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Universality in the three-dimensional random bond quantum Heisenberg antiferromagnet

U. Kanbur
Graduate School of Natural and Applied Sciences, Dokuz Eylül University, 35160 Izmir, Turkey
and Department of Physics, Karabük University, Demir Çelik Campus, 78050 Karabük, Turkey

E. Vatansever* and H. Polat
Department of Physics, Dokuz Eylül University, 35160 Izmir, Turkey

(Received 12 May 2020; accepted 3 August 2020; published 14 August 2020)

The three-dimensional quenched random bond diluted (J1 − J2) quantum Heisenberg antiferromagnet is
studied on a simple-cubic lattice. Using extensive stochastic series expansion quantum Monte Carlo simulations,
we perform very long runs for an L×L×L lattice up to L = 48. By employing a standard finite-size scaling
method, the numerical values of the Néel temperature are determined with high precision as a function of the
coupling ratio r = J2/J1. Based on the estimated critical exponents, we find that the critical behavior of the
considered model belongs to the pure classical three-dimensional O(3) Heisenberg universality class.
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I. INTRODUCTION

The concept of disorder and randomness in the critical
and universality properties of magnetic materials have great
importance for the understanding of statistical and condensed-
matter physics [1–16]. However, clarifying the influence of
the disorder and randomness effects on the critical exponents
of second-order phase transitions has so far been a challenge.
It has been demonstrated that there are several approaches to
introducing randomness in magnetic materials [17], e.g., the
presence of random exchange couplings between interacting
spins and the dilution of magnetic ions. It is a known fact
that most of magnetic materials are more or less defective.
Therefore, zero- and finite-temperature physical properties of
the samples can significantly change depending on the kind
and amount of defects. They often show unusual and inter-
esting magnetic behaviors that are prominently different from
that of their pure counterparts [9,12,13,15]. As an example,
Ref. [9] showed that all critical exponents, including dynam-
ical correlations, are different from the classical percolation
values, leading to a novel universality class for the percolation
quantum phase transition in quantum magnets with quenched
disorder.

Among the many spin models, one of the most studied
is the Heisenberg model, from both numerical and analyt-
ical points of view. It builds a strong bridge between the
experiments and computer simulations in condensed-matter
physics. In this context, it allows us to explore the under-
lying physics of the pure and disordered magnetic materi-
als where the spin-spin correlations are important. Ground-
state, finite-temperature, and also universality properties of
the many one-dimensional (1D) and two-dimensional (2D)
magnetic systems, including different kinds of disorders, have
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been comprehensively investigated through a variety of nu-
merical and theoretical methods. Examples include quantum
spin models with random bonds [2,3,18–24], site dilution
[4,5,25–32], isolated impurity [33], frustration effects
[34–40], J − Q terms [16,41–44], and dimerized J1 − J2 sys-
tems [45–51]. Magnetic properties of the S = 1/2 Heisenberg
antiferromagnet on an inhomogeneous 2D square lattice were
studied by employing the quantum Monte Carlo (QMC) sim-
ulation in Ref. [45]. The critical exponent ν of the correlation
length was estimated using finite-size scaling (FSS) analysis,
which is consistent with the three-dimensional O(3) classical
Heisenberg universality class (ν ≈ 0.71) [52,53]. The same
confirmation of the O(3) universality class was also shown
by Wenzel and Janke [47] for the two planar square lattice
Heisenberg models with explicit dimerization or quadrumer-
ization by making use of the stochastic series expansion
(SSE) QMC technique. The detailed works in the existing
literature prove that our understanding of critical phenomena
of the disordered and clean 1D and 2D quantum magnets has
reached a point where well-established results are available, as
mentioned above. There are, however, quite limited studies on
the universality properties of the disordered three-dimensional
(3D) quantum spin systems. This may be due to the limitation
in the computational resources that require averaging of phys-
ical observables over a large number of experiments.

