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We investigate the factorization, coherence, and asymmetry properties of the one-dimensional Heisenberg
spin- 1

2 XXZ chain with Dzyaloshinskii-Moriya interaction (DMI) and a transverse magnetic field using quantum
information measures. Both longitudinal and transverse DM vectors are considered. Using numerical DMRG
methods, we compute bipartite entanglement estimators like the one-tangle, two-spin concurrence and quantum
coherence estimators like the Wigner-Yanase-skew information. We show that a longitudinal DMI destroys the
factorizability property while a transverse DMI preserves it. We relate the absence of factorizability to the
breaking of the U (1) rotation symmetry about the local magnetization axis at each lattice site. Physically, the
breaking of the symmetry manifests in the existence of a chiral current. Furthermore, we show that although
the longitudinal DMI destroys the factorization property, there is a “pseudofactorizing” field at which the
entanglement and hence violation of the U (1) symmetry is minimal. Our calculations indicate a phase coherent
ground state at hpf. An entanglement transition (ET) occurs across this field which is characterized by an
enhanced but finite range of two-spin concurrence in its vicinity in contrast with the diverging range of the
concurrence for the ET across the factorizing field. We relate the asymmetry to the “frameness” or the ability
for the state to act as a reference frame for some measurement. In the absence of the longitudinal DMI (or in the
presence of a transverse DMI), at the factorizing field, the single site magnetization axis serves to specify the
common z axis for the full system but not the full Cartesian reference frame due to a lack of phase reference.
On the other hand, in the presence of a longitudinal DMI, our results indicate that at the pseudofactorizing field,
the local magnetization and the chiral current are sufficient to specify the full Cartesian reference frame with the
chiral current serving as the macroscopic quantity to determine the phase reference.
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I. INTRODUCTION

An interesting and intriguing feature of a certain class of
quantum phase transitions (QPTs) is that they are associated
with the existence of a nontrivial “factorizability” property,
i.e., the quantum state becomes completely separable at cer-
tain parameter strengths [1]. The existence of such factorizing
points serves as a precursor signaling the existence of a QPT
associated with an entanglement transition (ET); there is a
crossover from one type of entanglement to another across
the factorizing field. ETs have been characterized by the
divergence of the range of pairwise entanglement close to the
factorization point [2–4]. The most notable example is that of
the Heisenberg spinS = 1

2 chain in an external magnetic field
where it was shown several years ago [1] that a factorizable
ground state emerges at a certain value of the magnetic field.
Further impetus in the subject has been provided by the use
of quantum information measures to elucidate the conditions
for the existence and location of such factorizable ground
states [5]. This has led to several studies of the effects of
additional interactions and generalizations to higher spins
on the critical and factorizability properties of the system
[6–9]. In this context, a particularly interesting additional in-
teraction to consider is the Dzyaloshinskii-Moriya interaction
(DMI) which is of the form �D · (�Sn × �Sn+1). The DMI, while

originally shown to arise from spin-orbit interaction [10],
occurs in a variety of physical contexts [11–14], and has been
shown to lead to several unusual effects like the field induced
gap in copper benzoate compounds [15], various field induced
phases, chiral order, magnetoelectric effects, etc. [16–20]. The
presence of DMI also modifies the entanglement and quantum
correlation properties [21–26].

In earlier work [19,20] we had studied the effect of a
longitudinal DMI Dz (which we interpreted there as an electric
field) in the anisotropic Heisenberg spin S = 1

2 XXZ model
and showed that it does not lead to any new phases; it
only modifies the phase boundaries; increasing the disordered
phase. An interesting question to ask is whether the DMI
modifies the entanglement properties of the system and, in
particular, whether the factorizability phenomenon is pre-
served in the presence of a DMI. While there are some recent
studies probing the effect of DMI on the factorization and
critical properties of the spin chains using quantum coherence
measures [23–26], most of these studies have either focused
on the analytically solvable XY model which can be mapped
into the free fermion model or used perturbative methods to
solve the interacting fermion model. In this work we address
the question of the effect of the DMI on the factorization,
coherence, and asymmetry properties of the one-dimensional
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spin- 1
2 anisotropic Heisenberg XXZ model in a transverse

magnetic field by analyzing the quantum information mea-
sures of entanglement and coherence. Specifically, we an-
alyze the entanglement properties by computing bipartite
entanglement and coherence estimators like the one-tangle
[2], two-spin concurrence [27], the Wigner-Yanase-skew in-
formation (WYSI) [28], etc. by using numerical DMRG
techniques. Both longitudinal and transverse DM vectors are
considered.

Our main result is that in the presence of the DMI, the
critical and factorizability properties crucially depend on both
the orientation and magnitude of the DMI. A transverse DMI
(below a certain critical strength) preserves the factorizability
property in the AFM phase. On the other hand, even a small
longitudinal DMI destroys the factorizability property. We
attribute the difference in the two cases to the breaking of a
local U (1) symmetry. In the absence of the DMI and at the
factorization point, the full many-body state can be described
by just one single parameter: the on-site magnetization. There
is a local U (1) rotation symmetry of the ground state about the
magnetization axis. An additional transverse DMI preserves
the local U (1) rotation symmetry, while the longitudinal DMI
breaks the symmetry. Physically, the breaking of the U (1)
symmetry manifests in the existence of a chiral current in
the antiferromagnetic phase in the presence of a longitudinal
DMI. Furthermore, we show that although the factorizability
property is lost in the presence of a longitudinal DMI, there
exists a “pseudofactorizing” (PF) magnetic field at which the
violation of the U (1) symmetry is minimal and the ground
state can be described by a macroscopic phase coherent wave
function with minimum bipartite entanglement and extremal
coherence. We also identify an ET across the PF field charac-
terized by an enhanced but finite range of pairwise entangle-
ment in the vicinity of the PF field. We relate the asymmetry
to the “frameness” [29,30]. In the absence of the longitudinal
DMI, at the factorizing field, the single site magnetization axis
serves to specify the common z axis for the full system but
not the full Cartesian reference frame due to a lack of phase
reference. On the other hand, in the presence of a longitudinal
DMI, our results indicate that at the pseudofactorizing field,
the local magnetization and the chiral current are sufficient
to specify the full Cartesian reference frame with the chiral
current serving as the macroscopic quantity to determine the
phase reference.

