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The mixed-spin Ising-Heisenberg and Heisenberg branched chains whose magnetic backbone consists of
regularly alternating spins 1/2 and 5/2, the latter of which are additionally coupled to an extra spin 1/2 providing
lateral branching, are investigated using exact analytical and density matrix renormalization group (DMRG)
methods. The proposed spin-chain models capture some relevant aspects of the heterotrimetallic coordination
polymer [CuMn(L)][Fe(bpb)(CN)2] · ClO4 · H2O. The mixed spin-(1/2, 5/2, 1/2) Ising-Heisenberg branched
chain is exactly solvable under the assumption of an Ising-like exchange coupling along the chain, while
the lateral branching is treated as an anisotropic XXZ Heisenberg exchange interaction. We determine the
ground-state phase diagram and quantify a bipartite quantum entanglement between dimers at lateral branching.
It is shown that the studied mixed-spin Ising-Heisenberg branched chain accurately fits available experimental
data for temperature dependence of the magnetic susceptibility. The ground-state phase diagram of the analogous
mixed spin-(1/2, 5/2, 1/2) Heisenberg branched chain is obtained within the DMRG method. The ground-state
phase diagrams of the Ising-Heisenberg and its full Heisenberg counterpart are contrasted. In particular, the
ground-state phase diagram of the mixed-spin Heisenberg branched chain involves a special Gaussian critical
point, for which a proper finite-size scaling analysis is provided to accurately estimate its location and the
correlation length critical exponent.
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I. INTRODUCTION

Heterotrimetallic polymeric complexes are particularly at-
tractive compounds from both the basic scientific and applied
technological viewpoints due to their fascinating structural
and physicochemical properties. The presence of two or more
paramagnetic ions within the same magnetic compound with a
specific spacial topology leads to interesting phenomenology
associated to the emergence of ferromagnetic as well as
ferrimagnetic correlations. It can also promote the formation
of magnetic complexes with distinct spin structures and high
transition temperatures [1–4]. The multimetallic complexes
also find potential applications in devices exploring their
luminescent [5,6], electrical conductivity [7], and catalytic
[8,9] properties. Further, they play a relevant role in some bio-
logical processes occurring in the active sites of hydrogenase
enzymes [10,11].

A slow relaxation dynamics has been observed in sev-
eral low-dimensional heterometallic complexes with large
spin values and magnetic anisotropy [12–15]. Such slow
relaxation of the magnetization is associated with a super-
paramagnetic behavior [16,17]. The so-called single-chain
magnets (SCMs) have shown potential applications in quan-
tum computing, spintronics, and high-density memory de-
vices [18–22], whereas their low-temperature properties are
strongly affected by quantum fluctuations [23]. In particu-
lar, magnetic frustration, field-induced phase transitions, and
quantum entanglement can emerge in distinct classes of SCMs
with antiferromagnetic exchange couplings [24–27].

There are several examples of molecular-based magnets,
which belong to a relatively wide class of heterobimetal-
lic coordination polymers [28–33]. On the other hand, het-
erotrimetallic complexes containing three distinct param-
agnetic ions are much more rare as their design usually
requires a more elaborate synthesis procedure [32,34–37].
After the first trimetallic complex was obtained by Verani
et al. [38], several groups have dedicated their efforts to
develop better synthesis routes for SCMs. More recently,
heterotrimetallic SCMs including rare-earth ions have ap-
peared as interesting candidates for the design of nano-
magnets due to the fact that the exchange coupling be-
tween 3d and 4 f ions is frequently ferromagnetic with a
large exchange anisotropy [39–44]. Another two coordination
polymers [CuMn(L)][M(bpb)(CN)2] · ClO4 · H2O (M = Fe
or Cr) containing three distinct transition-metal spin carriers
were reported by Wang et al. [45]. In these polymeric co-
ordination compounds, two magnetic ions regularly alternate
along the main polymeric chain, while a third magnetic ion is
laterally coupled to each large spin unit [45].

Recently, an exactly solvable Ising-Heisenberg spin-chain
model was introduced in order to bring insights into spin
correlations and quantum entanglement in the iron-based
member [CuMn(L)][Fe(bpb)(CN)2] · ClO4 · H2O of the two
aforementioned heterotrimetallic coordination polymers to be
further abbreviated as Fe-Mn-Cu [46]. Although all magnetic
ions were considered as having spin s = 1/2, the gyromag-
netic factors were adjusted to account for the actual magnetic
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moment of each magnetic ion [47]. The model was shown to
reproduce qualitatively the main features of the experimen-
tal susceptibility data [29]. However, the high-temperature
Curie-law limit of the magnetic susceptibility appeared to be
twice as large as the experimental one. This shortcoming was
directly related to the modeling of the large spin S = 5/2 of
Mn2+ ions through an effective spin s = 1/2 with a rescaled
value of the Landé g-factor, g = 10.

In the present work, we advance in the theoretical mod-
eling of the heterotrimetallic coordination polymer Fe-Mn-
Cu [45] by explicitly considering the quantum nature of
Mn2+ ions with true spin value S = 5/2. The respective
mixed spin-(1/2, 5/2, 1/2) Ising-Heisenberg branched chain
can still be exactly solvable when the exchange coupling
along the polymeric chain has an Ising character and the
lateral coupling has a quantum anisotropic Heisenberg nature.
We unveil a rich ground-state phase diagram involving new
quantum phases, which could not be previously captured
when modeling the Mn2+ ion as an effective spin s = 1/2 with
a rescaled gyromagnetic factor. The degree of quantum en-
tanglement within each phase is quantified by measuring the
quantum concurrence following the prescription put forward
by Wooters and Hill [48,49]. The temperature dependence
of the susceptibility data is shown to accurately reproduce
the experimental data. Finally, we present a density matrix
renormalization group (DMRG) study of the full Heisenberg
counterpart model. Quantum anisotropic ferrimagnetic chains
are known to exhibit a variety of ground-state phases, such as
gapless Tomonaga-Luttinger spin-liquid phases, intermediate
gapped magnetization plateaus, Kosterlitz-Thouless critical
points at which a gapped phase ends, as well as special
gapless Gaussian critical points at which two gapped phases
meet [50–60]. We contrast the ground-state phase diagrams
of both Ising-Heisenberg and full Heisenberg branched-chain
models, which show a similar structure with the exception of
emergence of spin-liquid phases in a narrow parameter region
of the latter fully quantum spin model. A proper finite-size
scaling analysis is employed to study a special Gaussian
critical point emerging in the full Heisenberg branched-chain
model.

This work is organized as follows. In Sec. II we briefly
describe the magnetic structure of the Fe-Mn-Cu coordina-
tion polymer and introduce the relevant mixed-spin Ising-
Heisenberg branched-chain model. In Sec. III, we discuss in
detail all possible ground states of the studied model obtained
from the exact diagonalization and build the ground-state
phase diagram as a function of the magnetic field and the ratio
between the exchange couplings when assuming isotropic and
strongly anisotropic exchange interaction. In Sec. IV we in-
vestigate the quantum entanglement between the Cu2+-Mn2+

dimeric units. A fitting of experimental susceptibility data
is provided in Sec. V. DMRG calculations for the isotropic
Heisenberg counterpart model are presented in Sec. VI,
where both constructed ground-state phase diagrams are also
contrasted and a proper finite-size scaling analysis in the
vicinity of an emergent Gaussian critical point is performed.
The most important scientific achievements are presented
in Sec. VII together with conclusions and future outlooks.
Some details of the analytical calculations are given in the
Appendix.
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FIG. 1. (a) A part of the crystal structure of the heterotrimetal-
lic coordination polymer [CuMn(L)][Fe(bpb)(CN)2] · ClO4 · H2O
(abbreviated as Fe-Mn-Cu) visualized by adapting the crystallo-
graphic data reported in Ref. [45]. (b) A schematic illustration
of the magnetic structure of the polymeric compound Fe-Mn-Cu
involving two different exchange pathways between transition-metal
ions, more specifically, the exchange coupling J1 between Fe3+ and
Mn2+ magnetic ions mediated by a cyanide bridge and the exchange
coupling J2 between Mn2+ and Cu2+ magnetic ions mediated by a
phenolate bridge.

