + ωK ŝ†
K ŝK + ωMŝ†

MŝM + gK
(
â†ŝK + âŝ†

K

)
+ gM

(
â†ŝM + âŝ†

M

)
,

Ĥo = −i
√

2δK
(
ŝK + ŝ†

K

)[
b̂i(t )ei�0t − b̂†

i (t )e−i�0t
]

− i
√

2δM
(
ŝM + ŝ†

M

)[
b̂i(t )ei�0t − b̂†

i (t )e−i�0t
]
, (1)

where h̄ = 1. The subscripts K and M stand for the KM and
a higher MSM, respectively. The MO conversion proceeds
with the following steps in the Hamiltonians: Ĥc → Ĥs → Ĥo.
Ĥc describes the interaction Hamiltonian between an itinerant
microwave mode âi and the microwave cavity mode â with
external coupling rate κe, which results from the rotating-
wave approximation. Ĥs including the system Hamiltonian
describes the interaction Hamiltonian between cavity and
magnon modes. gK and gM represent the magnon-microwave
photon coupling strengths for KM and MSM, respectively.
Here we note that gK and gM include the overlapping coeffi-
cient ξ , which is related to the space variation effect between
the magnetic field of the cavity mode and magnon modes
[32]. â† (â) is the creation (annihilation) operator for the
microwave photon at the angular frequency ωc. ŝ†

K (ŝK ) and
ŝ†

M (ŝM ) represent the collective spin excitations for KM and
MSM at angular frequency ωK and ωM , respectively (see
Appendix A). The number of spins in a YIG sphere can
contribute to both KM and MSM. Ĥo describes the interaction
Hamiltonian between magnon modes ŝ and a traveling optical
photon mode b̂i with angular frequency �0. δK and δM refer to
the optical photon-magnon coupling rate for KM and MSM,
respectively. Since it includes both Stokes and anti-Stokes
processes that are involved in the MO conversion, we leave
the Hamiltonian Ĥo without the rotating-wave approximation.
The MO conversion indicates that the itinerant microwave
photon mode âi is converted to the traveling optical photon
mode b̂o.

In our experiment the strongly coupled magnons and cavity
microwave photon mode can be determined by normal mode
splittings in transmission spectra which are measured from
the input and output channels [see Fig. 2(c)]. According
to the input-output relation [40], equations of motion for a
cavity mode and magnon modes can be obtained from the
quantum Langevin equation (see Appendix A). As a result,
the transmission for multimagnon modes can be given by

S21(ω) = −i
2κe

ω − ωc + iκt − ∑
m g2

mχm
, (2)

where

χm(ω) = [ω − ωm + iγm]−1. (3)
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FIG. 2. (a) Numerical simulation of the magnetic field distribu-
tion of the fundamental mode TE101 inside the microwave cavity
with the volume of 20 × 20 × 4 mm−3. A YIG sphere made by
Ferrisphere Inc. [41] is mounted at the field maximum of the funda-
mental mode. (b) Transmission power (left y axis) and phase (right
y axis) without a YIG sphere through the cavity as a function of
the microwave frequency: ωc/2π = 10.632 GHz, κi/2π = 0.6 MHz,
κe/2π = 2.1 MHz. Experimental data (black solid circles and solid
diamonds), and theoretical results (red and blue curves). (c) Ex-
perimental setup for the microwave to optical light conversion. To
examine the hybrid system, the transmission data are taken by a
vector network analyzer. For the conversion measurement, a 1550-
nm cw laser with z polarization is injected into a YIG sphere whose
beam waist size is about 120 μm. The polarization of the light is
oscillated by the magnetization oscillations, which is induced by the
microwave driving field fed into channel 1. Finally, the polarization
oscillations of light is detected by a fast photodiode and amplified
by a microwave amplifier with 30 dB amplification along channel 3.
HWP refers to the half-waveplate.

Here κt = κe + κi is the total loss rate which includes
both external coupling rate κe and internal loss of the
cavity κi.

For the conversion process from the microwave to optical
wave, the conversion coefficients with amplification factor βm

for the KM and a MSM are obtained as (see Appendix A)

S31,K (ω) = −2
√

βKδKκe
gKχKχc

(
1 + g2

MχMχcTM
)

1 − g2
KχKχc

(
1 + g2

MχMχcTM
) (4)

and

S31,M (ω) = −2
√

βMδMκe
gMχMχc

(
1 + g2

KχKχcTK
)

1 − g2
MχMχc

(
1 + g2

KχKχcTK
) ,

(5)
where

χc(ω) = [ω − ωc + iκt ]
−1,

Tm(ω) = [
1 − g2

mχmχc
]−1

. (6)

Therefore, the MO conversion efficiency including both the
KM and a MSM modes can be given by

ηt (ω) = ∣∣S31,K (ω)
∣∣2 + ∣∣S31,M (ω)