The paper is organized as follows: we begin in Sec. II
by presenting the results for the effect of a transverse DMI
on the ground state properties of the system using numerical
DMRG methods. We obtain the ground state phase diagram
by computing various ground state quantities like the en-
ergy gaps, magnetization, spin currents, etc. By computing
the bipartite entanglement estimators, namely the one-tangle
and two-spin concurrence, we show that the transverse DMI
preserves the factorizability property. We then discuss the
corresponding results for the case of a longitudinal DMI and
show that it destroys the factorizability property. The nature
of the entanglement in the different phases and associated
entanglement transitions is described in Sec. III. The quantum
coherence and symmetry properties in the presence of DMI
are described in Sec. IV. Finally, we conclude with a brief
summary and discussion of our results in Sec.V.

II. XXZ CHAIN IN THE PRESENCE OF DMI

The anisotropic Heisenberg spin- 1
2 XXZ chain in the

presence of magnetic fields and the Dzyaloshinskii-Moriya
interaction is described by the Hamiltonian

H =
N∑

i=1

[
J
(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + �Sz

i Sz
i+1

)

+ �D · (�Si × �Si+1) − �h · �Si
]
, (1)

where Sa
i , with a = x, y, z, describe the components of the

spin 1
2 operator at the ith site along the chain, � is the

easy-axis anisotropy (the xy plane being the easy plane), �h
denotes the external magnetic field, while �D, the DM vec-
tor, couples to the chirality operator �K ≡ �Si × �Si+1. In the
absence of the magnetic field and DMI, and for large Ising
anisotropy, the XXZ model has an antiferromagnetic (AFM)
ground state. External magnetic fields modify the ground state
behavior depending on the strength and direction of the field.
Longitudinal magnetic fields directed along the z direction
disorder the AFM order at a certain critical field hc1 leading to
a critical gapless regime for hc1 < hz < hc2. At critical field
strength hc2, there is a transition from the critical gapless
phase to a gapped saturated ferromagnetic (FM) behavior
leading to a gapped regime with FM order for field strengths
hz > hc2. At the critical field hc2, where the transition from the
critical gapless phase to the gapped saturated ferromagnetic
(FM) phase occurs, all quantum correlations get suppressed
and the ground state becomes the classical fully separable
ferromagnetic state.

Transverse magnetic fields, on the other hand, cause a
phase transition from an AFM ordered phase to a FM polar-
ized phase at a critical field strength hx = hcr with the field
induced magnetization saturating only as hx → ∞. While
one would expect then that all quantum correlations get
suppressed only as hx → ∞, remarkably, due to an intricate
balancing between the exchange interactions and the external
field, there exists an intermediate nontrivial field strength
h f (< hcr) within the AFM phase, at which the ground state
becomes a classical, fully separable factorized state [1]. Fur-
thermore, it has been shown that the existence of such a factor-
ization field signals a so-called entanglement transition where
the entanglement changes between parallel and antiparallel
types in the ground state concurrence and is characterized by
the divergence of the range of pairwise entanglement close
to the factorization point [2]. In earlier work [19,20] we
had studied the effect of a longitudinal DMI Dz (which we
interpreted there as an electric field) in the anisotropic XXZ
model and showed that it does not lead to any new phases; it
only modifies the phase boundaries; increasing the disordered
phase. For Dz smaller than a certain critical strength Dc,
there are two gapped phases: an antiferromagnetically ordered
phase (AFMz) for hx < hcr and a gapped ferromagnetic (FMx)
phase for hx > hcr. The AFMz phase corresponds to a phase
with a staggered magnetization Mz

s along the z direction and a
uniform magnetization Mx along the x direction [20]. There is
also a finite chiral current 〈Kz〉 (termed as electric polarization
Py in Ref. [20]) in this phase. The transition to the FMx phase
occurs at a critical transverse field strength hx = hcr, the value
depending on the strength of Dz. In this work we study the

064409-2



FACTORIZATION, COHERENCE, AND ASYMMETRY IN … PHYSICAL REVIEW B 102, 064409 (2020)

interplay of the effect of a transverse magnetic field and DMI
on the quantum correlation properties by analyzing various
bipartite quantum correlation measures, specifically, the one-
tangle, two-spin concurrence and the WYSI. In particular, we
investigate the question of the existence of the ground state
factorizability phenomenon in the presence of a DMI. We
consider both longitudinal and transverse DMI.

The bipartite quantum correlation measures can be ob-
tained from the two-spin reduced density matrix ρ

(2)
i j by trac-

ing out from the full ground state density matrix, all the spins
except those at the lattice sites i and j. It can be expressed
most generally in terms of the various two spin correlation
functions as

ρ
(2)
i j = 1

4

⎛
⎜⎜⎜⎝

a+ e+ h+ f−
e∗
+ a− f+ h−

h∗
+ f ∗

+ c− e−
f ∗
− h∗

− e∗
− c+

⎞
⎟⎟⎟⎠,

where (σ a
i = 2Sa

i )

a± = 1 + (〈
σ z

i

〉 ± 〈
σ z

j

〉) ± 〈
σ z

i σ z
j

〉
,

c± = 1 − (〈
σ z

i

〉 ± 〈
σ z

j

〉) ± 〈
σ z

i σ z
j

〉
,

e± = 〈
σ x

j

〉 − i
〈
σ

y
j

〉 ± (〈
σ z

i σ x
j

〉 − i
〈
σ z

i σ
y
j

〉)
,

f± = 〈
σ x

i σ x
j

〉 ± 〈
σ

y
i σ

y
j

〉 ± i
(〈
σ x

i σ
y
j

〉 ∓ 〈
σ

y
i σ x

j

〉)
,

h± = 〈
σ x

i

〉 − i
〈
σ

y
i

〉 ± (〈
σ x

i σ z
j

〉 − i
〈
σ

y
i σ z

j

〉)
. (2)