II. BRANCHED-CHAIN COORDINATION POLYMER
AND ISING-HEISENBERG MODEL

First, let us bring insight into a magnetic structure of
the heterotrimetallic coordination polymer Fe-Mn-Cu [45],
the crystal structure of which is schematically depicted in
Fig. 1(a). It is quite obvious from this figure that the magnetic
backbone of the polymeric compound Fe-Mn-Cu constitutes
a regularly alternating sequence of spin-1/2 and spin-5/2
magnetic ions Fe3+ and Mn2+ exchange coupled through a
cyanide bridge, whereas each spin-5/2 magnetic ion Mn2+

is additionally exchange-coupled via phenolate bridge to the
spin-1/2 magnetic ion Cu2+ forming the side branching of the
coordination polymer Fe-Mn-Cu as schematically illustrated
in Fig. 1(b). It is noteworthy that the strong ligand field
acting on the trivalent Fe3+ magnetic ions is responsible for
a low-spin state of this transition-metal element as well as a
relatively high degree of the magnetic anisotropy [61–64].

Bearing all this in mind, the magnetic behavior of the
heterotrimetallic polymeric complex Fe-Mn-Cu is at first ap-
proached by a simplified mixed spin-(1/2, 5/2, 1/2) Ising-
Heisenberg branched chain, in which the exchange coupling
J1 between Fe3+ and Mn2+ magnetic ions will be assumed as
an Ising-like interaction due to a relatively strong magnetic
anisotropy of the low-spin magnetic ions Fe3+ in opposite to
the exchange coupling J2 between Mn2+ and Cu2+ magnetic
ions being considered as a more general XXZ Heisenberg in-
teraction. The Hamiltonian of the mixed spin-(1/2, 5/2, 1/2)
Ising-Heisenberg branched chain can be written in this sym-
metric form:

H = −J1

Nc∑
i=1

Sz
i,1

(
σ z

i + σ z
i+1

) − J2

Nc∑
i=1

(�Si,1 · �Si,2)�

− gμBh
Nc∑

i=1

(
σ z

i + Sz
i,1 + Sz

i,2

)
, (1)
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TABLE I. Eigenvectors and eigenenergies (per unit cell) of all available ground states of the mixed spin-(1/2, 5/2, 1/2) Ising-Heisenberg
branched chain. Notation for the classical phases: Saturated paramagnetic phase (SPA) and saturated ferrimagnetic phase (SFI). Notation for
the quantum phases: Quantum unsaturated paramagnetic phase 2 (UPA-2), quantum unsaturated paramagnetic phase 1 (UPA-1), quantum
unsaturated paramagnetic phase 0 (UPA-0), quantum unsaturated ferrimagnetic 2 phase (UFI-2), quantum unsaturated ferrimagnetic 1 phase
(UFI-1). The probability amplitudes a±, c±, and e± are given in the main text by Eqs. (2)–(4). The total Sz of each eigenvector per unit cell is
also given.

Eigenvectors (
∏

i

∣∣Si,1, Si,2

〉 ⊗ ∣∣σi

〉
) Eigenenergies (per unit cell) Sz per unit cell

|SPA〉 = ∏
i

∣∣ 5
2 , 1

2

〉
i
⊗ |↑〉i ESPA = − 7

2 h + 5
4 − 5

2 J1 7/2

|SFI〉 = ∏
i

∣∣ 5
2 , 1

2

〉
i
⊗ |↓〉i ESFI = − 5

2 h + 5
4 + 5

2 J1 5/2

|UPA-2〉 = ∏
i

[
a−

∣∣ 5
2 , − 1

2

〉 + a+
∣∣ 3

2 , 1
2

〉]
i
⊗ |↑〉i EUPA-2 = − 5

2 h − 1
4 − 2J1 − 1

2

√
(2 + J1)2 + 5�2 5/2

|UFI-2〉 = ∏
i

[
a−

∣∣ 5
2 ,− 1

2

〉 + a+
∣∣ 3

2 , 1
2

〉]
i
⊗ |↓〉i EUFI-2 = − 3

2 h − 1
4 + 2J1 − 1

2

√
(2 − J1)2 + 5�2 3/2

|UPA-1〉 = ∏
i

[
c−

∣∣ 3
2 ,− 1

2

〉 + c+
∣∣ 1

2 , 1
2

〉]
i
⊗ |↑〉i EUPA-1 = − 3

2 h − 1
4 − J1 − 1

2

√
(1 + J1)2 + 8�2 3/2

|UFI-1〉 = ∏
i

[
c−

∣∣ 3
2 , − 1

2

〉 + c+
∣∣ 1

2 , 1
2

〉]
i
⊗ |↓〉i EUFI-1 = − 1

2 h − 1
4 + J1 − 1

2

√
(1 − J1)2 + 8�2 1/2

|UPA-0〉 = ∏
i

[
e+

∣∣ 1
2 ,− 1

2

〉 + e−
∣∣ − 1

2 , 1
2

〉]
i
⊗ |↑〉i EUPA-0 = − 1

2 h − 1
4 − 1

2

√
J2

1 + 9�2 1/2

where (�Si,1 · �Si,2)� = �(Sx
i,1Sx

i,2 + Sy
i,1Sy

i,2) + Sz
i,1Sz

i,2. The
Ising spin σ z

i = ±1/2 corresponds to a highly anisotropic
magnetic ion Fe3+, while the Heisenberg spins �Si,1 and
�Si,2 correspond to nearly isotropic magnetic ions Mn2+

and Cu2+ with spins S = 5/2 and S = 1/2, respectively.
The coupling constant J1 denotes a strength of the Ising
interaction approximating the exchange coupling between
Fe3+ and Mn2+ magnetic ions, while the coupling constant
J2 determines a strength of the anisotropic Heisenberg
interaction between Mn2+ and Cu2+ magnetic ions with the
parameter � quantifying a degree of the XXZ exchange
anisotropy in this lateral exchange coupling. Finally, Nc

denotes the number of unit cells, h is an external magnetic
field, μB is the Bohr magnetic moment, and all magnetic ions
are assumed to have the same gyromagnetic factor g. In the
following two theoretical parts, we consider for simplicity
a strength of the antiferromagnetic Heisenberg coupling at
lateral branching as an energy unit J2 = −1 and the magnetic
field is also expressed in units of gμB = 1.

III. GROUND-STATE PHASE DIAGRAM OF
ISING-HEISENBERG BRANCHED CHAIN

Hamiltonian (1) of the mixed spin-(1/2, 5/2, 1/2) Ising-
Heisenberg branched chain can be expressed in terms of
commuting cell Hamiltonians, which can be easily exactly
diagonalized (see the Appendix for a definition of the unit-cell
Hamiltonian and its respective eigenvalues and eigenvectors).
Consequently, all possible ground states of the mixed-spin
Ising-Heisenberg branched chain can be straightforwardly
constructed as a direct product of the lowest-energy eigen-
states of the cell Hamiltonians. By inspection we have iden-
tified seven ground states depending on a relative strength
of the exchange couplings and magnetic field. Among them,
two ground states have classical nature without any quantum
entanglement between spin states of the Heisenberg dimers
resembling a pair of Mn2+ and Cu2+ magnetic ions residing
in each lateral branching. In these two classical ground states,
the Heisenberg dimers are in a direct-product state | 5

2 , 1
2 〉

i
,

whereas the Ising spins resembling Fe3+ ions from a backbone
of the branched chain are aligned parallel to the Heisenberg

dimers in the classical saturated paramagnetic (SPA) state and
in opposite to the Heisenberg dimers in the classical saturated
ferrimagnetic (SFI) state (see Table I for an explicit form of
the eigenvectors).