∣∣2
. (7)

Here, at the resonant condition ω − ωc = ω − ωK = ω −
ωM = 0, the two-mode conversion efficiency can be repre-

sented in terms of cooperativities for CK = g2
K

κt γK
and CM =

g2
M

κt γM
,

ηt = 4κe

(1 + CK + CM )2

[
δKβK

C2
K

g2
K

+ δMβM
C2

M

g2
M

]
. (8)

In this work the two-mode conversion efficiency given in
Eq. (8) is well matched to the experimental results. If we
expand the interaction Hamiltonian to possess higher order
terms, the multimode MO conversion efficiency can be ob-
tained by

ηt = 4κe(
1 + ∑

m Cm
)2

∑
m

[
δmβm

C2
m

g2
m

]
, (9)

where m is a mode index for each MSM. Since so far the
MO conversion for multimodes has not been reported in a
magnon-cavity system, our theoretical result can be applied
to multimode conversion based on ferromagnetic material-
hybrid systems.

III. EXPERIMENTS AND RESULTS

As a ferromagnetic material we use commercial YIG
spheres of diameter 0.45, 0.75, and 1 mm from Ferrisphere
and Microsphere. A 3D rectangular cavity is made of oxygen-
free copper with the volume Vc of 20 × 20 × 4 mm3 and
the fundamental mode TE101 is used for magnetic-dipole
coupling. Figure 2(a) shows the microwave magnetic field
distribution of the fundamental mode TE101 at the resonant
frequency ωc/2π of 10.598 GHz, simulated by COMSOL
Multiphysics�. The YIG sphere mounted on the alumina rod
along the crystal axis 〈110〉 is placed near the maximum of the
magnetic field in order to get the largest coupling strength and
the uniformity of the field as shown in Fig. 2(a). Figure 2(b)
presents measured transmission magnitude and phase without
a YIG sphere through the cavity. As a result, the frequency of
TE101 mode (ωc/2π ) is 10.632 GHz, and the external cavity
loss rate (κe/2π ) and the internal cavity loss (κi/2π ) are 2.1
and 0.6 MHz, respectively.
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FIG. 3. (a) Measured microwave transmission spectrum |S21(ω)|2 of the 0.45-mm YIG-cavity hybrid system as a function of the microwave
frequency and the static magnetic field. The horizontal and diagonal dashed lines (yellow) show the frequency of the fundamental mode
TE101 and the Kittel mode frequency, respectively. The white-dashed line describes the dispersion of the resonance frequency obtained by
diagonalizing Ĥs as given in Eq. (1). (b) Cross sections of |S21(ω)|2 at static magnetic fields corresponding to B = 0.3797, 0.3804, 0.3811, and
0.3818 T. Solid lines are theoretical curves given by Eq. (2) for the data (solid dots). The individual data sets are vertically offset for clarity.
(c) The phase S21(ω) with theoretical hand-fits at the static magnetic fields. (d) Measured MO conversion spectrum |S31,K (ω)|2 of the same
system. Here the MO conversion spectrum is obtained from the raw data which are amplified by a microwave amplifier (30 dB) and detected by
a fast photodiode. (e) Cross sections of |S31,K (ω)|2 at static magnetic fields corresponding to B = 0.3797, 0.3804, 0.3811, and 0.3818 T. Solid
lines are theoretical curves given by Eq. (7) for the data (solid dots). (f) The phase S31,K (ω) with theoretical hand-fits at the static magnetic
fields. The individual data sets are vertically offset for clarity.

In order to manipulate the magnetic field, a set of
neodymium-iron-boron magnets applies a static magnetic
field of around 380 mT to the YIG sphere. The magnetic
components of the microwave field perpendicular to the bias
field induce the spin flip, and excite the magnon mode in
YIG. The magnetic circuit consists of a set of permanent
magnets and a pair of Helmholtz coils with 800 turns of
wires for each. The cavity is placed at the center of a pair
of Helmholtz coils, so a static magnetic field along the z axis
is applied to the crystal axis 〈100〉 of the YIG sphere across
the cavity. Helmholtz coils driven by a bipolar current supplier
combine with the permanent magnets and tunes the resonance
frequencies of magnon modes. The magnetic field measured
by a flux gate sensor (3MTS) provides the field-to-current
conversion rate of dB/dI = 70 G/A. Figure 2(c) shows the
experimental setup for the microwave to light conversion. We
use a temperature controlled butterfly diode laser to deliver
1550-nm cw input power of 5 mW before the YIG and get
the transmission of 80%. We also use some of the optics
and microwave components such as polarizer and HWP to
define the linear polarization lens to focus the laser into the
YIG, fast photodetector to receive the transmitted laser with
optical side band, low noise microwave amplifiers with 30 dB
amplification and isolators to increase the signal, and a vector

network analyzer by probing the transmission through the
hybrid system.