The one-spin reduced density matrix ρ
(1)
i at lattice site i can

be then obtained by tracing out, say, the second spin from the
above ρ (2) as

ρ
(1)
i =

(
a+ + a− h+ + h−
h∗

+ + h∗
− c+ + c−

)
. (3)

The one tangle in the spin systems we consider is defined as
an entropic measure of the bipartite entanglement between a
single spin, say at the ith site, and the rest of the spins and can
be obtained in terms of the one-spin reduced density matrix
ρ

(1)
i as

τi = 4 · detρ (1)
i = 1 − 4〈�Si〉2. (4)

It represents a global estimate of the entanglement in a
translationally invariant system since it does not depend on
the site (we therefore drop in the following, the site index
in τ ). It has been shown that the vanishing of the one tangle
is a necessary and sufficient condition for the existence of a
factorized ground state in a translationally invariant system
[31]. It is most useful when the state of the system is pure; for
a mixed state, the one tangle actually gives us an upper bound
on the amount of entanglement. The two-spin concurrence
Ci,i+n quantifying the entanglement of a pair of spins is
defined as [32]

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (5)

where the λi′s(� 0) are the square roots in decreasing order
of the eigenvalues of the non-Hermitian matrix R = ρ

(2)
i j ρ̃

(2)
i j

where ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) is the spin-flipped density
matrix corresponding to the two-spin density matrix ρ (2)

[27,32].

A. Effect of a transverse DMI

We begin with the case where both the magnetic field
and the DM vector are pointing along the x axis; or a trans-
verse magnetic field hx, and a transverse DMI Dx (Dz = 0).
We compute numerically (using the ALPS DMRG appli-
cation [33]) the energy gaps, various physical observables
like magnetization and chiral currents, and also the bipartite
entanglement measures, namely the one-tangle and two-spin
concurrence, in order to identify and characterize the different
phases. The behavior of the staggered magnetization Mz

s , the
uniform chiral order Kx, uniform magnetization Mx, and the
staggered chiral order Ky

s as a function of hx − Dx are shown
in Figs. 1(a)–1(d). Depending on the relative strengths of
the transverse magnetic field and the DM field, three distinct
phases can be identified as shown in Fig. 1:

(i) Staggered chiral antiferromagnetic AFMz phase: For
field strengths hx < hc, Dx < Dc, there is a gapped phase with
near-saturation antiferromagnetic magnetic order along the z
direction, unsaturated Mx, and a staggered chiral order Ky

s

along the y direction as shown in Figs. 1(a)–1(d). The stag-
gered chiral order Ky

s is induced by the transverse magnetic
field and for small hx, is linearly proportional to hx.

(ii) Field induced ferromagnetic FMx phase: For transverse
magnetic fields larger than the critical field strength hc (hx >

hc) and Dx < Dc, there is a ferromagnetic phase with only
induced saturated ferromagnetic Mx order as can be seen from
Figs. 1(a) and 1(c). Furthermore, it can be seen from Figs. 1(b)
and 1(d) that there is no chiral order in this phase.

(iii) Chiral phase: For large D-M interaction strength
beyond a certain critical value D∗

x (Dx > Dc), and magnetic
field strengths hx < hc, there is a uniform chiral phase with
only an induced uniform chiral order Kx as shown in Figs. 1(b)
and 1(d). There is no magnetic order in this phase as can be
seen from Figs. 1(a) and 1(c).

The entanglement properties of the system can be analyzed
from the behavior of the one tangle and concurrence in the dif-
ferent phases which we show in Figs. 2(a)–2(e). The magnetic
and entanglement properties have been summarized by the
schematic shown in Fig. 2(f). The hx − Dx dependence of the
one tangle is shown in Fig. 2(a). We also plot in Figs. 2(b) and
2(c) the single parameter dependencies of τ in order to obtain
a better understanding of the behavior of τ in the different
phases. From Fig. 2(a) we can observe that the one tangle
shows distinct behavior in the three phases. The one-tangle
τ is small in the magnetically ordered FMx and AFMz phases
while it is large and goes to a maximum (τ = 1) in the uniform
chiral phase. In the absence of the DMI (Dx = 0), the one
tangle has a nonmonotonic hx dependence as can be seen from
Figs. 2(a) and 2(b), starting from a finite value at hx = 0 (in
our case τ ∼ 0.1 at hx = 0), which decreases with an increase
in hx, vanishes to zero at hx = h f , then rises sharply to a
maximum at hx = hcr, and then slowly decreases monotoni-
cally as hx increases further. The vanishing of the one tangle
at hx = h f marks the existence of a factorized or separable
state at hx = h f [1] while the sharp rise in τ at hx = hcr

signals the transition from the AFMz phase to the FMx phase.
Furthermore, it can be seen from the above plots that even in
the presence of Dx, the one tangle has a similar nonmonotonic
hx dependence for Dx < D∗

x , where D∗
x is the value beyond
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FIG. 1. The hx − Dx dependence of the (a) staggered z-
magnetization per site Mz

s , (b) uniform chiral order per bond in
the x direction Kx , (c) uniform x magnetization per site Mx , and
(d) staggered chiral order Ky

s per bond. The DMRG computations
were performed on a 64 site chain with open boundary conditions
for anisotropy � = 4.5. The truncation error in the DMRG program
was set to 10−6, with ten sweeps. We restricted the maximum number
of allowed states for a block to 70.