The eigenvectors for the other five quantum-mechanically
entangled ground states are also explicitly quoted in Table I.
It is noteworthy that two of them have the Heisenberg dimers
in the eigenstate being composed of a quantum superposition
of the basis states | 5

2 ,− 1
2 〉

i
and | 3

2 , 1
2 〉

i
with a net spin S̃ = 2,

which is aligned with respect to the Ising spins either parallel
in the ground state, referred to as an unsaturated paramagnetic
2 (UPA-2) phase, or antiparallel in the ground state, referred
to as an unsaturated ferrimagnetic 2 (UFI-2) phase. The other
two quantum ground states have the Heisenberg dimers in a
quantum superposition of the basis states | 3

2 ,− 1
2 〉

i
and | 1

2 , 1
2 〉

i
with a net spin S̃ = 1, which can be also aligned with respect
to the Ising spins either parallel in the ground state, called an
unsaturated paramagnetic 1 (UPA-1) phase, or antiparallel in
the ground state, called an unsaturated ferrimagnetic 1 (UFI-1)
state. Finally, the fifth quantum ground state referred to as an
unsaturated paramagnetic 0 (UPA-0) phase has the Heisen-
berg dimers in a singletlike quantum superposition of the basis
states | 1

2 ,− 1
2 〉

i
and |− 1

2 , 1
2 〉

i
with a net spin S̃ = 0, whereas

the Ising spins are aligned parallel to the external magnetic
field. For completeness, all aforementioned quantum ground
states are listed together with their respective eigenvectors
and eigenenergies in Table I, while the probability amplitudes
emergent in the respective eigenvectors are explicitly given by

a2
± = 1

2

⎡
⎣1 ∓ 2 + J̃1√(

2 + J̃1
)2 + 5�2

⎤
⎦, (2)

c2
± = 1

2

⎡
⎣1 ∓ 1 + J̃1√(

1 + J̃1
)2 + 8�2

⎤
⎦, (3)

e2
± = 1

2

⎡
⎣1 ∓ J̃1√

J̃1
2 + 9�2

⎤
⎦. (4)

In the above, the parameter J̃1 is defined as J̃1 =
J1(σ z

i + σ z
i+1) = ±J1, whereas a plus (minus) sign applies
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FIG. 2. Ground-state phase diagrams in the J1-h plane for two
distinct values of the anisotropy parameter: (a) � = 1.0 and (b) � =
4.0. The displayed phase boundaries were obtained by comparing
the eigenenergies per unit cell of individual ground states as given in
Table I. Note that J2 = −1 and gμB = 1 units were used.

whenever the Ising spins are aligned parallel (antiparallel)
with respect to the external magnetic field within the ground
state with the attribute “paramagnetic” (“ferrimagnetic”).
Note furthermore that the complete set of eigenvectors and
eigenvalues of the cell Hamiltonian can be found in the
Appendix.

The overall ground-state phase diagram is plotted in Fig. 2
in the J1-h parameter plane for two representative values
of the anisotropy parameter � = 1.0 and 4.0 in units of
J2 = −1.0 and gμB = 1. It follows from Fig. 2(a) that the
ground-state phase diagram exhibits just four possible ground
states for the particular case � = 1.0 being consistent with
the isotropic Heisenberg coupling. Under this condition, the
classical SPA and SFI phases predominate at higher magnetic
fields, while the quantum UFI-2 and UPA-2 phases prevail
at lower magnetic fields. Assuming the ferromagnetic Ising

FIG. 3. Ground-state phase diagram in the J1-� plane for zero
magnetic field (h = 0). Note that J2 = −1 and gμB = 1 units were
used and the three new ground states UFI-1, UPA-0, and UPA-1
emerge just for � > 1.

coupling constant J1 > 0 one detects a single field-driven
phase transition from the UPA-2 to the SPA phase upon in-
creasing of the magnetic field. On the other hand, two different
sequences of the field-induced transitions, namely, UFI-2 →
UPA-2 → SPA and UFI-2 → SFI → SPA, can be detected
by considering the antiferromagnetic Ising coupling constant
J1 < 0. The above trends are quite similar to the ones obtained
previously for the purely spin-1/2 Ising-Heisenberg chain
with rescaled gyromagnetic factors [46] and also hold for the
Heisenberg coupling with an easy-axis exchange anisotropy
� < 1.

It should be stressed, moreover, that three new quantum
phases UFI-1, UPA-1, and UPA-0 develop in the ground-state
phase diagram at low enough magnetic fields when consid-
ering higher values of the anisotropy parameter � > 1 being
consistent with the Heisenberg coupling with an easy-plane
exchange anisotropy [see Fig. 2(b) for � = 4.0]. Of course,
these quantum phases could not be in principle captured
by modeling the Mn2+ ion as an effective spin-1/2 with a
mere rescaled gyromagnetic factor, because stronger coupling
between transverse spin components forces the Heisenberg
dimers into intermediate states with lower longitudinal net
spin. It could be understood from Fig. 2(b) that the additional
quantum phases UFI-1, UPA-1, and UPA-0 appear in the
regime of sufficiently weak Ising coupling present along the
main backbone Fe3+-Mn2+ of the polymeric chain. In this
regime, a sequence of three field-driven phase transitions can
be at most achieved among three quantum and one classical
phase upon strengthening of the magnetic field.

Figure 3 shows the ground-state phase diagram in the J1-�
plane in the absence of an applied magnetic field (h = 0).
While a direct transition between the ground states UFI-2
and UPA-2 takes place at J1 = 0 for easy-axis exchange
anisotropies � � 1, three new ground states UFI-1, UPA-0,
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and UPA-1 with lower net spin of the Heisenberg dimers
appear for easy-plane exchange anisotropies � > 1 on the
assumption that the Ising coupling J1 is sufficiently weak. It
is worthy to note that the classical SFI and SPA phases do
not represent a ground state in the zero-field limit on account
of the antiferromagnetic nature of the lateral Heisenberg cou-
pling J2 = −1.

IV. QUANTUM ENTANGLEMENT

In this section, we compute the quantum concurrence
for the Heisenberg dimer mimicking a pair of Mn2+ and
Cu2+ magnetic ions residing in a side branching of each
unit cell. This quantity serves as a measure of the quantum
entanglement at zero temperature. The quantum concurrence
has been widely used to quantify a quantum entanglement
between two qubits, because it is a monotonous function of the
entanglement of formation. As such, it vanishes for separable
states formed by a direct product of the spin states of each
qubit, while it becomes nonzero for nonseparable (entangled)
states whereas a maximum unitary value is reached just for
four Bell states.