Figure 3(a) shows the measured microwave transmission
spectrum |S21(ω)|2 of the hybrid system with a YIG diameter
of 0.45 mm as a function of the frequency and the static
magnetic field. A normal-mode splitting is clearly observed,
and the avoided crossing manifests strong coupling between
the Kittel mode and the microwave cavity mode. As the
magnetic field is swept, the Kittel mode approaches the cavity
mode up to the degeneracy point. The horizontal dashed line
shows the fundamental mode frequency of the cavity and the
diagonal dashed line presents the Kittel mode frequency f11 =
ω11/2π = μ0γ Ho/2π (see Appendix B). White-dashed lines
are the dispersion curves of the resonance frequency ω± =
ωc+ωK

2 ± 1
2

√
4g2

K + (ωc − ωK )2, which are obtained from the

diagonalization of the interaction Hamiltonian Ĥs in Eq. (1)
without the last term. In order to quantify the coupling
strength and the damping rate of ferromagnetic resonance fre-
quency, the experimental data at some of magnetic fields are
hand-fitted into the theoretical transmission coefficient S21(ω)
given in Eq. (2) [see Fig. 3(b)]. As a result, the total cavity
linewidth (κt/2π ), the coupling strength (gK/2π ), and the
Kittel mode linewidth (γK/2π ) are determined as 2.7, 28.6,
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and 2.3 MHz, respectively. Here the coupling strength gK can

be represented by gK = gB

√
2Ns = ξγ

2

√
h̄ωcμ0

Vc

√
2Ns, where

γ is the electron gyromagnetic ratio, ωc is the cavity resonance
frequency, Vc is the volume of the cavity of 20 × 20 × 4 mm3,
and s = 5/2 is the spin number in YIG [26]. gB is the coupling
strength of a single Bohr magneton to the cavity which can
be calculated as 0.325 Hz for TE101 mode in our system. If
we assume that all the spins in the YIG sphere are precessing
in phase, the coupling strength gK of the Kittel mode to the
cavity mode is proportional to the square root of the number
of net spins NK [42]. In this case, almost all of spins contribute
to the KM. The coupling strength gM/2π for a MSM is
less than 1.0 MHz, so this term can be ignored here. The
coefficient ξ � 1 indicates the spatial overlap and polarization
matching conditions between the microwave and the magnon
modes [32]. From the extracted value of gK , we can deduce
the number of net spins of NK = 1.51 × 1017. The fact that
gK is much larger than κt and γK indicates that the system
is in the strong coupling regime even at room temperature.
With the experimental parameters we obtain a cooperativity
of CK = g2

K/κtγK = 132, indicating how well collective spins
in the YIG sphere couple to the microwave cavity mode
[43,44]. Figure 3(c) shows cross-sectional experimental data
and theoretical curves for the phases of S21(ω). The phase
values of S21(ω) range from −π/2 to π/2 which are two times
less than the phase values of S31(ω) as shown in Fig. 3(f). In
Ref. [26], the phase of a reflection spectrum S11(ω) shows the
same feature as that of S31(ω) except for the scale factor of
2. In this work, since all experimental data are based on the
S21(ω) transmission spectra, the phase of reflection spectrum
S11(ω) is given in Appendix C. Here Fig. 7 shows the similar
feature to the phase of S31(ω). Figures 3(c) and 3(f) also show
that the phase of S21(ω) is clearly converted to the phase
of S31(ω). Therefore, the conveyance of the phase clearly
exhibits the coherent conversion from microwave to light.

Figure 3(d) shows the measured power of the MO conver-
sion coefficient |S31,K (ω)|2 of the hybrid system with the same
YIG. The conversion spectrum |S31,K (ω)|2 is almost similar to
|S21(ω)|2, which implies that the microwave field is coherently
converted to the optical wave field. Figure 3(e) shows the
cross sectional experimental data at some of magnetic fields in
Fig. 3(d) that are hand-fitted into the theoretical transmission
coefficient |S31,K (ω)|2 given in Eq. (7). As a result, gK/2π and
γK/2π are 28.5 and 2.4 MHz, respectively, which are quite
close to the result of |S21(ω)|2. In order to evaluate the MO
conversion efficiency, we first estimate the optical photon-

magnon coupling rate δK which is given by δK = G2
K l2

16Vm
nK

P0
h̄�0

[26]. With l = 0.45 mm being the length of the YIG sample,
nK = 3.16 × 1027 m−3 and Vm = 4

3π × 0.2253 mm3 being
the spin density and the spatial volume of the magnetostatic
mode, V = 3.8 rad/cm at 1.55 μm [45] that result in GK =
4V/nK = 4.81 × 10−25 m2, and P0/h̄�0 = 1.17 × 1017 Hz
for P0 = 15 mW, we have δK/2π = 0.0036 Hz. Therefore, un-
der the near resonant conditions at ω − ωc = ω − ωK = 0, the
total conversion efficiency ηt = |S31,K |2 can be approximated
in terms of the coupling strength gK ,

ηt =
(

2
√

δKκeCK

gK (1 + CK )

)2

. (10)

TABLE I. System parameters for two-mode MO conversion.
Subscripts K and M denote the Kittel mode and MSM, respectively.