which the chiral phase emerges when hx = 0. In general, the
chiral phase emerges at DUx, for the corresponding value hUx

of the magnetic field [see Fig. 2(f)]. For Dx values greater than
DUx, the one tangle does not vanish for any hx although the

hx dependence remains nonmonotonic. For example, it can
be seen from Fig. 2(b) that at Dx = 1.4, τ starts from the
saturated value τ = 1, begins to drop sharply after the point
(hUx, DUx ) (not marked), decreases to a nonzero minimum
at hx ≈ 3.5, rises to a sharp maximum, and then decreases
slowly to zero as hx → ∞, in the FMx phase. Similar behavior
occurs for D∗

x < Dx < DT x, i.e., on the curve VU . As Dx is
further increased, for Dx > DUx, i.e., to the right of the curve
VU in Fig. 2(f), there are two phases: the uniform chiral phase,
with an almost saturated τ (≈ 1), and the FMx phase, with a
small τ . The hx dependence of τ in this region shows a kink at
the transition between the uniform chiral and the FMx phases
as can be seen from Fig. 2(b). From the Dx dependence (for
fixed hx) of the one tangle shown in Fig. 2(c), we can see
that for small hx values (hx < hcr), the one tangle has almost
a constant small value for Dx < DUx and rises sharply to its
maximal value at Dx > DUx For hx values greater than hcr,
there is a transition between FMx phase (for Dx < DUx) to
the chiral phase (for Dx > DUx) with the one tangle which is
almost constant in the FMx phase changing abruptly to another
constant value in the chiral phase as can be seen from the
plot shown in Fig. 2(c) for say hx = 3.9. We next examine
the behavior of the two-spin concurrence. From Fig. 2(d),
which shows the hx − Dx dependence of the nearest neighbor
(NN) concurrence, we can see that the NN concurrence has a
qualitatively similar behavior to the one tangle. In the AFMz

phase, there is a similar nonmonotonic hx dependence as the
one tangle in the AFMz phase, vanishing identically along the
factorizing curve inside the AFMz region and rising sharply in
the transition region to the FMz phase. The NN concurrence
becomes large in the chiral phase. We also comment here
on a notable difference between the one tangle and the NN
concurrence: the two quantities behave quite differently in
the transition region from the chiral phase to the FMx region.
While the one tangle does not vanish for any hx outside of the
AFMz region, the NN concurrence nearly vanishes near the
transition from the chiral to the FMx region as can be seen
from Fig. 2(d). A valley of minima in the NN concurrence is
seen in this region, whereas in case of the one tangle, there
is a kink at the transition, but no minimum. As one moves in
parameter space in the direction of increasing hx, one encoun-
ters a minimum in Ci,i+1, before the chiral-FMx transition.
Ci,i+1 decreases monotonically to a minimum before the phase
transition, then increases to a maximum in the FMx phase and
then decreases asymptotically to zero. This implies that the
pairwise entanglement decreases as one nears the transition
to the ferromagnetic phase in the hx − Dx parameter space.
However, one does not observe any minimum in the one tangle
near the chiral-FMx phase transition. The one tangle is large
in the chiral phase, and decreases as one moves towards its
boundary with the FMx phase with a kink in the one tangle at
the transition. In particular, both the one-tangle and two-spin
concurrence vanish at the factorizing field as can be seen
from the semilog plots of the hx dependence of the one-tangle
and NN two-spin concurrence for representative Dx values
shown in Fig. 2(e). Thus the one-tangle and the two-spin
concurrence characterize distinct entanglement behavior in
the three phases and three transition regions which we have
summarized by the schematic in Fig. 2(f). The magnetically
ordered phases correspond to regions with small τ and NN
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FIG. 2. (a) The hx − Dx dependence of the one-tangle τ . (b) The hx dependence of τ for different Dx values. (c) The Dx dependence of τ

for different hx values. (d) The hx − Dx dependence of the nearest neighbor concurrence. (e) The semilog plot of the one tangle as a function
of hx in the absence and presence of Dx . It vanishes at hx = hf ∼ 3.316 both in the presence and absence of Dx . The inset shows the hx − Dx

dependence of the NN concurrence Ci,i+1. (f) Schematic ground state phase diagram with hx and Dx as parameters, obtained using DMRG
computations of energy gaps and various observables like the magnetizations, entanglement measures, etc. The factorizing curve is the dashed
curve lying inside the AFMz phase. All other parameters are as in Fig. 1.

concurrence while the magnetically disordered chiral phase
corresponds to a phase with maximal τ and large NN con-
currence. In the vicinity of the sharp peak representing the
AFMz-FMx transition, there is a “factorizing” curve inside the
AFMz phase [marked as the dashed red curve in the AFMz

phase in the schematic shown in Fig. 2(f)], along which the
one tangle vanishes (τ = 0); the one tangle rises sharply to
a maximum at hx = hcr along the critical curve (marked in
the schematic as the green curve). The NN concurrence also
vanishes identically along the factorizing curve. The occur-
rence of the factorizing line and the sharp peak in its vicinity
can be used to identify the AFMz-FMx transition, and thus the
two magnetically ordered phases AFMz and FMx. The chiral
phase has a maximal τ value which is characteristic of a phase
possessing a nonzero spin current Kx. The maximal value of

τ also implies that in this phase, every spin is maximally
entangled with its complement, i.e., the rest of the system,
or in other words, entanglement is purely multispin and the
state of the system is a maximally entangled state, an n-qubit
equivalent of two-qubit Bell states in this phase. Furthermore,
we find that there is no factorizing curve in the transition from
a magnetically ordered phase to the chiral phase.