To the best of our knowledge, most of the studies, in-
spired by the experimental observation of TlCuCl3 under pres-
sure [54–56], were recently performed on different kinds of
3D quantum antiferromagnetic pure and disordered dimerized
lattices and focused on the estimation of the scaling relations
of Néel temperature TN and the staggered magnetization
density Ms near a quantum critical point [57–64]. Related
to this, the first theoretical attempts were carried out using
quantum field theory, and the existence of universal behavior
near the quantum critical point was demonstrated [57,58]. In
turn, using QMC simulations, Jin and Sandvik proposed a way
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to relate TN to Ms of the ground state for several kinds of pure
dimerized systems. Analyzing the numerical data, they found
an almost perfect universality [59]. In Ref. [61], universal
scaling of TN and Ms of the 3D random-exchange quantum
antiferromagnets was investigated within the framework of
QMC simulations. The authors reported that the obtained
numerical results support the scaling relations observed for
pure systems for the model including quenched disorder. A
similar confirmation of the universal scaling relations of the
relevant physical quantities was also found for the 3D quan-
tum antiferromagnet with configurational disorder [62]. These
studies indicate that the scaling properties of the 3D quantum
antiferromagnets are universal in the quantum critical regime
and are valid for both pure and disordered models. Since TN

and Ms are physical observables, the data collapse of these
terms has great significance for experimental physics. Hence,
it is evident that most of the attention has been dedicated to
clarifying the scaling relations between TN and Ms. There are,
however, still unresolved issues regarding the behavior of the
3D quantum Heisenberg model in the presence of quenched
disorder. Some of the questions waiting for an answer are as
follows: (i) What is the effect of the disorder on the critical
temperature of the system? (ii) What will the universality
class of the resulting phase transitions be? In other words,
do the obtained critical exponents depend on the amount of
disorder? In this paper, we consider the 3D random bond
quantum antiferromagnetic Heisenberg model with a different
perspective. More specifically, our motivation is to obtain an
answer to the above questions and, in this way, to determine
the universality properties of the 3D quantum Heisenberg
model in the presence of quenched disorder, employing ex-
tensive SSE QMC simulations. In a nutshell, our numerical
findings indicate that phase transitions of the 3D quantum
Heisenberg antiferromagnet with quenched disorder belong to
the O(3) universality class of the pure 3D classical Heisenberg
model [52,53].

The outline of this paper is as follows: In Sec. II, we
give the model and the details of the simulation scheme. The
numerical results and discussion are given in Sec. III, and
finally, Sec. IV contains a summary of our conclusions.

II. MODEL AND SIMULATION DETAILS

It is more convenient and compact to express the Hamil-
tonian of the model in terms of the bond interactions and to
put restrictions on the created bonds to represent the system
of interest. Namely, the Hamiltonian

H =
Nb∑

b=1

JbSi(b) · Sj(b) (1)

describes the spin models that include a number of bonds Nb

with site index i(b) and spin operators Si(b) interacting with
coupling strength Jb. For this model, all the interactions are
antiferromagnetic (Jb > 0) and among the nearest-neighbor
sites on a cubic lattice. These bonds are randomly selected
from a bimodal distribution, which is given as follows:

P (Jb) = 1
2 [δ(Jb − J1) + δ(Jb − J2)]. (2)

Following Refs. [65–68] we chose J1 + J2 = 2 and J1 >

J2 > 0, so r = J2/J1 defines the disorder strength. It is clear
that r = 1 corresponds to the pure 3D spin-1/2 Heisenberg
antiferromagnet (AFM). Among the previously published
studies regarding the critical properties of the pure model,
QMC simulations suggest the location of the transition tem-
perature between Néel and paramagnetic phases is kBTN/J =
0.946(1) [69] and 0.947 [70].