Parameter 0.45-mm diam. 0.75-mm diam. 1.0-mm diam.

gK (MHz) 2π × 28.6 2π × 67.3 2π × 91.0
γK (MHz) 2π × 2.3 2π × 1.1 2π × 0.95
gM (MHz) <2π × 1.0 2π × 4.0 2π × 12.0
γM (MHz) >2π × 2.0 2π × 1.5 2π × 0.9
CK 132 1373 3487
CM 0.19 3.6 64
NK 1.51 × 1017 8.36 × 1017 1.53 × 1018

NM <1.84 × 1014 2.95 × 1015 2.66 × 1016

Vm (m3) 4.77 × 10−11 2.21 × 10−10 5.24 × 10−10

nK (m−3) 3.16 × 1027 3.79 × 1027 2.92 × 1027

nM (m−3) <3.87 × 1024 1.34 × 1025 5.07 × 1025

GK (m2) 4.81 × 10−25 4.02 × 10−25 5.21 × 10−25

GM (m2) >3.93 × 10−22 1.14 × 10−22 2.99 × 10−23

δK (mHz) 2π × 3.61 2π × 1.80 2π × 1.75
δM (Hz) 2π × 2.95 2π × 0.512 2π × 0.101
ηt 8.45 × 10−11 5.12 × 10−12 3.46 × 10−12

With all obtained parameters for the YIG sphere with 0.45-
mm diameter, we attain ηt = 8.45 × 10−11. This low conver-
sion efficiency results from the small light-magnon coupling
rate. Actually, the maximum conversion efficiency occurs
at particular detunings from the cavity resonance and the
Kittel mode frequency [26]. However, in this experiment, we
are interested in the multimode conversion efficiency at the
degenerate point.

In order to examine the YIG size dependence of system
parameters, we also measured the transmission spectra of
YIG spheres with diameters of 0.75 and 1 mm, as shown in
Fig. 4. Figures 4(a) and 4(e) show transmission magnitude
|S21(ω)|2 measured for a YIG diameter of 0.75 and 1.0 mm,
respectively. As the size of the YIG sphere increases, the
larger number of spins in a bigger sphere can contribute to
the interaction with the microwave cavity mode, which makes
the normal-mode splitting wider. As a result, we obtain the
coupling strengths of gK/2π = 67.3 and 91 MHz for 0.75-
and 1.0-mm YIG spheres so that the cooperativity CK for the
Kittel mode reaches up to about 3.5 × 103 as shown in Table I.
In addition to larger coupling strengths, another avoided level
crossing feature is observed because of the strong coupling
corresponding to the nonuniform MSMs which can be also
coupled to the cavity mode. The coupling strengths of MSM
are gM/2π = 4 and 12 MHz, and the decay rates are γM/2π =
1.1 and 0.9 MHz for YIG spheres with 0.75- and 1.0-mm
diameter, respectively. Based on the fitting parameters, 2D
spectra of |S21(ω)|2 for each case are simulated in Figs. 4(b)
and 4(f). Here the red-dashed line describes the nonuniform
MSM which is identified by magnetostatic theory [35,37].
In general, the relation between MSM frequencies and the
external magnetic field is linear for i − | j| = 0 or 1 as men-
tioned in Appendix B. When the YIG sphere is subjected
to an oscillating magnetic field at ωi j and a strong coupling
regime is reached at Ho, avoided level crossings appear at the
regions where the resonance frequencies of two subsystems
are matched, which make it possible to distinguish a MSM
with i and j associated with an avoided level crossing [46–49].
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FIG. 4. (a) Measured |S21(ω)|2 of the 0.75-mm YIG-cavity hybrid system as a function of the microwave frequency and the static magnetic
field. The horizontal and diagonal dashed lines show the frequency of the fundamental mode TE101 and the Kittel mode frequency, respectively.
The white-dashed line describes the dispersion of the resonance frequency obtained by diagonalizing Ĥs as given in Eq. (1). (b) The simulated
spectrum of |S21(ω)|2 based on Eq. (2). For FMR or the Kittel mode, gK/2π and γK/2π are 67.3 and 1.1 MHz, respectively, and for MSM,
gM/2π and γM/2π are 4 and 1.5 MHz, respectively. The red-dashed line refers to the (2,0) mode. (c) Measured MO conversion spectrum
ηt of the 0.75-mm YIG-cavity hybrid system. The measured spectrum is based on the raw data which is amplified by a microwave amplifier
(30 dB) and detected by a fast photodiode. (d) The simulated spectrum of ηt of the 0.75-mm YIG-cavity hybrid system based on Eq. (7). (e)
Measured |S21(ω)|2 through the 1.0-mm YIG-cavity hybrid system. (f) The simulated spectrum of |S21(ω)|2 based on Eq. (2). For FMR or
the Kittel mode, gK/2π and γK/2π are 91 and 0.95 MHz, respectively, and for MSM, gM/2π and γM/2π are 12 and 0.9 MHz, respectively.
The red-dashed line refers to the (2,0) mode as given in Eq. (11). (g) Measured ηt of the 1.0-mm YIG-cavity hybrid system. The measured
spectrum is based on the raw data which are amplified by a microwave amplifier (30 dB) and detected by a fast photodiode. (h) The simulated
spectrum of ηt of the 1.0-mm YIG-cavity hybrid system based on Eq. (7).