B. Effect of a longitudinal DMI

In previous work [19,20] we had shown that a longitudinal
DMI Dz (which we interpreted there as an electric field)
in the spin- 1

2 anisotropic XXZ model does not lead to any
new phases; it only modifies the phase boundaries; increasing
the disordered phase. For Dz smaller than a certain critical
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FIG. 3. (a) The hx − Dz dependence of the one-tangle τ . The factorizing field hf and the pseudofactorizing (PF) field hpf(Dz ) both occurring
inside the AFMz phase are marked in the figure. The DMRG computations were performed on a 256 site chain with open boundary conditions.
The anisotropy � is set to 4.5. The truncation error in the DMRG program was set to 10−6, with ten sweeps and maximum number of states kept
not exceeding 70. (b) The semilog plot of the one tangle as a function of hx in the absence and presence of Dz. It vanishes at hx = hf ∼ 3.316
for Dz = 0, but attains a nonzero minimum value at hpf for Dz = 0.1, 0.5, 1.0, marked by vertical dotted lines from left to right, respectively.
The inset shows the similar hx − Dz dependence of the nearest neighbor concurrence Ci,i+1. (c) Two-spin concurrence Ci,i+n, n = 1, 2, 3, 4, 5, in
the absence of Dz. All vanish at hx = hf = 3.316. The range increases in the vicinity of hf . (d) In the presence of Dz, the number of entangled
pairs has decreased and Ci,i+1 is a finite minimum at hx = hpf = 3.64. The kink in Ci,i+2 marked by the arrow indicates the AFMz-FMx phase
transition. [In (b), (c), and (d), the computations were performed on a N = 64 site chain. We also added a small hz = 0.1 to break the Z2

symmetry.]

strength Dc, there are two gapped phases: an antiferromag-
netically ordered phase (AFMz) for hx < hcr and a gapped
ferromagnetic (FMx) phase for hx > hcr. The AFMz phase
corresponds to a phase with a staggered magnetization Mz

s
along the z direction and a uniform magnetization Mx along
the x direction [20]. There is also a finite chiral current 〈Kz〉
(termed as electric polarization Py in Ref. [20]) in this phase.
The transition to the FMx phase occurs at a critical transverse
field strength hx = hcr, the value depending on the strength
of Dz. We discuss here the behavior of the one-tangle and
two-spin concurrence in the presence of a longitudinal DMI.

In Fig. 3(a) we show the hx − Dz dependence of the
one tangle. The regions marked (AFMz)FMx correspond to
gapped phases with (anti)ferromagnetic order along (z)x di-
rection, respectively, while the region marked Cz corresponds
to the gapless magnetically disordered chiral phase. One can
see from the figure that in general, the one tangle has a small
value in the magnetically ordered regions while it becomes
large in the chiral phase. In the absence of Dz, the one tangle
vanishes identically at the factorizing field hx = h f which
occurs inside the AFM phase just before the QPT to the FM
phase. On the other hand, for a nonzero Dz, the one tangle
does not vanish at any hx; however, there is a field hpf at

which it goes to a (nonzero) minimum. The hx dependence
of the tangle can be better seen from the semilog plot of τ as
a function of hx shown in Fig. 3(b) for representative values
of Dz. The tangle shows a nonmonotonic hx dependence both
in the absence and presence of Dz; τ monotonically decreases
with increasing hx, goes to a minimum at hx = h f (= hpf) for
Dz = 0( �= 0), sharply rises near the critical field hx = hcr, and
then decreases monotonically with hx. The NN concurrence
shows similar nonmonotonic hx behavior as that of the tangle.
As can be seen from the semilog plot of the nearest neighbor
(NN) concurrence Ci,i+1 shown in the inset of the figure. We
note that just like the one tangle, in the presence of Dz, the
NN concurrence does not vanish identically at any hx although
it goes to a (nonzero) minimum value at hx = hpf, unlike
the case Dz = 0 where the concurrence vanishes identically
at h = h f . Thus we find that both the one tangle and NN
concurrence go to a nonzero minimum at hx = hpf for Dz �= 0,
corroborating the result of a minimum nonzero entanglement
in the ground state at hx = hpf in the presence of Dz.

We also examine the behavior of the concurrence for spins
separated by distances n > 1. The log plots of the hx depen-
dence of Ci,i+n (for Dz = 0, 1) are shown in Figs. 3(c) and
3(d). It can be seen from Fig. 3(c) that in the absence of Dz,
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the concurrence Ci,i+n vanishes for any separation of the spins
at the factorizing field h f . Furthermore, the range of pairwise
entanglement diverges with more and more concurrences
beyond nearest neighbors becoming nonzero on both sides of
the factorizing field (h f ∼ 3.3) or in other words, there is an
accumulation of pairwise entanglement about the factorizing
point with the concurrences all vanishing exactly at the factor-
izing field. Such a divergence in the range of the concurrence
is characteristic of an ET occurring at the factorizing field
with a crossover from one type of entanglement to another
[3]. [We also mention here that similar results are obtained
for the higher order concurrence for a transverse DMI (Dx <

DUx ), with the range of the two-spin concurrence showing a
diverging behavior similar to that shown in Fig. 3(c).] The
behavior of the higher order concurrences in the presence
of Dz as shown in Fig. 3(d), is different. When Dz �= 0,
all the two-spin concurrences vanish identically at h = hpf

for separations n � 2. In the vicinity of hpf, the range of
the concurrence increases but remains finite, with the range
decreasing as Dz increases.

III. ENTANGLEMENT TRANSITION IN THE PRESENCE
OF TRANSVERSE AND LONGITUDINAL DMI

In this section we discuss the nature or type of the en-
tanglement in the different phases and the existence of an
entanglement transition in the presence of the DMI. The type
of the entanglement between two spins in the spin system can
be probed by using the relations between the pairwise con-
currence and the occupation probabilities relative to specific
sets of two-spin quantum states [3]. Specifically, we study
the dependence of the occupation probabilities of different
basis states on the transverse magnetic field and DMI. We
also discuss the existence of an ET by studying the nature
of the two-spin concurrence. The diagonal elements of the
reduced two-spin density matrix are the respective occupation
probabilities of the basis states. The different bases considered
for each pair of spins are

Z1 ≡ {|uI〉, |uII〉, |uIII〉, |uIV〉}; X1 ≡ {|vI〉, |vII〉, |vIII〉, |vIV〉},
Z2 ≡ {|e1〉, |e2〉, |e3〉, |e4〉}; X2 ≡ {| f1〉, | f2〉, | f3〉, | f4〉},
Z3 ≡ {|uI〉, |uIV〉, |e3〉, |e4〉}; X3 ≡ {|vI〉, |vIV〉, | f3〉, | f4〉},