Although the Mn2+ ion does not represent a single qubit
with regard to its large spin value S = 5/2, it is of fundamental
importance that only two spin components of the Mn2+ ion do
contribute to each quantum ground state (see Table I). From
this point of view, the Mn2+ ion with the spin S = 5/2 can be
actually treated at zero temperature within each ground state
as a qubit belonging to a two-dimensional Hilbert subspace. In
what follows, we associate the state |+〉 to the state with larger
z-spin projection and the state |−〉 to that with the smaller
z-spin projection for each two-dimensional Hilbert subspace.
In those Hilbert subspaces one may readily introduce for
the originally spin-5/2 Mn2+ ion spin operators S̃z

1, S̃x
1, and

S̃y
1 of an effective spin qubit. The quantum concurrence can

be consequently written in terms of pair spin-spin correla-
tion functions when following the prescription established by
Wooters and Hill [48,49]:

C = max

{
0, 4

∣∣〈S̃x
i,1Sx

i,2

〉∣∣
− 2

√(
1
4 + 〈

S̃z
i,1Sz

i,2

〉)2 − (
1
2

〈
S̃z

i,1 + Sz
i,2

〉)2
}
, (5)

where 〈S̃ j
i,1S j

i,2〉 ( j = x, y, z) are the pair spin-spin correlation
functions along three orthogonal spatial directions. Owing
to the XXZ symmetry of the Heisenberg coupling J2, both
transverse correlation functions are equal to each other [65],
i.e., 〈S̃x

i,1Sx
i,2〉 = 〈S̃y

i,1Sy
i,2〉. It turns out, moreover, that the total

magnetization of the Heisenberg dimer vanishes within this
effective two-qubit description; i.e., 〈S̃z

i,1 + Sz
i,2〉 = 0 holds

for all aforementioned quantum ground states. After some
straightforward algebra, the quantum concurrence can be ex-
actly computed from two orthogonal components of the pair
spin-spin correlation function depending on a relative strength
of the exchange couplings and a degree of the exchange
anisotropy as it is summarized in Table II.

The quantum concurrence is depicted in Fig. 4 against
the Ising exchange coupling J1 at zero magnetic field
h = 0 and zero temperature T = 0 for the same representa-

TABLE II. Quantum concurrence in the five entangled ground
states UPA-0, UPA-1, UPA-2, UFI-1, and UFI-2.

Quantum phase Quantum concurrence

UPA-0 CUPA-0 = max

{
0,

∣∣∣∣ 3�√
J2

1 +9�2

∣∣∣∣
}

UPA-1 CUPA-1 = max

{
0,

∣∣∣∣ 2
√

2�√
(1+J1 )2+8�2

∣∣∣∣
}

UPA-2 CUPA-2 = max

{
0,

∣∣∣∣ √
5�√

(2+J1 )2+5�2

∣∣∣∣
}

UFI-1 CUFI-1 = max

{
0,

∣∣∣∣ 2
√

2�√
(1−J1 )2+8�2

∣∣∣∣
}

UFI-2 CUFI-2 = max

{
0,

∣∣∣∣ √
5�√

(2−J1 )2+5�2

∣∣∣∣
}

FIG. 4. The quantum concurrence of the Heisenberg dimer
Mn2+-Cu2+ as a function of the Ising exchange coupling J1 between
Fe3+ and Mn2+ magnetic ions at zero magnetic field and temperature.
Abrupt jumps in the quantum concurrence illustrate possible se-
quences of zero-temperature phase transitions: (a) UFI-2 → UPA-2
for � = 1.0 and (b) UFI-2 → UFI-1 → UPA-0 → UPA-1 → UPA-2
for � = 4.0.
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tive values of the exchange anisotropy as used previously.
The maximum entanglement for the isotropic case � = 1.0
shown in Fig. 4(a) is achieved for J1 = 0, i.e., for a set of
decoupled Heisenberg dimers Mn2+-Cu2+. When the Ising
coupling J1 between the Fe3+ and Mn2+ magnetic ions along
the backbone of the branched chain is turned on, it suppresses
a degree of quantum entanglement between the Heisenberg
dimers Mn2+-Cu2+ regardless of whether the Ising coupling
between the Fe3+ and Mn2+ magnetic ions is ferromagnetic
or antiferromagnetic in character. The quantum concurrence
consequently displays a kink singularity at J1 = 0. The quan-
tum concurrence for a strongly anisotropic Heisenberg cou-
pling with the exchange anisotropy � = 4.0 is depicted in
Fig. 4(b) as a function of the Ising exchange coupling J1. An
enhancement of the transverse part of the XXZ Heisenberg
coupling reinforces a quantum entanglement and, hence, the
quantum concurrence becomes larger within UFI-1, UPA-0,
and UPA-1 ground states emergent in the regime of weak
Ising coupling between the Fe3+ and Mn2+ magnetic ions.
In addition, the quantum concurrence depicts jump singulari-
ties at zero-temperature phase transitions between individual
ground states. It is worthwhile to remark, moreover, that the
UPA-0 ground state reaches the maximum entanglement C =
1 in the Bell form at J1 = 0. It is quite clear from Fig. 4(b)
that the degree of quantum entanglement remains within the
UPA-0 ground state almost independent of the Ising coupling
constant J1 due to a strong transverse correlation present
within the Mn2+-Cu2+ dimer.

V. MAGNETIC SUSCEPTIBILITY

To investigate the magnetostructural properties of one-
dimensional molecular-based magnetic compounds, Fegy
et al. [66] synthesized four linear complexes where transition-
metal ions Mn2+ regularly alternate with organic spin carriers.
The magnetic behavior of one of the prepared molecular-
based compounds can be described by the Heisenberg chain
with regularly alternating spins 5/2 and 1/2 pertinent to Mn2+

ions and nitroxide radicals, whereas an additional nitroxide
radical is laterally attached to each Mn2+ ion [67,68]. From
this perspective, this molecular-based compound has a similar
magnetic structure as the presently investigated coordination
polymer Fe-Mn-Cu. In the previous studies, the transition-
metal ions Mn2+ were considered as carrying a classical
(vector) spin of size S j = 5/2, while the nitroxide radicals
present either along the main chain or lateral branching were
assumed as quantum spins si = 1/2 with two discrete projec-
tions towards the quantization axis. Under this assumption,
the linear-response theory was employed in order to calculate
the magnetic susceptibility [66]:

χ = g2μ2
B

3kT

[
S2 + s(s + 1) + s′(s′ + 1) − St

+ 1

1 − d

(−4SL + 2L2 + 2Lt
)

+ d

1 − d

(
2S2 − 2St + t2

2

)]
, (6)

where

d = a1

3a0
, L = b1

3a0
+ b0

a0
, t = tanh

(x2

2

)
,

a0 = 4x−2
1 (x1 sinh x1 − cosh x1 + 1),

a1 = 12x−4
1

[(
x3

1 + 12x1
)

sinh x1

− 5
(
x2

1 + 12
)

cosh x1 − x2
1 + 12

]
, (7)

b0 = x−1
1 (cosh x1 − 1),

b1 = 3x−3
1

[(
x2

1 + 4
)

cosh x1 − 4x1 sinh x1 + x2
1 − 4

]
,

x1 = −2J1S

kT
, and x2 = −2J2S

kT
.

In the above, the coupling constants J1 and J2 refer to the
exchange interactions between the spin-5/2 Mn2+ ions and
the spin-1/2 nitroxide radicals along the main chain and
laterally branching, respectively.

Alternatively, the magnetic susceptibility and other
thermodynamic quantities can be exactly calculated for
the proposed mixed spin-(1/2, 5/2, 1/2) Ising-Heisenberg
branched-chain model using the standard transfer-matrix tech-
nique. The partition function of the investigated branched spin
chain can be written as

Z = Tr �Nc , (8)

where the elements of the transfer matrix are given by
�σiσi+1 = 〈σi|�|σi+1〉 = ∑12

j=1 e−βEi j (σi,σi+1 ) with Ei j denoting
the jth eigenvalue of the ith cell Hamiltonian (see Appendix)
and β = 1/kBT . In the thermodynamic limit Nc → ∞, the
largest eigenvalue of the transfer matrix fully determines the
partition function Z = λ

Nc+ with

λ+ = [(�++ + �−−) +
√

(�++ − �−−)2 + 4�2+−]/2, (9)

from which the magnetic susceptibility and other thermo-
dynamic quantities can be directly computed using standard
relations of statistical mechanics. In particular, the total mag-
netization per unit cell is given by M = kBT ∂ lnZ/∂h, while
the zero-field magnetic susceptibility then follows from χ =
∂M/∂h|h=0 = kBT ∂2 lnZ/∂2h|h=0.