Within the framework of the SSE technique for the
isotropic S = 1/2 Heisenberg antiferromagnetic model, the
bond operators are split into diagonal and off-diagonal terms
as follows:

H1,b = (
1
4 − Sz

i(b)S
z
j(b)

)
, (3a)

H2,b = 1
2

(
S+

i(b)S
−
j(b) + S−

i(b)S
+
j(b)

)
, (3b)

where H1,b and H2,b are diagonal and off-diagonal bond
operators, respectively. Then we write the Hamiltonian over
the bond operators by indicating random coupling strengths
explicitly,

H = −
Nb∑

b=1

Jb(H1,b − H2,b) + const. (4)

The constant term in Eq. (4) does not affect the computed
quantities except for the internal energy and can be included
in the postsimulation calculations if desired. According to the
SSE technique [71–73], the partition function is expanded to
the Taylor series with a chosen basis,

Z =
∑
α,SL

(−1)n2βn (L − n)!

L!

〈
α

∣∣∣∣∣
L−1∏
p=0

Jb(p)Ha(p),b(p)

∣∣∣∣∣α
〉
, (5)

which is a sum over configurations α and all possible operator
strings SL, including a unit operator H0,0 to make the length
of the strings fixed and a unit bond coupling for convenient
implementation, and for this extra index we have J0 ≡ 1. In
this scheme, n turns out to be the number of nonunit operators
in the string, and n2 is the number of off-diagonal operators
that appear in pairs in the operator string for a bipartite
system, thus making the matrix elements always positive; β

is a reduced inverse temperature with Boltzmann’s constant.
All the nonzero matrix elements are Jb/2, and the weight is
given as follows:

W (α, SL ) =
(

β

2

)n (L − n)!

L!

L−1∏
p=0

Jb(p). (6)

The relevant quantities are measured for the analysis of ther-
mal and critical behavior by making simulations at different
system sizes and temperatures for each disorder parameter.
In our simulations, N = L×L×L defines the total number of
spins, while L denotes the linear dimension of the lattice,
having values L = 4, 6, 8, 12, 16, 24, 32, and 48. We apply
the boundary conditions such that they are periodic in all
directions. The simulations have been realized for three cou-
pling ratios, namely, r = 0.9/1.1, 0.75/1.25, and 0.5/1.5. For
each pair of (L, r), we performed 300 independent experi-
ments, generating random seeds. In each sample realizations,
the first 105 Monte Carlo steps (MCSs) [71] are discarded
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FIG. 1. Disorder distributions of the specific heat maxima C∗ for
a lattice size L = 48 for the model with r = 0.75/1.25. The running
averages over the samples are illustrated by a solid line. The inset
shows the signal-to-noise (S/N) ratio of the specific heat as a function
of the inverse system size. S/N (C∗) → 0 when 1/L → 0, indicating
that self-averaging is restored in the thermodynamic limit for the 3D
bond-diluted quantum Heisenberg AFM model [74,75].

for the thermalization process, and the numerical data are
collected over the next 5×105 MCSs. After determining
the critical temperature region for each disorder parameter, the
running averages of the specific heat values at a temperature
very close to the critical point are monitored to ensure the
sufficiency of the number of independent realizations. As an
example, it is clear from Fig. 1 that 300 random realizations
are found to be enough for the statistics of the calculations
for the disordered model with parameter r = 0.75/1.25. We
also note that the simulations are performed on a cluster of
CPUs with Intel Xeon Gold 6148 processors at 2.40 GHz,
and actual running times in the critical region are measured
up to approximately 10 days for L = 48 and a single random
realization.

Similar averages are also observed for other disorder pa-
rameters, which are not shown here. The formulation of SSE
QMC allows one to derive simple estimators for the quantities
of interest. The specific heat estimator C is defined by the
number of nonunit operators [72],

C = 〈n2〉 − 〈n〉2 − 〈n〉. (7)

In the SSE formalism, the Kubo integral can be discretized
in a compact form including all the propagated states in the
imaginary time [73] that reduces to staggered susceptibility
χs, which can be defined as follows:

χs(Q) =
〈

β

n(n + 1)

[( n−1∑
k=0

Mz
s (k)

)2

+
n−1∑
k=0

(
Mz

s (k)
)2

]〉
, (8)

where Q = (π, π, π ) is the 3D ordering wave vector and Mz
s

is the staggered magnetization, which is

Mz
s = 1

N

N∑
i=1

Sz
i (−1)xi+yi+zi . (9)

The dimensionless Binder parameters are defined as follows:

Q2 =
〈(

Mz
s

)2〉〈∣∣Mz
s

∣∣〉2 , (10)

Q4 =
〈(

Mz
s

)4〉〈(
Mz

s

)2〉2 , (11)

and they are independent of the system size at TN . Another
quantity is the spin stiffness that has a scaling behavior at the
critical point defined as the response to a boundary twist φ and
is given as (for quantum systems)

ρ = 1

N

∂2E (φ)

∂φ2

∣∣∣∣
φ→0

, (12)

where E (φ) is the energy of the twisted Hamiltonian. The esti-
mator for spin stiffness can be deduced from the Kubo integral
by averaging a nondiagonal spin current operator [71,76],
which gives a result in terms of the winding number. For the
present model (isotropic) we can improve the value of ρ by
averaging the estimator for each dimension,

ρ = 1

3β

∑
α

〈
W 2

α

〉
, α ∈ {x, y, z}, (13)

where

ωα = 1

L
(N+

α − N−
α ) (14)

is the winding number in the α direction. The numbers N+
α and

N−
α count the operators S+

i(b)S
−
j(b) and S−

i(b)S
+
j(b), respectively,

on bond b in the relevant direction. The essence of the SSE
technique, implemented for the present and similar systems, is
based on the operator loops [71,72] that can take into account
winding number sectors exactly, thus making the spin stiffness
a reliable quantity for critical analysis.

III. RESULTS AND DISCUSSION

There are several ways to determine the Néel temperature
kBTN/J of the considered system. We use three physical
quantities: The spin stiffness ρ and the dimensionless Binder
ratios Q2 and Q4 for all selected coupling ratios r. We first
consider the system size and temperature dependence of ρ.
It should be noted here that ρ can be measured from the
global winding number fluctuations in the system, within the
framework of SSE QMC [77]. According to the hyperscaling
theory, finite-size scaling of the spin stiffness can be written
as ρ = L2−d−z at the phase transition point [78]. Here d is
the dimension of the system (as noted before, d = 3 in our
study), while z is the dynamic critical exponent which is
zero for finite-temperature phase transitions. Therefore, Lρ

is independent of L at kBTN/J , which means that the curves
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FIG. 2. Thermal variation of ρL for varying values of system
sizes: L = 4, 6, 8, 12, 16, 24, 32, and 48. All curves are obtained for
r = 0.75/1.25. The dashed lines are added to guide the eye.

versus reduced temperature display an intersection point for
two different selected system sizes. We give thermal variations
of ρL for L = 4, 6, 8, 12, 16, 24, 32, and 48 at fixed coupling
ratio r = 0.75/1.25, as depicted in Fig. 2. It is clear from
Fig. 2 that ρL tends to vanish for kBT/J > kBTN/J , whereas
it begins to increase in the range of kBT/J < kBTN/J . The
curves corresponding to the different pairs of L as a function
of the temperature intersect almost a single point, showing
a sign of a phase transition between antiferromagnetic and
paramagnetic phases.

In Figs. 3 and 4, thermal variations of Q2 and Q4 are
depicted for the system with size L = 4, 6, 8, 12, 16, 24, 32,
and 48 at fixed coupling ratio r = 0.75/1.25. In Figs. 3 and 4,

FIG. 3. Thermal variation of Q2 for varying values of system
sizes: L = 4, 6, 8, 12, 16, 24, 32, and 48. All curves are obtained for
r = 0.75/1.25. The dashed lines are added to guide the eye.

FIG. 4. Thermal variation of Q4 for varying values of system
sizes: L = 4, 6, 8, 12, 16, 24, 32, and 48. All curves are obtained for
r = 0.75/1.25. The dashed lines are added to guide the eye.

we observe that the curves corresponding to varying system
sizes tend to cross each other in the vicinity of the phase
transition of the system.