(6)

where

|uI〉 ≡ |↑↑〉, |uII〉 ≡ |↑↓〉, |uIII〉 ≡ |↓↑〉,
|uIV〉 ≡ |↓↓〉, |e1〉 = 1√

2
(|uI〉 + |uIV〉),

|e2〉 = 1√
2

(|uI〉 − |uIV〉), |e3〉 = 1√
2

(|uII〉 + |uIII〉),

|e4〉 = 1√
2

(|uII〉 − |uIII〉). (7)

Here the single-spin states |↑〉| and |↓〉 are eigenstates of the
operator Sz with eigenvalues 1/2 and −1/2 respectively. Z1

and Z2 are the standard and Bell bases, respectively, and Z3

is called the mixed basis [3]. The two-spin bases X1,X2,X3

are the standard, Bell, and mixed basis, respectively, defined

in terms of single-spin eigenstates of the operator Sx. Specifi-
cally,

|vI〉 ≡ |→→〉, |vII〉 ≡ |→←〉, |vIII〉 ≡ |←→〉,
|vIV〉 ≡ |←←〉, | f1〉 = 1√

2
(|vI〉 + |vIV〉),

| f2〉 = 1√
2

(|vI〉 − |vIV〉), | f3〉 = 1√
2

(|vII〉 + |vIII〉),

| f4〉 = 1√
2

(|vII〉 − |vIII〉), (8)

and the single-spin states |→〉| and |←〉 are eigenstates of the
operator Sx with eigenvalues 1/2 and −1/2, respectively. The
states |→〉| and |←〉 may be written in terms of the single-spin
eigenstates of the operator Sz as

|→〉| = 1√
2

(|↑〉 + |↓〉), |←〉 = 1√
2

(|↑〉 − |↓〉), (9)

which leads to the identities

| f1〉 = |e1〉, | f2〉 = |e3〉, | f3〉 = |e2〉, | f4〉 = |e4〉.
(10)

Denoting the probabilities of the states in the Bell basis
Z2 as pi, we can see from Eq. (7) that p1, p2 correspond to
states with parallel spins while p3, p4 correspond to states
with antiparallel spins. In all the three bases, the states with
parallel and antiparallel spins do not mix with each other. Due
to the above identity, the probabilities pi of the states in the
Bell basis Z2 can be related to the probabilities pix of the states
in the Bell basis X2 as

p1x = p1; p2x = p3; p3x = p2; p4x = p4. (11)

Figure 4(a) shows the occupation probabilities in the Bell
basis Z2 for the central bond of the chain as functions of hx for
different values of Dx. In the absence of DMI (Dx = 0) we can
see from the plot that in the AFMz phase (hx < hcr), p3 and p4,
which are the probabilities corresponding to the antiparallel
spin states, dominate over the probabilities p1 and p2; also
p4 > p3. For hx > hcr, i.e., in the FMx phase, it is convenient
to use the X2 basis for interpreting the plot: then we see that
p3(= p2x ) is the dominant probability followed by p1(= p1x )
while p2(= p3x ) is the smallest occupation probability. As hx

increases, p4(= p4x ) decreases monotonically going to zero
asymptotically in the limit hx→∞. Thus, for hx > hcr, the
probabilities p1x and p2x of the parallel spin states (with
respect to the Bell basis X2) are the largest and p2x > p1x.
These observations indicate the presence of antiparallel entan-
glement in the z component of the spin on the AFM side of the
factorizing field and parallel entanglement in the x component
on the other side. We also note that the transverse magnetic
field breaks the symmetry in probability between the states e1

and e2; in the absence of hx, p1 = p2, a finite hx favors the
occurrence of the state e1 over the state e2. In the presence of
the transverse DMI, the occupation probabilities show similar
behavior for Dx < Dc.

In order to understand better the change in the probabilities
across the AFMz-chiral phases as well as the FMx-chiral
phases, the appropriate basis to consider in the chiral phase are
the eigenstates of the chiral operator Kx = Sy

i Sz
i+1 − Sz

i Sy
i+1.
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FIG. 4. (a) The hx dependence of the occupation probabilities
of the two-spin state in the Bell basis for the central bond of a 64
site chain for different Dx values. (b) The Dx dependence of the
occupation probabilities of two-spin states in the chiral Kx basis for
the central bond of a 64 site chain for different hx values. All other
parameters are as in Fig. 1.

Expressing the Pauli matrices in the representation: |↑〉 =
(1 0)T ; |↓〉 = (0 1)T , Kx may be written as

Kx = Sy
i Sz

i+1 − Sz
i Sy

i+1 = i

⎛
⎜⎝

0 1 −1 0
−1 0 0 1
1 0 0 −1
0 −1 1 0

⎞
⎟⎠. (12)

The eigenvalues of this operator are 0, 0, −2, and 2, and the
corresponding eigenvectors are

v1 = 0.5
(
1 1 1 1

)T
, v2 = 0.5

(
1 −1 −1 1

)T
,

v3 = 0.5
(
1 −i i −1

)T
, v4 = 0.5

(
1 i −i −1

)T
.