The available experimental data for the temperature de-
pendence of the susceptibility times temperature product of
the coordination polymer Fe-Mn-Cu [45] are compared in
Fig. 5 with two aforedescribed modeling predictions based
on the linear-response theory (6) adopted from Ref. [66] and
the transfer-matrix solution of the mixed spin-(1/2, 5/2, 1/2)
Ising-Heisenberg branched chain proposed in the present
work. The experimental data convincingly evidence a ferri-
magnetic ordering of the heterotrimetallic polymeric com-
pound Fe-Mn-Cu when the susceptibility times temperature
product exhibits upon lowering temperature a gradual decline
from its high-temperature asymptotic value being consistent
with the magnitude of spins in the unit cell and their gyromag-
netic factors g = 2; then it passes through a global minimum
before it finally diverges at sufficiently low temperatures. It
is noteworthy that two theoretical curves presented in Fig. 5
for the sake of comparison were calculated for the same
fitting set of the exchange couplings, J1 = −1.22 cm−1 for the
exchange constant between the magnetic ions Fe3+ and Mn2+
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FIG. 5. Temperature dependence of χT product in units of
emu K mol−1. The circles represent the experimental data adapted
from Ref. [29], the blue dashed line represents a theoretical predic-
tion according to the linear-response theory adapted from Ref. [66],
while the red solid line represents a theoretical prediction according
to the transfer-matrix solution of the mixed spin-(1/2, 5/2, 1/2)
Ising-Heisenberg branched chain proposed in the present work using
the same gyromagnetic factor g = 2 for all magnetic ions. Both
theoretical curves are presented for the same fitting set of the
exchange couplings J1 = −1.22 cm−1 and J2 = −20.06 cm−1 as
proposed in Ref. [29] without any further adjustment. The best fit
for the Ising-Heisenberg branched-chain model was obtained for the
anisotropy parameter � = 1.15, meaning that the coupling between
the spin components in the XY plane �J2 is slightly larger than that
between the longitudinal z components J2.

and J2 = −20.06 cm−1 for the exchange constant between the
magnetic ions Mn2+ and Cu2+, as estimated in the original
analysis of the experimental data [45]. It is obvious from
Fig. 5 that the linear-response theory developed in Ref. [66]
does not properly capture the global minimum of the χT
product, while the theoretical fitting based on the mixed spin-
(1/2, 5/2, 1/2) Ising-Heisenberg branched-chain model fits
quantitatively well the whole experimental curve including
its global minimum. It should be mentioned that we have
assumed without any further adjustment the same fitting set
of exchange couplings as proposed in Ref. [29], whereas the
best fit was obtained for � = 1.15 as an additional fitting
parameter determining a degree of the exchange anisotropy
in the coupling constant between the magnetic ions Mn2+

and Cu2+. A slightly stronger value of the coupling constant
between transverse spin components of the magnetic ions
Mn2+ and Cu2+ (�J2) as compared to the coupling between
the longitudinal spin components (J2) eventually compensates
the fact that the Ising-like coupling between the magnetic
ions Fe3+ and Mn2+ fully disregards any eventual coupling
between their transverse spin components. Even so, the Ising-
Heisenberg branched-chain model fits fairly well the entire
experimental curve.

VI. MIXED SPIN-( 1
2 , 5

2 , 1
2 ) HEISENBERG

BRANCHED CHAIN

In this section, we consider a fully quantum mixed spin-
(1/2, 5/2, 1/2) Heisenberg branched-chain model inspired by
the magnetic structure of the heterotrimetallic coordination
polymer Fe-Mn-Cu in order to evaluate the main differences
between the ground-state phase diagrams of the mixed spin-
(1/2, 5/2, 1/2) Ising-Heisenberg branched chain and its full
quantum counterpart. For simplicity, our further attention will
be paid only to the mixed spin-(1/2, 5/2, 1/2) Heisenberg
branched chain with the perfectly isotropic exchange cou-
plings defined through the Hamiltonian

H = −J1

Nc∑
i=1

(�s1,i · �S2,i + �s1,i+1 · �S2,i ) − J2

Nc∑
i=1

�S2,i · �s3,i

− gμBh
Nc∑

i=1

(
sz

1,i + Sz
2,i + sz

3,i

)
, (10)

where the spin operators �s1,i correspond to the spin-1/2 Fe3+

magnetic ions, the spin operators �S2,i correspond to the spin-
5/2 Mn2+ magnetic ions, and the spin operators �s3,i corre-
spond to the laterally attached spin-1/2 Cu2+ magnetic ions of
the polymeric compound Fe-Mn-Cu (see Fig. 1). The coupling
constants J1 and J2 along the main chain and lateral branching
are assumed to be the isotropic Heisenberg exchange cou-
plings, h is an external magnetic field, μB is the Bohr magnetic
moment, and g is Landé g factor. The magnetic field may
play a crucial role in determining the magnetic ordering as it
may induce field-driven quantum phase transitions. It should
be stressed that the mixed spin-(1/2, 5/2, 1/2) Heisenberg
branched-chain model is not exactly tractable and it must be
therefore attacked by the state-of-the-art numerical methods
such as DMRG simulations [69–71].

Numerical results

In the following, we investigate in detail the ground-state
phase diagram and magnetization process of the mixed spin-
(1/2, 5/2, 1/2) Heisenberg branched chain obtained upon
implementation of DMRG simulations. This study will be
additionally supplemented by a comprehensive finite-size
scaling analysis of a special Gaussian critical point emer-
gent in the established ground-state phase diagram. More
specifically, we have performed DMRG simulations of the
mixed spin-(1/2, 5/2, 1/2) Heisenberg branched chain using
open-source packages from the Algorithms and Libraries for
Physics Simulations (ALPS) project [72] by assuming the
periodic boundary conditions and several system sizes with
up to Nc = 40 units cells (i.e., 120 spins). Note, furthermore,
that the number of kept states and the number of sweeps were
adjusted in order to keep a truncation error below ∝10−9. Our
main attention is devoted to comprehensive analysis of the
ground-state phase diagram of the mixed spin-(1/2, 5/2, 1/2)
Heisenberg branched chain given by Eq. (10).

Let us start our study by investigating the zero-temperature
magnetization curve of the mixed spin-(1/2, 5/2, 1/2)
Heisenberg branched chain by considering first the spe-
cial case with both antiferromagnetic interactions of equal
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FIG. 6. The magnetization (per unit cell) curve of the mixed
spin-(1/2, 5/2, 1/2) Heisenberg branched chain for the particular
case with equal coupling constants J1 = J2 = −1 and gμB = 1 units.
The massive phases are represented by intermediate magnetization
plateaus at 3/7 and 5/7 of the saturation magnetization, while the
critical massless phase pertinent to the Tomonaga-Luttinger quantum
spin liquid is characterized by a continuous rise of the magnetization
with increasing of the magnetic field. All field-driven quantum phase
transitions are continuous (second order). Data are from numerical
calculations in chains with Nc = 40 unit cells and periodic boundary
conditions.

strength, J1 = J2 = −1. Figure 6 shows the total magneti-
zation normalized with respect to the saturation value as a
function of the external magnetic field h. Two intermedi-
ate magnetization plateaus at 3/7 and 5/7 of the saturation
magnetization can be ascribed to gapped (massive) phases
with fractional values of the magnetization being consistent
with the Oshikawa-Yamanaka-Affleck quantization rule [55].
The magnetization plateau at 3/7 of the saturation magneti-
zation, which arises from zero magnetic field, can be iden-
tified according to the Lieb-Mattis theorem as the massive
ferrimagnetic phase with regard to a bipartite nature of the
branched spin chain [73]. The gapless critical phases, where
the magnetization rises continuously upon increasing of the
magnetic field, correspond to the Tomonaga-Luttinger quan-
tum spin liquid in accordance with the massless character of
the low-lying energy excitations of one-dimensional quantum
spin models [74]. Note that the Tomonaga-Luttinger quantum
spin liquid is wedged in between two massive phases, from
which it is separated by continuous field-driven quantum
phase transitions. This feature is commonly found in ferri-
magnetic quantum Heisenberg spin chains [75,76]. We stress
that such gapless spin liquid phases could not be captured
by the Ising-Heisenberg model developed in Sec. III because
the Ising nature of the coupling along the chain suppresses
the quantum correlations inherent in such quantum critical
phases.