We use the numerical data given for ρL, Q2, and Q4 to
obtain the intersection point of fixed L curves for the pairs
of (L, 2L). It is worth noting that the numerical data were
collected using a very small temperature step �kBT/J = 10−3

for the chosen temperature regions. Therefore, we can obtain
the intersection point with high accuracy using the reliable
power-law fits to extrapolate to infinite size, i.e., the L → ∞
limit. We give the 1/L dependence of T ∗

N , where the relevant
quantities cross each other, as displayed in Fig. 5. In Fig. 5, the
solid lines are fits to the function T ∗

N (L) = T∞ + aL−ω. Here
a is a constant, and ω is the crossing point shift exponent [71].

FIG. 5. Crossing points of the pair of the system sizes (L, 2L)
for ρL, Q2, and Q4 as a function of 1/L. Lines are fits to the equation
T ∗

N (L) = T (∞) + aL−ω. All curves are obtained for r = 0.75/1.25.
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When the relevant data points have L � 8, the scaling function
begins to behave well. All the extrapolated values indicate that
the Néel temperature is 0.92361(35) for the fixed coupling
ratio r = 0.75/1.25. Remarkably, it is clear from Fig. 5 that
spin stiffness crossing points converge on this value from
above while the dimensionless Binder ratios converge from
below. We note that observations similar to the types men-
tioned here have also been found in a variety of quantum
spin models. Two notable examples are the S = 1/2 quan-
tum Heisenberg bilayers [79] and dimerized/quadrumerized
Heisenberg models [47], where the corresponding quantum
phase transition points have been extracted in detail, instead
of the thermal phase transition observed here. We obtain
the critical temperatures for the remaining selected coupling
ratios using the same procedure followed for r = 0.75/1.25.
Our Monte Carlo simulations suggest that the critical tem-
peratures are 0.94075(3) and 0.861613(12) for r = 0.9/1.1
and r = 0.5/1.5, respectively. These results will be used to
estimate the critical exponents and check the data collapse
treatment of the staggered susceptibility and scaling behaviors
of the system.

Having determined the critical temperatures, we proceed
now with testing the expected scaling behavior of the system
for all considered coupling ratios r. According to the standard
FSS theory of the equilibrium magnetization 〈|Mz

s |〉 at the
critical point, the following power law can be used to obtain
the β/ν exponent: 〈∣∣Mz

s

∣∣〉 ∼ L−β/ν, (15)

where β is the critical exponent of the magnetization.
Figure 6(a) shows the log-log plots of the staggered mag-
netization versus the system with varying sizes L. Power-
law fits of the form of Eq. (15) give the critical expo-
nent ratios as β/ν = 0.514(1), 0.518(2), and 0.515(1) for
the coupling ratios r = 0.9/1.1, 0.75/1.25, and 0.5/1.5, re-
spectively. In addition to β/ν, we find the critical expo-
nent ratio γ /ν of the staggered susceptibility curve, which
can be estimated by benefiting from the following power
law [80,81]:

χs(Q) ∼ Lγ /ν. (16)

Here γ denotes the critical exponent of the staggered sus-
ceptibility. From the log-log plot, our numerical findings
suggest that the values of the exponent ratios are γ /ν =
1.967(4), 1.962(5), and 1.966(8), corresponding to the chosen
coupling ratios r = 0.9/1.1, 0.75/1.25, and 0.5/1.5, respec-
tively, as depicted in Fig. 6(b). Further evidence can be
provided via the critical exponent ν of the correlation length.
A simple way to estimate ν is to use the derivative of the
Binder cumulant at the critical point. It should obey the
relation [82]

dQ′
4

dK
∼ L1/ν, (17)

where Q′
4 = 1 − Q4/3 and K is the inverse temperature,

i.e., K = 1/kBT . Power-law fits of the form of Eq. (17) are

FIG. 6. Log-log plots of (a) the magnetization 〈|Mz
s |〉, (b) stag-

gered susceptibility χs(Q), and (c) the derivative of the Binder cumu-
lant dQ′

4/dK versus the system with sizes L = 4, 6, 8, 12, 16, 24, 32,
and 48. All curves are obtained for the considered coupling ratios of
r = 0.9/1.1, r = 0.75/1.25, and r = 0.5/1.5.
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FIG. 7. Finite-size scaling of the staggered susceptibility above
the Néel temperature for systems with L = 4, 6, 8, 12, 16, 24, 32,
and 48. All curves are obtained for the considered coupling ratios
of (a) r = 0.9/1.1, (b) r = 0.75/1.25, and (c) r = 0.5/1.5. The error
bars are smaller than the symbols.