(13)

v1 = |→→〉 and v2 = |←←〉 are eigenstates of the Sx
i ⊗ Sx

i+1
operator and are product states, hence unentangled. On the
other hand, v3 and v4 are entangled and cannot be written as a
separable product of two single-spin states. Denoting the cor-
responding probabilities as pv1, pv2, pv3, and pv4, we note that
pv1 = pI, the probability for the state |↑↑〉, and pv2 = pIV, the
probability for the state |↓↓〉, which are both nonentangled

states. We show the Dx dependence of the probabilities of
the Kx basis for the central bond of the chain for different
values of hx in Fig. 4(b). The first thing we note is that in
AFMz and FMx phases, all probabilities are independent of
Dx; the values are determined only by hx while in the chiral
phase, the probabilities show both hx and Dx dependence.
In the AFMz phase, pv3 = pv4. As expected, an increase
in hx increases pv1(= pI ) towards saturation and decreases
pv2(= pIV) towards zero. In the FMx phase, (hx � hcr), pv1

is maximum (∼1) and pv2 ∼ 0. The other two probabilities
pv3 and pv4 are both very small (∼0) in the ferromagnetic
phase. There is a sharp change in behavior of pv1 at the
chiral-FMx QPT (for Dx ≈ Dc), pv3 and pv4 which are equal
in the AFMz phases split in the chiral phase, where pv3 > pv4.
As Dx increases further, the difference between pv3 and pv4

increases with pv3 saturating towards the value 1/2.
We now consider the case of a longitudinal DMI. We show

the hx dependence of the probabilities in the Bell basis in
the presence of a longitudinal DMI Dz in Figs. 5(a)–5(c). We
observe that even in the presence of Dz, the antiparallel spin
states of the Z2 basis (Bell basis for the Sz components) dom-
inate in the AFM phase while the parallel spin states of the
X2 basis (Bell basis for the Sx components) dominate in the
FMx phase. (We do not show the results for large Dz values,
since the results are similar to the case of a transverse DMI
with the difference that the chiral phase here is characterized
by the chiral current Kz.)

The existence of an entanglement transition across the
AFMz-FMx transition can be obtained by studying the nature
of the two-spin concurrence [2,4]. In the absence of sponta-
neous symmetry breaking (Mz = 0), the concurrence can be
expressed as [2,4] Ci j

2 = max{0,C(1)
i j ,C(2)

i j } where

C(1)
i j =

√(
gzz

i j − gyy
i j

)2 + (
gzy

i j + gyz
i j

)2 −
√(

1
4 − gxx

i j

)2 − δS2
x ,

C(2)
i j =

√(
gzz

i j + gyy
i j

)2 + (
gzy

i j − gyz
i j

)2 −
√(

1
4 + gxx

i j

)2 − M2
x ,

(14)

C(2) represents antiparallel entanglement (along z direction)
while C(1) denotes parallel entanglement along x direction.
In Fig. 6 we show the hx dependence of C(1)

i j ,C(2)
i j and the

numerically computed Ci j

2 for the nearest neighbor spins.
We can see from Fig. 6(a) that in the absence of DMI, the
factorizing field hx = h f distinguishes two field regions with a
different expression for the concurrence: C(1)

i j < 0 < C(2)
i j for

hx < h f , whereas C(2)
i j < 0 < C(1)

i j for hx > h f . C(1)
i j and C(2)

i j
vanish and cross exactly at hx = h f = 3.316. Thus there is an
entanglement transition across the factorizing field with the
nature of the entanglement changing from an antiparallel en-
tanglement along z direction to a parallel entanglement along
x direction. We also note that it can be seen from our plot
that for hx > h f the concurrence estimated from C(1) matches
very well with the numerically computed concurrence but
for hx < h f , the matching between the concurrence estimated
from C(2) and the numerically evaluated value is not that
accurate. This is in agreement with earlier results that while
in the presence of spontaneous symmetry breaking Mz �= 0
as happens when hx < hcr, the concurrence estimated from
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FIG. 5. (a) Occupation probabilities of two-spin states in the Bell
basis Z2 as functions of hx , for (a) Dz = 0.0, (b) Dz = 0.5, and (c)
Dz = 1.0 for a N = 64 site chain. A small hz = 0.1 has been added to
prevent degeneracy effects due to Z2 symmetry. All other parameters
are as in Fig. 1.

Eq. (14) are not in general expected to match with the actual
values of the concurrence; the concurrence estimated from
the above equation is accurate when hx > h f but represents
a lower bound to the concurrence for hx < h f . A similar plot
is obtained for a transverse DMI Dx(< DUx ).

In the presence of the longitudinal DMI Dz as shown in
Fig. 6(b), C(2) and C(1) do not cross at hpf. Furthermore, we
can see that C(2)

i j is a very poor approximation for C/2 for
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FIG. 6. Comparison of the analytic expressions for the con-
currence C (1)

i j and C (2)
i j defined in Eq. (14), with the numerically

calculated half of the concurrence C/2: (a) in the absence of Dz, and
(b) in the presence of Dz.

hx < hpf although C(1) matches very well with C for h >

hcr. However, one observes that the pseudofactorizing field
still distinguishes between regions with a dominant C(2)

i j for
hx < hpf and a dominant C(1) when hx > hpf indicating the
presence of an entanglement transition even in the presence
of the longitudinal DMI. This indicates that although there is
no factorizing field in the presence of a longitudinal DMI, at
which the ground state is fully classical, there is still an en-
tanglement transition across the pseudofactorizing field with
the nature of the entanglement changing across the QPT. As
seen from the results in the previous section, in the vicinity of
hpf, there is an enhanced but finite range of the concurrence in
contrast to the diverging range of the concurrence associated
with the ET across the factorizing field in the absence of Dz.

IV. QUANTUM COHERENCE AND ASYMMETRY

We discuss in this section the connections between the
factorizability phenomenon in the AFMz phase with symme-
try and coherence properties. The factorizability condition for
the ground state |G〉, namely |G〉, is factorized if and only if
the single spin tangle vanishes for all spins k in the lattice
can be recast as a condition for the invariance of the state
under unitary rotations about the local magnetization axis
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m̂k ≡ �Mk/| �M| at the site k [6]:

|G〉 = Ūk|G〉; Ūk = ⊗ j �=kI j ⊗ Āk; Āk = m̂k · �Sk .

The trace distance between the states |G〉 and Ūk|G〉 is related
to the one tangle as dk ≡

√
1 − |〈GŪkG〉|2 = √

τ k . Thus the
one tangle can also be interpreted as a quantifier of the
rotation asymmetry of the N spin ground state about the local
magnetization axis at each lattice site. The vanishing of the
one tangle in the AFMz phase, exactly at the factorizing field,
implies then that the ground state of the XXZ model acquires
a U (1) rotation symmetry about the local magnetization axis
m̂k , although the Hamiltonian itself does not commute with
Ūk . An additional transverse DMI preserves the factorizability
phenomenon in the AFMz phase and hence the U (1) rotation
symmetry at hx = h f . On the other hand, since in the presence
of a longitudinal DMI, the one spin tangle does not vanish at
any field, it implies that the U (1) rotation symmetry about the
local magnetization axis at each site is broken at all values of
hx with minimal breaking of the symmetry at hx = hpf.