Next, let us construct the ground-state phase diagram of the
mixed spin-(1/2, 5/2, 1/2) Heisenberg branched chain in the
J1-h plane when using J2 = −1 and gμB = 1 units. For this

purpose, we have computed zero-temperature magnetization
curves for a large series of the coupling constant J1 along the
main backbone of the branched spin chain from the interval
J1 ∈ [−2, 2], whereas the effect of ferromagnetic (J1 > 0)
as well as antiferromagnetic (J1 < 0) coupling constant was
explored in particular. The phase boundaries between the in-
dividual ground states were obtained from DMRG results for
eigenenergies E (M, h = 0), which correspond to the lowest-
energy eigenstates with a given total magnetization M =∑Nc

l=1(sz
1,l + Sz

2,l + sz
3,l ) in a zero magnetic field h = 0. The

upper and lower critical fields h± determining a field range of
the lowest-energy eigenstate belonging to the magnetization
sector M are given by

h+ = E (M + 1, h = 0) − E (M, h = 0),
(11)

h− = E (M, h = 0) − E (M − 1, h = 0),

whereas the upper and lower critical fields h± converge to
distinct values for the massive ground states being responsible
for the intermediate 3/7 and 5/7 magnetization plateaus. On
the other hand, the upper and lower critical fields h± scale in
the critical (massless) ground state pertinent to the Tomonaga-
Luttinger quantum spin liquid with a finite-size correction and
converge in the thermodynamic limit to the following values
[56,77]:

h± ∼ h(M ) ± πvsη

Nc
, (12)

where h(M ) denotes an extrapolated value of the magnetic
field producing the total magnetization M in the thermody-
namic limit, vs is the sound velocity, and η is the critical
exponent for a spatial dependence of the pair correlation
function [56].

The ground-state phase diagram of the mixed spin-
(1/2, 5/2, 1/2) Heisenberg branched chain is depicted in
Fig. 7. At low magnetic fields, one identifies two massive
ground states corresponding to the intermediate magnetization
plateaus. The 5/7 plateau predominates for the ferromagnetic
coupling constant J1 > 0, while the 3/7 plateau develops for
the antiferromagnetic coupling constant J1 < 0. The massive
phases inherent to the 3/7 and 5/7 plateaus are separated
from each other by a narrow region corresponding to the
gapless quantum spin-liquid phase. Another 5/7 plateau phase
can be detected at higher magnetic fields when assuming
the antiferromagnetic coupling constant J1 < 0. Two massive
ground states with the magnetization equal to 5/7 of the
saturation magnetization coalesce at a single critical point.
This special critical point, at which these two gapped phases
meet together, corresponds to a Gaussian critical point absent
in the ground-state phase diagram of the Ising-Heisenberg
counterpart model. In the regime of high magnetic fields, the
gapped phase inherent to the 5/7 plateau is also separated
from the fully polarized state by the Tomonaga-Luttinger
quantum spin liquid. For better clarity, Fig. 7 also com-
pares the ground-state phase diagrams of the Ising-Heisenberg
and Heisenberg branched-chain models. Although the Ising-
Heisenberg model is not capable of presenting a quantum
spin-liquid phase, both phase diagrams exhibit quite similar
features similarly as identified in the past for other quantum
spin-chain models [78,79]. In fact, the upper critical field
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FIG. 7. A comparison between ground-state phase diagrams
of the mixed spin-(1/2, 5/2, 1/2) Ising-Heisenberg branched-chain
model (solid lines) and the mixed spin-(1/2, 5/2, 1/2) Heisenberg
branched-chain model (solid lines with solid circles). A direct field-
driven phase transition between the massive plateau phases of the
Ising-Heisenberg model is replaced for the Heisenberg counterpart
model by an intermediate region corresponding to the quantum spin-
liquid phase. In the latter full Heisenberg model, both massive 5/7
plateau phases meet at a single Gaussian critical point. Data for the
full Heisenberg model are from numerical calculations in chains with
Nc = 40 unit cells and periodic boundary conditions.

for both 5/7 plateau phases are completely identical in both
models. Further, a narrow coexistence line between two gapful
5/7 plateau phases of the Ising-Heisenberg model is replaced
by a single Gaussian critical point in the full Heisenberg
counterpart model.

Finally, let us focus our attention to the special critical
point of the Heisenberg branched-chain model, at which
two gapful 5/7 plateau phases coalesce with the gapless
Tomonaga-Luttinger quantum spin liquid. This feature is char-
acteristic for the Gaussian critical point, which appears in
diverse quantum spin models [60,80–82]. To precisely locate
the Gaussian critical point and determine a relevant critical
exponent, we have performed a comprehensive finite-size
scaling analysis of the scaled gap �Nc = Nc�E as a function
of the coupling constant J1 for several system sizes up to Nc =
40 unit cells (120 spins). The scaled gap �Nc is plotted in
Fig. 8(a), where a distinct behavior can be seen as one deflects
from a crossing point of four quantum-phase-transition lines
determining the Gaussian critical point. Indeed, the four phase
boundaries cross at the Gaussian critical point which unveils
that the scaling hypothesis at this quantum critical point
should obey an invariance of the scaled gap and its slope. A
proper finite-size scaling hypothesis for the size dependence
of the scaled gap �Nc in the close vicinity of the Gaussian
critical point can be written in the form [80]

�Nc ≈ (J1 − Jc)α + f

(
ξ

Nc

)
. (13)

FIG. 8. (a) The scaled gap �Nc for the magnetization sector
responsible for the 5

7 plateau as a function of the coupling constant
J1, which serves in evidence that the curves for the scaled gap
meet together at the Gaussian critical point. (b) The data collapse
of �Nc − (J1 − Jc )α as a function of the proper scaling variable

x = N
1
ν

c (J1 − Jc ), where α denotes the scale-invariant slope at the
Gaussian critical point. The best data collapse provided the estimates
of the critical exponent of correlation length 1

ν
= 0.79, the location

of the Gaussian critical point [Jc = −0.584; hc = 3.065], and the
critical slope of the scaled gap α = 1.85.

Here, Jc is the critical value of the coupling constant J1 and
α = �′

Nc
(Jc) is the scale-invariant slope of phase boundaries

at this quantum critical point. The correlation length ξ near
the Gaussian critical point diverges as ξ ∝ |J1 − Jc|−ν with
ν being its characteristic critical exponent. Bearing this in
mind, the scaling form (13) can be employed in order to
collapse all curves into a single one and, consequently, one
may get a universal curve independent of the system size

when the scaled gap is plotted against N
1
ν

c (J1 − Jc) as shown in
Fig. 8(b). One actually finds that all curves coalesce into a uni-
versal one when we use our best estimate for the correlation
length critical exponent 1

ν
= 0.79, the locus of the Gaussian

critical point Jc = −0.584, and the critical slope of the scaled
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gap α = 1.85. The magnetic field, at which the Gaussian
critical point takes place, is estimated to be hc = 3.065. Such
a scaling analysis appears as an alternative protocol [80]
to the twisted-boundaries technique [59] to explore critical
properties of quantum spin-chain models displaying Gaussian
critical points.