In our case, an additional avoided level crossing is placed at
the (2,0) mode which can be given by [37]

ω20 = μ0γ Ms

√(
Ho

Ms
− 1

3

)(
Ho

Ms
+ 7

15

)
. (11)

Figures 4(c) and 4(g) show the MO conversion spectra ηt

measured for the YIG diameter of 0.75 and 1.0 mm, respec-
tively. These MO conversion spectra present raw data which
are amplified and detected by using a microwave amplifier
and a fast photodiode. One can find the same avoided level
crossing features, as shown in Figs. 4(a) and 4(e), which
clearly demonstrates the coherent conversion from microwave
to optical photons. Based on the fitting parameters, 2D spectra
of ηt for each case are simulated in Figs. 4(d) and 4(h).
As a result, when we take into account both KM and MSM
contributions, the total conversion efficiency ηt are 5.12 ×
10−12 and 3.46 × 10−12 for 0.75- and 1.0-mm YIG spheres,
respectively. We summarize system parameters for each YIG
sphere in Table I that are obtained from the two-mode MO
conversion process.

To examine the size dependence of a YIG sphere for MO
conversion efficiency, we first evaluate the volume depen-
dence of parameters used for ML conversion efficiency at
resonant conditions as shown in Fig. 5. According to Ref. [30],

it demonstrated that the coupling strength gK of the Kittel
mode is proportional to the square root of the volume (or
the number of spins) of YIG spheres. gK is linear-fitted to
f (x) = 130.97x, where x is the square root of volume V 1/2.
For the higher MSM, gM is not proportional to the linear
function, but rather the quadratic function which is f (x) =
22.19x2 [Fig. 5(a)]. This might be due to the fact that the spin
excitations induced by the nonuniform field do not linearly
contribute to a higher mode. According to the relation of

Cm = g2
m

κt γm
, the cooperativity CK is fitted to f (x) = 6569.43x2

and for CM , f (x) = 228.79x4 is used.
In addition, δK and δM also have the dependence of the

number of spins. δK is fitted to f (x) = 0.693 + 0.625/x and
δM is fitted to f (x) = 0.139/x2 as shown in Fig. 5(b). By
using these fitting values of system parameters, we obtain
the theoretical fit curve for the MO conversion efficiency
based on Eq. (8) as presented in Fig 5(b). As YIG size
increases, the total MO conversion efficiency at the resonant
condition decreases since the increments of coupling strength
and cooperativity lead to the drop in the MO conversion
efficiency as given by Eq. (8). In our system, the conversion
efficiency at the resonant condition is limited to 10−11 order.
This mainly comes from the small coupling rate δK and δM

between the optical photons and magnons although it depends
on the experimental conditions such as the quality of the

064418-6



COHERENT MULTIMODE CONVERSION FROM MICROWAVE … PHYSICAL REVIEW B 102, 064418 (2020)

FIG. 5. (a) Extracted values (solid circles) and fit curves for
coupling strengths and cooperativities for the KM and MSM as a
function of the square root of the YIG volume. (b) Extracted values
(solid circles) and fit curves for optical photon-magnon coupling
rates for the KM and MSM and the total MO conversion efficiency
as a function of the square root of the YIG volume.

sample and proper alignment. Therefore, we need to improve
the coupling rate δm to enhance coherent quantum conversion
efficiency between microwave and optical photons. There are
several suggestions as mentioned in Ref. [26]. One possible
way was to use the optical whispering gallery modes (WGMs)
of a YIG sphere [50,51]. No one has achieved a significant
improvement, however, supposedly due to the small overlap
between the Kittel mode and WGMs. Other suggestions are to
utilize a magnetic material with a large Verdet constant such
as CrBr3 and iron garnet based on rare-earth atoms [52–55].