displayed in Fig. 6(c). Our simulation results indicate that the
critical exponents for the correlation lengths are estimated as

ν = 0.706(7), 0.706(9), and 0.709(7) for the studied coupling
ratios r = 0.9/1.1, 0.75/1.25, and 0.5/1.5, respectively. To
briefly summarize, in view of the critical exponents estimated
above (i.e., β/ν, γ /ν, and ν), it is possible to say that the
critical exponents are in excellent agreement with the classical
3D O(3) Heisenberg model exponents [52,53].

For a final verification of the 3D O(3) Heisenberg uni-
versality class, we now continue to test the expected scaling
behavior of the system for T � TN for all considered cou-
pling ratios r. In the thermodynamic limit, the susceptibility
diverges as χ ∼ |t |−γ , where t = T − TN . Finite-size scaling
theory also predicts χL(t ) = χ∞(t ) f [ξ (t )/L]. Here ξ (∼t−ν)
is the correlation length [80,81]. Based on this definition, it is
possible to say that χL(t )tγ versus Ltν curves corresponding
to the varying system sizes should collapse onto a single
curve. We give the FSS scaling behavior of the staggered
susceptibilities in the vicinity of phase transition points of
the system with size L = 4, 6, 8, 12, 16, 24, 32, and 48 in
Fig. 7. Specifically, we display the curves referring to the
varying values of coupling ratios r = 0.9/1.1, 0.75/1.25, and
0.5/1.5, in Figs. 7(a), 7(b), and 7(c), respectively. For this,
γ , and ν exponent pairs have been used for each coupling
ratio r. Remarkably, the data collapse behavior observed here
provides a strong indication of the 3D O(3) Heisenberg uni-
versality in the second-order regime of the 3D antiferromag-
netic quantum Heisenberg model in the presence of quenched
disorder.

IV. CONCLUSION

In the present paper we investigated the effects of quenched
disorder on the critical and universality properties of the
3D quantum Heisenberg antiferromagnetic model. Specifi-
cally, we realized large-scale SSE QMC simulations on a
simple-cubic lattice with the system size L up to L = 48 at
various values of coupling ratios r. First, we obtained the
crossing point of ρL, Q2, and Q4 and then presented the
FSS behavior of the considered model to estimate the critical
temperatures with high accuracy for all selected coupling
ratios r. Having determined critical temperatures, we studied
the universality class of the disordered model based on the
critical exponents and data collapse analysis. Our simulation
results indicate that the critical behavior observed for the
considered model belong to the universality class of the pure
classical 3D O(3) Heisenberg universality class [52,53]. The
results given in this study also strongly support the fact that
the universality properties of the system do not depend on
the microscopic details of the Hamiltonian, i.e., spin-spin
interactions.

An important concept concerning disordered systems is the
Harris criterion, which states that the critical behavior of a
pure system is stable against disorder if the condition dν � 2
is satisfied. If the inequality does not meet the pure case of the
model, a new universality class with a new correlation length
exponent ν satisfying the criterion is expected to emerge [83].
The condition dν > 2 holds for the clean case of the present
model. Based on the outcomes reported in this paper, we
conclude that the Harris criterion is not violated since the
critical exponents were found not to change in the presence of
random bond couplings. Hence, the Harris criterion provides

064411-6



UNIVERSALITY IN THE THREE-DIMENSIONAL RANDOM … PHYSICAL REVIEW B 102, 064411 (2020)

insight into the criticality of the 3D Heisenberg model with
bimodal quenched disorder.

Finally, it would be interesting to investigate a new, alterna-
tive approach for stacked honeycomb lattices in 3D geometry.
A new model considering random bond dilution could provide
further understanding of the critical behaviors observed in
disordered magnetic systems.
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