VII. SUMMARY AND CONCLUSIONS

In summary, two mixed spin-(1/2,5/2,1/2) branched-
chain models were investigated in detail with the aim to model
a ferrimagnetic behavior of the heterotrimetallic coordina-
tion polymer Fe-Mn-Cu [45]. The magnetic backbone of the
polymeric compound Fe-Mn-Cu consists of regularly alter-
nating spin-1/2 Fe3+ and spin-5/2 Mn2+ magnetic ions with
an additional pendant spin-1/2 Cu2+ magnetic ion laterally
attached to each spin-5/2 Mn2+ magnetic ion. The mixed
spin-(1/2,5/2,1/2) Ising-Heisenberg branched chain in the
presence of the magnetic field has been exactly solved by
considering either ferromagnetic or antiferromagnetic Ising-
type exchange coupling between Fe3+ and Mn2+ magnetic
ions along the backbone of the polymeric chain, which can be
justified by a relatively large anisotropy of the spin-1/2 Fe3+

ions in a low-spin state. Contrary to this, the more general
XXZ antiferromagnetic Heisenberg exchange interaction with
a single parameter � quantifying a degree of the exchange
anisotropy was assumed between the dimeric units Mn2+-
Cu2+ being responsible for the lateral branching.

The ground-state phase diagram of the mixed spin-
(1/2,5/2,1/2) Ising-Heisenberg branched-chain model may
exhibit up to seven distinct phases. Two of them have a
classical nature with the spins of the dimeric units Mn2+-Cu2+

aligned parallel to the external magnetic field. The spin align-
ment along the main chain in these two classical ground states
can be either ferromagnetic (SPA phase) or ferrimagnetic (SFI
phase), depending on the relative strength of the magnetic
field and the character of the Ising-type exchange coupling.
The other five phases have the lateral dimers Mn2+-Cu2+ in
quantum entangled states. Two entangled ground states have
the lateral dimers Mn2+-Cu2+ in the magnetization sector
with the total spin ST = 2 (UPA-2 and UFI-2) and the other
two ground states in the magnetization sector with the total
spin ST = 1 (UPA-1 and UFI-1). The remaining ground state
has the lateral dimers Mn2+-Cu2+ in the singletlike state
with zero total spin ST = 0 (UPA-0). It is noteworthy that
the ground states with the lateral dimers Mn2+-Cu2+ in the
magnetization sectors with the total spin ST = 1 and ST =
0 only appear when considering the easy-plane exchange
anisotropy (� > 1) of the lateral exchange coupling J2; i.e.,
the coupling between transverse spin components is stronger
than that between longitudinal spin components at lateral
branching.

The degree of quantum entanglement within the lateral
dimeric units Mn2+-Cu2+ was quantified by computing the
quantum concurrence. It has been shown that the Ising-type
coupling between Fe3+ and Mn2+ magnetic ions along the
main chain gradually degrades the bipartite quantum entan-
glement. On the other hand, the quantum entanglement is
favored by increasing the transverse part of the exchange
coupling between Mn2+ and Cu2+ magnetic ions. To evalu-

ate the reliability of the present Ising-Heisenberg branched-
chain model for a description of the magnetic behavior of
the heterotrimetallic coordination polymer Fe-Mn-Cu, we
have computed the magnetic susceptibility using the standard
transfer-matrix technique. The available experimental data for
the magnetic susceptibility was accurately fitted using the
previous estimates of the exchange couplings [29] and an
exchange anisotropy � = 1.15.

To evaluate how the assumption of an Ising-type coupling
along the main chain affects the ground-state phase diagram,
we have also performed DMRG calculation for the analo-
gous mixed spin-(1/2, 5/2, 1/2) Heisenberg branched-chain
model. We have unveiled that both models present quite
similar ground-state phase diagrams. The main new feature
introduced by the quantum character of the exchange coupling
along the backbone of the polymeric chain is the emergence of
a narrow critical quantum spin-liquid phase, which separates
the gapped phases pertinent to the intermediate plateaus at
3/7 and 5/7 of the saturation magnetization. Further, a narrow
coexistence line between two massive ground states with the
magnetization equal to 5/7 of the saturation magnetization of
the Ising-Heisenberg model is replaced by a single Gaussian
critical point in the respective Heisenberg model. We have per-
formed a proper finite-size scaling analysis, which accounts
for the scale invariance of the scaled gap and its derivative
at the Gaussian critical point, to precisely locate this special
quantum critical point and to estimate its corresponding cor-
relation length critical exponent.

The present results support the reliability of using effective
exactly solvable Ising-Heisenberg spin-chain models for a
description of certain heterometallic coordination compounds.
These can give a qualitative description of the ground-state
phase diagram as well as accurately capture temperature
dependencies of relevant thermodynamic quantities. However,
one should bear in mind that some specific features can only
be captured by the full Heisenberg description, such as the
presence of a narrow critical Tomonago-Luttinger quantum
spin liquid and the special quantum critical points. It would
be valuable to have a direct comparison between the Ising-
Heisenberg and full Heisenberg counterpart models for other
classes of the spin chain to build a more complete scenario
regarding their relative predictions.
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APPENDIX

Here we provide a detailed description of the eigenvec-
tors and eigenvalues of the mixed spin-(1/2, 5/2, 1/2) Ising-
Heisenberg branched chain developed for a theoretical mod-
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TABLE III. Eigenvectors and eigenenergies (per unit cell) of the model Hamiltonian (1). The probability amplitudes of the quantum states
are given in the main text. Here, J̃1 = J1(σ z

1 + σ z
2 ) and σ z

1 = σ z
2 = ±1/2.