IV. DISCUSSION

We clearly observe not only the YIG size dependence of
the MO conversion but also the coupling strength between
the multimagnetostatic mode and a cavity. But note that
the multimode MO conversion features are not prominent
compared to the single-mode MO conversion since most of
the spins are involved in the KM mode that makes gM and CM

much lower than the values of gK and CK . In order to make the

dominant contribution of spins to higher MSM, we carefully
position a 1.0-mm YIG sphere off the uniform microwave
mode region, so that a nonuniform MSM also appears at the
degenerate point as shown in Fig. 6(a). In this configuration,
the anticrossings due to the higher MSM become larger since
the number of spins contributing to the higher mode increases.
Figure 6(b) shows the simulation result of |S21(ω)|2 based on
Eq. (2). As a result, gK/2π and gM/2π are 83.4 and 25 MHz,
respectively, which are few orders larger than decay rates of
γK/2π = 1.1 and γM/2π = 0.5 MHz, which indicates the
strong couplings between the cavity mode and the KM and
MSM. Figure 6(c) presents the 2D spectrum of ηt . Based
on the measured data, ηt is simulated by using Eq. (7) as
shown in Fig. 6(d). We find out that the theoretical model is
well matched with the experimental results. Here we ignore
higher modes in the tail of the spectrum because their contri-
butions are very small in the MO conversion efficiency. The
total multimode MO conversion efficiency is 1.02 × 10−11 at
the resonant condition. To date, adjustable MO conversion
for multimodes has not been reported in a magnon-cavity
system.

V. CONCLUSION

We have experimentally demonstrated coherent multimode
conversion from microwave to optical fields via a YIG sphere
in a rectangular microwave cavity. A large number of spins in
ferromagnetic materials easily couple the collective excitation
to cavity photons, which makes it possible to hybridize the
microwave photon modes and magnetostatic modes. A trav-
eling optical field is coupled to a microwave field through
this hybrid system. We first observed YIG size dependence of
conversion efficiency by measuring the normal-mode splitting
between the magnetostatic modes and the microwave cavity
modes, where the coupling strength is an order of magnitude
larger than the decay rates. Based on our multimode MO
conversion model, we analyzed all the system parameters
with experimental data, confirming that the theoretical model
is consistent with the experimental results. The total multi-
mode conversion efficiency at the resonant condition reaches
1.02 × 10−11 for a 1.0-mm YIG sphere. We also evaluate
the multimode MO conversion efficiency by manipulating the
position of the YIG sphere inside the cavity. This sharp and
adjustable multimode conversion shows the possibility of co-
herent conversion of multimode quantum states while keeping
coherence time. This work will also provide optimal design
conditions of a cavity magnon-microwave photon system that
can be used for coherent conversion between microwave and
optical photons.
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FIG. 6. (a) Measured |S21(ω)|2 through the 1.0-mm YIG-cavity hybrid system while the YIG position adjusted to enhance the MSMs.
(b) The simulated spectrum of |S21(ω)|2 from Eq. (2). (c) Measured ηt of the same system. The measured spectrum is based on the raw data
which are amplified by a microwave amplifier (30 dB) and detected by a fast photodiode. (d) The simulated spectrum of ηt from Eq. (7).

APPENDIX A: THE INTERACTION HAMILTONIAN FOR
THE MULTIMODE MICROWAVE-TO-OPTICAL WAVE

CONVERSION

The Hamiltonian for the magnon-cavity system can be
written as

Hs = ωcâ†â +
∑

m=K,M

[
gμBBm

z Ŝm
z + gm(âŜm

+ + â†Ŝm
−)

]
, (A1)

where ωc is the angular frequency of the cavity mode TE101,
â† (â) is the microwave photon creation (annihilation) op-
erator, and m = K, M denotes the Kittel mode (KM) and
magnetostatic modes (MSM), respectively. g is the electron
g factor, μB is the Bohr magneton, and Bm

z is the effective
magnetic field affected by the magnon modes of the YIG
sphere. The exchange interaction between electron spins can
be ignored because of the long-wavelength discrete modes
of spins in the YIG sphere. Since the frequency of the cor-
responding magnon mode is different from each other, the
Hamiltonian for each magnon mode can be written sepa-
rately. Here Ŝm is the collective spin operator for magnon
modes which is given by (Ŝm

x , Ŝm
y , Ŝm

z ). These collective spin
operators can be expressed in terms of the bosonic oper-
ators ŝ†

m, ŝm by using the Holstein-Primakoff transforma-

tion [56,57]: Ŝm
+ = Ŝm

x + iŜm
y = ŝ†

m

√
2Sm − ŝ†

mŝm, Ŝm
− = Ŝm

x −
iŜm

y = (
√

2Sm − ŝ†
mŝm)ŝm, and Ŝm

z = ŝ†
mŝm − 2Sm, where Sm is

the total spin number of the corresponding magnon mode. For
the low-lying excitations 〈ŝ†

mŝm〉 � 2Sm, the Hamiltonian Hs

can be obtained as

Hs = ωcâ†â +
∑

m=K,M

[
ωmŝ†

mŝm + gm(âŝ†
m + â†ŝm)

]
, (A2)

where ωm = gμBBm
z is the angular frequency of the

corresponding magnon mode and gm = gB

√
2Sm =

ξγ

2

√
h̄ωcμ0

Vc

√
2Sm. Here γ is the electron gyromagnetic ratio,

ωc is the cavity resonance frequency, Vc is the volume of the
cavity, gB is the coupling strength of a single Bohr magneton
to the cavity for TE101 mode, and ξ is the spatial overlapping
coefficient which is relevant to the spatial variation effect. In
the Kittel mode, since the magnetic dipole coupling between
the spins engenders a uniform demagnetization field parallel
to the magnetization in a sphere, the demagnetizing field
plays no role in the magnetization dynamics for the Kittel
mode. For the nonuniform profile for MSM, the variation in
space plays a crucial role not only in the frequency calculation
but also in the coupling with the exciting field as well as the
light.

Therefore, the interaction Hamiltonian of the multimode
MO conversion can be given by Eq. (1) which consists of the
magnon, microwave photon, optical photon, and their interac-
tions. According to the input-output relation [40], equations of
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motions for a cavity mode and magnon modes can be obtained
from quantum Langevin equation. For the cavity mode â,

˙̂a(t ) = −i[â, Ĥs] − κt â(t ) −
√

2κeâi(t )

= −iωcâ(t ) − i
[
gK ŝK (t ) + gMŝM (t )

] − κt â(t )

−
√

2κeâi(t ), (A3)

where the total loss rate κt = κe + κi includes both external
coupling and internal losses of the cavity. The cavity mode â
can be given by

â(t ) = χc(ω)[gK ŝK (t ) + gMŝM (t ) − i
√

2κeâi(t )], (A4)

where

χc(ω) = [ω − ωc + iκt ]
−1. (A5)

Since magnons do not couple directly to the cavity, no addi-
tional input and output magnons are involved. Therefore, the
equation of motion of ŝK can be given by

˙̂sK (t ) = −i[ŝK , Ĥs] − γK ŝK (t )

= −iωK ŝK (t ) − igK â(t ) − γK ŝK (t ),

ŝK (t ) = χK (ω)gK â(t ), (A6)

where

χK (ω) = [ω − ωK + iγK ]−1. (A7)

In the same manner, ŝM has the similar form which is

ŝM (t ) = χM (ω)gMâ(t ), (A8)

where

χM (ω) = [ω − ωM + iγM]−1. (A9)

Substituting Eqs. (A6) and (A8) into Eq. (A4) and applying
the Fourier transform of the cavity mode â, we can derive

â(ω) = −i
√

2κeT −1âi(ω), (A10)

where

T = ω − ωc + iκt − (
g2

KχK + g2
MχM

)
. (A11)

In our experiment we obtain the transmission spectrum which
can be determined by measuring output port 2 from input
port 1. For no input in port 2 and the same external coupling
rate at both ports, the boundary condition becomes âo,2(ω) =√

2κeâ(ω) which results in the transmission

S21 = âo,2

âi,1
= −i2κeT −1. (A12)

For the transmission for multimodes, Eq. (A12) can be ex-
tended to T = ω − ωc + iκt − ∑

m g2
mχm.

In the conversion process from microwave to optical wave,
we can obtain the equation of motions for magnon modes
which are given by

˙̂sK (t ) = −i[ŝK , Ĥs] − γK ŝK (t )

−
√

2δK (b̂i(t )ei�0t − b̂†
i (t )e−i�0t ),

˙̂sM (t ) = −i[ŝM, Ĥs] − γMŝM (t )

−
√

2δM (b̂i(t )ei�0t − b̂†
i (t )e−i�0t ). (A13)

As a result, magnon modes ŝK and ŝM are written as

ŝK (t ) = χK [gK â(t ) − i
√

2δK b̂i(t )],

ŝM (t ) = χM[gMâ(t ) − i
√

2δMb̂i(t )].
(A14)

After substituting Eq. (A4) into Eq. (A14) and applying the
Fourier transform, we can obtain magnon modes for KM and
MSM which are given by

ŝK (ω) = gK gMχKχcTK ŝM (ω) − i
√

2κegKχKχcTK âi(ω)

− i
√

2δKχK TK b̂i(ω),

ŝM (ω) = gK gMχMχcTMŝK (ω) − i
√

2κegMχMχcTMâi(ω)

− i
√

2δMχMTMb̂i(ω), (A15)

where

TK (ω) = [
1 − g2

KχKχc
]−1

,

TM (ω) = [
1 − g2

MχMχc
]−1

.