Eigenenergies Eigenvectors (basis |Si,1, Si,2〉 ⊗ |σi, σi+1〉
Ei1 = − h̃

2 − 5J2
4 − 5J̃1

2 − 3h |ψi1〉 = ∣∣Si,1 = 5
2 , Si,2 = 1

2

〉 ⊗ |σi, σi+1〉
Ei2 = − h̃

2 + J2
4 − 2J̃1 − 2h − 1

2

√
(2J2 − J̃1)2 + 5(J2�)2 |ψi2〉 = a−

∣∣Si,1 = 5
2 , Si,2 = − 1

2

〉 ⊗ |σi, σi+1〉
+a+

∣∣Si,1 = 3
2 , Si,2 = 1

2

〉 ⊗ |σi, σi+1〉
Ei3 = − h̃

2 + J2
4 − 2J̃1 − 2h + 1

2

√
(2J2 − J̃1)2 + 5(J2�)2 |ψi3〉 = a+

∣∣Si,1 = 5
2 , Si,2 = 1

2

〉 ⊗ |σi, σi+1〉
+a−

∣∣Si,1 = 3
2 , Si,2 = 1

2

〉 ⊗ |σi, σi+1〉
Ei4 = − h̃

2 + J2
4 − J̃1 − h − 1

2

√
(J2 − J̃1)2 + 8(J2�)2 |ψi4〉 = c−

∣∣Si,1 = 3
2 , Si,2 = − 1

2

〉 ⊗ |σi, σi+1〉
+c+

∣∣Si,1 = 1
2 , Si,2 = 1

2

〉 ⊗ |σi, σi+1〉
Ei5 = − h̃

2 + J2
4 − J̃1 − h + 1

2

√
(J2 − J̃1)2 + 8(J2�)2 |ψi5〉 = c+

∣∣Si,1 = 3
2 , Si,2 = − 1

2

〉 ⊗ |σi, σi+1〉
+c−

∣∣Si,1 = 1
2 , Si,2 = 1

2

〉 ⊗ |σi, σi+1〉
Ei6 = − h̃

2 + J2
4 − 1

2

√
(J̃1)2 + 9(J2�)2 |ψi6〉 = e+

∣∣Si,1 = 1
2 , Si,2 = − 1

2

〉 ⊗ |σi, σi+1〉
+e−

∣∣Si,1 = − 1
2 , Si,2 = 1

2

〉 ⊗ |σi, σi+1〉
Ei7 = − h̃

2 + J2
4 + 1

2

√
(J̃1)2 + 9(J2�)2 |ψi7〉 = e−

∣∣Si,1 = 1
2 , Si,2 = − 1

2

〉 ⊗ |σi, σi+1〉
+e+

∣∣Si,1 = − 1
2 , Si,2 = 1

2

〉 ⊗ |σi, σi+1〉
Ei8 = − h̃

2 + J2
4 + J̃1 + h − 1

2

√
(J2 + J̃1)2 + 8(J2�)2 |ψi8〉 = b+

∣∣Si,1 = − 1
2 , Si,2 = − 1

2

〉 ⊗ |σi, σi+1〉
+b−

∣∣Si,1 = − 3
2 , Si,2 = 1

2

〉 ⊗ |σi, σi+1〉
Ei9 = − h̃

2 + J2
4 + J̃1 + h + 1

2

√
(J2 + J̃1)2 + 8(J2�)2 |ψi9〉 = b−

∣∣Si,1 = − 1
2 , Si,2 = − 1

2

〉 ⊗ |σi, σi+1〉
+b+

∣∣Si,1 = − 3
2 , Si,2 = 1

2

〉 ⊗ |σi, σi+1〉
Ei10 = − h̃

2 + J2
4 + 2J̃1 + 2h − 1

2

√
(2J2 + J̃1)2 + 5(J2�)2 |ψi10〉 = d+

∣∣Si,1 = − 3
2 , Si,2 = − 1

2

〉 ⊗ |σi, σi+1〉
+d−

∣∣Si,1 = − 5
2 , Si,2 = 1

2

〉 ⊗ |σi, σi+1〉
Ei11 = − h̃

2 + J2
4 + 2J̃1 + 2h + 1

2

√
(2J2 + J̃1)2 + 5(J2�)2 |ψi11〉 = d−

∣∣Si,1 = − 3
2 , Si,2 = − 1

2

〉 ⊗ |σi, σi+1〉
+d+

∣∣Si,1 = − 5
2 , Si,2 = 1

2

〉 ⊗ |σi, σi+1〉
Ei12 = − h̃

2 − 5J2
4 + 5J̃1

2 + 3h |ψi12〉 = ∣∣Si,1 = − 5
2 , Si,2 = − 1

2

〉 ⊗ |σi, σi+1〉

eling of the coordination polymer Fe-Mn-Cu. Hamiltonian (1)
can be written in the symmetric form as follows:

H =
Nc∑

i=1

Hi =
Nc∑

i=1

(
−h

2

(
σ z

i + σ z
i+1

) + H′
i

)
,

where

H′
i = −J1Sz

i,1

(
σ z

i + σ z
i+1

) − J2�

2
(S+

i,1S−
i,2 + S−

i,1S+
i,2)

− J2Sz
i,1Sz

i,2 − h
(
Sz

i,1 + Sz
i,2

)
. (A1)

Here, S±
i, j are the usual raising and lowering spin-1/2 opera-

tors. The Hamiltonian H′
i can be put in a matrix form in the

usual local basis |Si,1, Si,2〉 representing zth spin components
of the Heisenberg dimer corresponding to the magnetic ions
Mn2+ and Cu2+ (the upper index z is left out for easy
notation). The matrix representation of Hamiltonian (A1) can
be easily diagonalized in decoupled blocks accounting for
each magnetization sector. In this form, we have the following
matrix representations of the symmetric cell Hamiltonian in
all possible magnetization sectors St

i = Si,1 + Si,2.
(a) Magnetization sector St

i = 0: |Si,1 = 1/2, Si,2 =
−1/2〉 and |Si,1 = −1/2, Si,2 = 1/2〉 subspace,(

J2
4 − J̃1

2 − 3
2 J2�

− 3
2 J2�

J2
4 + J̃1

2

)
, (A2)

(b) Magnetization sector St
i = 1: |Si,1 = 3/2, Si,2 =

−1/2〉 and |Si,1 = 1/2, Si,2 = 1/2〉 subspace,

( 3
4 J2 − 3

2 J̃1 − h −J2�
√

2
−J2�

√
2 − J2

4 − J̃1
2 − h

)
, (A3)

(c) Magnetization sector St
i = 2: |Si,1 = 5/2, Si,2 =

−1/2〉 and |Si,1 = 3/2, Si,2 = 1/2〉 subspace,

(
− h̃

2 + 5
4 J2 − 5

2 J̃1 − 2h −J2�
√

5
2

−J2�
√

5
2 − h̃

2 − 3
4 J2 − 3

2 J̃1 − 2h

)
, (A4)

(d) Magnetization sector St
i = 3: |Si,1 = 5/2, Si,2 = 1/2〉

subspace,

(
− h̃

2
− 5

4
J2 − 5

2
J̃1 − 3h

)
, (A5)

(e) Magnetization sector St
i = −1: |Si,1 = −1/2, Si,2 =

−1/2〉 and |Si,1 = −3/2, Si,2 = 1/2〉 subspace,

(− J2
4 + 1

2 J̃1 + h −J2�
√

2
−J2�

√
2 3

4 J2 + 3
2 J̃1 + h

)
, (A6)
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(f) Magnetization sector St
i = −2: |Si,1 = −3/2, Si,2 =

−1/2〉 and |Si,1 = −5/2, Si,2 = 1/2〉 subspace,(
− 3

4 J2 + 3
2 J̃1 + 2h −J2�

√
5

2

−J2�
√

5
2

5
4 J2 + 5

2 J̃1 + 2h

)
, (A7)

(g) Magnetization sector St
i = −3: |Si,1 = −5/2, Si,2 =

−1/2〉 subspace,(
− h̃

2
− 5

4
J2 + 5

2
J̃1 + 3h

)
, (A8)

where h̃ = h(σ z
1 + σ z

2 ), J̃1 = J1(σ z
1 + σ z

2 ). The Hamiltonian
H′

i can be exactly diagonalized. The eigenvectors and eigen-
values of the total Hamiltonian can be written in terms of a
direct product of the state of each quantum dimer and the
states of the neighboring Ising spins. All possible eigenstates
and eigenvalues per unit cell are given in Table III.

For the entangled eigenvectors, the coefficients in the quan-
tum superpositions are given by

a2
± = 1

2

[
1 ± 2J2 − J̃1√

(2J2 − J̃1)2 + 5(J2�)2

]
, (A9)

b2
± = 1

2

[
1 ± J2 + J̃1√

(J2 + J̃1)2 + 8(J2�)2

]
, (A10)

c2
± = 1

2

[
1 ± J2 − J̃1√

(J2 − J̃1)2 + 8(J2�)2

]
, (A11)

d2
± = 1

2

[
1 ± 2J2 + J̃1√

(2J2 + J̃1)2 + 5(J2�)2

]
, (A12)

e2
± = 1

2

⎡
⎣1 ± J̃1√

J̃1
2 + 9(J2�)2

⎤
⎦, (A13)

where J̃1 = J1(σ z
1 + σ z

2 ) and σ z
1 = σ z

2 = ±1/2.
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