(A16)

If we substitute ŝK (ŝM) into ŝM (ŝK ) in Eq. (A15), we can
obtain the MO conversion coefficients for KM and MSM. For
the KM, by considering the Stokes (� = �0 − ω) and anti-
Stokes (� = �0 + ω) processes and the boundary conditions
b̂†

o(�0 − ω) = b̂†
i (�0 − ω) + √

2δK ŝK (ω) and b̂o(�0 + ω) =
b̂i(�0 + ω) + √

2δK ŝK (ω) [26], the conversion coefficient for
the KM is obtained as

S31,K (ω) =
√

βK

2i

(〈
b̂†

o(�0 − ω)

âi(ω)

〉
+

〈
b̂o(�0 + ω)

âi(ω)

〉)

= −2
√

βKδKκe
gKχKχc

(
1 + g2

MχMχcTM
)

1 − g2
KχKχc

(
1 + g2

MχMχcTM
) ,

(A17)

where βK is the amplification factor. Here we point out that,
if we take into account the MO conversion of only the KM
(gM = 0), Eq. (A17) becomes the same result as the single-
mode MO conversion coefficient in Ref. [26]. In the same
manner we can induce the MO conversion coefficient for a
MSM by using similar boundary conditions and amplification
factor of βM which is given by

S31,M (ω) = −2
√

βMδMκe
gMχMχc

(
1 + g2

KχKχcTK
)

1 − g2
MχMχc

(
1 + g2

KχKχcTK
) .

(A18)
Therefore, the conversion efficiency for the two-mode MO
conversion for the KM and a MSM can be obtained as

ηt (ω) = ∣∣S31,K (ω)
∣∣2 + ∣∣S31,M (ω)

∣∣2
. (A19)

APPENDIX B: MAGNETOSTATIC MODES IN A
FERROMAGNETIC SPHERE

Magnons are spin excitations describing small perturba-
tions to the magnetization of a ferromagnetic system. A small
oscillating magnetic field in the plane perpendicular to the bias
field can lead the alignment of spins to deviate slightly from
the bias direction. The bias field exerts a torque on misaligned
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spins, and then the spins begin precessing around it. Walker
first considered the relationship between the resonance fre-
quency and the internal static field of a ferromagnetic spheroid
[35,36]. He assumed that the microwave magnetic fields in
spheroids satisfy the magnetostatic approximations. The al-
lowed resonant frequencies of MSMs in a sphere inserted in
a microwave cavity can be derived from the characteristic
equation in terms of associated Legendre function P j

i (ξ0) [37],

i + 1 + ξ0
P j

i

′
(ξ0)

P j
i (ξ0)

± jχ2 = 0, (B1)

where ξ 2
0 = 1 + 1

χ1
, χ1 = γ 2MsHi

γ 2H2
i − f 2 , χ2 = γ Ms f

γ 2H2
i − f 2 , Hi = H0 −

Ms
3 , and P j

i

′
(ξ0) = dP j

i (ξ0 )
dξ0

. Here Hi and Ho are internal and
external magnetic fields, respectively. μ0Ms = 0.178 T (at
298 K) [58,59] is the saturation magnetization, μ0 is the
vacuum permeability, γ

2π
= 28 GHz/T is the gyromagnetic

ratio, and f is the frequency. i and j are mode indices that
i � 1 is an integer and j is also an integer obeying −i � j � i.

For a single mode solution, it is labeled with (i, j) where
i − | j| = 0 or 1 and the relations between the resonant fre-
quencies and the external magnetic field can be given by
[37,60]

ωi j

μ0
= γ Ho +

(
j

2 j + 1
− 1

3

)
γ Ms (i = j), (B2)

ωi j

μ0
= γ Ho +

(
j

2 j + 3
− 1

3

)
γ Ms (i = j + 1). (B3)

Here the (1,1) FMR mode, known as the Kittel mode, is the
lowest mode in which all spins precess in phase which gives a
frequency given by ω11 = μ0γ Ho.

APPENDIX C: MICROWAVE REFLECTION SPECTRUM

Figures 7(a) and 7(b) show the measured reflection spec-
trum |S11(ω)|2 and the phase S11(ω) of the hybrid system with
the 0.45-mm-diameter YIG as a function of the microwave
frequency. From the boundary condition âo(ω) = âi(ω) +

FIG. 7. (a) Reflection coefficient |S11(ω)|2 of the 0.45-mm-
diameter YIG-cavity hybrid system as a function of the microwave
frequency. (b) The phase S11(ω) of the 0.45-mm-diameter YIG-
cavity hybrid system as a function of the microwave frequency. Solid
lines are theoretical curves given by Eq. (C1).

√
2κeâ(ω) and Eqs. (A3) and (A6) we can easily obtain the

reflection coefficient S11(ω),

S11(ω) = 1 − i2κe

ω − ωc + iκt − ∑
m g2

mχm
. (C1)
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