Another natural information theoretic measure to analyze
the asymmetry properties of a quantum state is the Wigner-
Yanase skew information (WYSI), I (ρ, X ) = − 1

2 Tr[
√

ρ, X ]2

[28,34]. Here ρ is a quantum state (in general, mixed) and X is
a physical observable. A state ρ is left invariant by measuring
an observable X (assumed bounded and nondegenerate) if and
only if it does not show coherence in the X eigenbasis, being a
mixture of eigenstates of the observable, i.e., [ρ, X ] = 0. For a
bipartite composite state ρAB, we can define the local quantum
coherence or asymmetry with respect to the first subsystem as
I (ρAB, XA ⊗ IB). The skew information I (ρ, X ) is related to
the uncertainty of measuring the observable XA with respect
to the composite state. For a pure state ρ, it is the variance
[35] I (ρ, X ) = V (X ) = Tr(X 2ρ) − (TrXρ)2.

We compute WYSI in a rotated spin basis chosen at each
site, with the new z axis pointing along the local magnetization
axis and the other axes lying in the plane perpendicular to it:

S′z = sin θ̄ cos φ̄Sx + sin θ̄ sin φ̄Sy + cos θ̄Sz,

S′x = cos θ̄ cos φ̄Sx + cos θ̄ sin φ̄Sy − sin θ̄Sz,

S′y = − sin φ̄Sx + cos φ̄Sy, (15)

and the new coordinate axes have been defined as

ẑ′
k ≡ m̂k = (sin θ̄k cos φ̄k, sin θ̄k, cos θ̄k ),

x̂′
k = (cos θ̄k cos φ̄k, cos θ̄k sin φ̄k,− sin θ̄k ),

ŷ′
k = (− sin φ̄k, cos φ̄k, 0). (16)

We begin by discussing the skew information in the many-
body ground state with respect to X z

k = (
∏

j �=k ⊗I j ) ⊗ S′z
k .

Since the ground state is a pure state, the skew information
in the ground state is the variance V (X z

k ) = 1
4 − ( �Mk )2 = 1

4τk .
Thus I (ρG, X z

k ) = τ/4 (we drop the site index due to the trans-
lation invariance) which confirms that the one tangle quan-
tifies the U (1) rotation asymmetry (about the magnetization
axis) in the ground state. Consider now the skew information
contained in the two-spin reduced density matrix ρ

(2)
i,i+1. The hx

dependence of the quantum coherences I (ρ (2)
i,i+1, S′a

i ⊗ Ii+1),
for a = x, y, z, computed in the rotated spin basis (denoted
as I ′

a, a = x, y, z) for representative values of Dz are shown in
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FIG. 7. The hx dependence of the local quantum coherences (a)
I ′
z = I(ρ, S′z

i ⊗ Ii+1), (b) I ′
x = I(ρ, Sy

i ⊗ Ij ), and (c) I ′
y = I(ρ, Sy

i ⊗
Ij ) for representative values of Dz. We set the following parameters:
hz = 0.1, N = 64, and � = 4.5. The label in red (hf ) in each panel
points to the kink occurring at the factorizing field hf for Dz = 0.
The black dotted lines mark the position of the pseudofactorizing
field hpf, for respective Dz values.

Fig. 7. (In the presence of a transverse DMI, one obtains the
same plots as in the absence of DMI). In Figs. 7(a)–7(c) we
observe common features, namely,

(i) a sharp discontinuity in these coherence estimators (near-
vertical drops in the plots) in the vicinity of the QPT from the
AFMz to the FMx phase.
(ii) a kink in the plots for all the WYSIs in the absence of DMI
(Dz = 0). This kink occurs at the factorizing field h f (h f ∼
3.316). The longitudinal DMI Dz smoothens the kink. Such a

064409-10



FACTORIZATION, COHERENCE, AND ASYMMETRY IN … PHYSICAL REVIEW B 102, 064409 (2020)

smoothening of the kink near the QPT was observed earlier
for the correlation functions [20].
(iii) I ′

x = I ′
y for hx < hcr. In the absence of DMI, and at the

factorizing field, I ′
z vanishes identically while I ′

x(= I ′
y) takes

the maximal coherent value 1/4, signaling the U (1) rotation
symmetry about the local magnetization axis m̂k .

Similar plots are obtained in the presence of a transverse
Dx(< Dc) which again confirm that a transverse DMI pre-
serves the factorizability property and hence the local U (1)
rotation symmetry at the factorizing field. On the other hand,
for a nonzero Dz, it can be observed from the plots that I ′

z does
not vanish at any hx; I ′

x(y) also do not attain the maximal value
at any hx, indicating the violation of the local U (1) symmetry.
The minimal deviation from these values are seen to occur at
hx = hpf, with I ′

z acquiring its minimal (nonzero) value and
I ′
x(y) acquiring their maximal value (<1/4) at hx = hpf. The

field hx = hpf is thus the field at which the U (1) rotation
symmetry about the local magnetization axis is minimally
broken.

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have studied the effect of a longitudinal
and transverse DMI on the quantum correlations present in
the ground state of the anisotropic spin- 1

2 XXZ model in a
transverse magnetic field. We have focused on the factoriz-
ability and coherence properties which we have studied by
computing bipartite entanglement and coherence estimators
like the one-tangle, two-spin concurrence and WYSI. Our
main result is that in the AFM phase, a transverse DMI
preserves the factorizability property while longitudinal DMI
destroys it. In the latter case, there is a pseudofactorizing field
hpf at which the entanglement quantified by the one-tangle
and nearest neighbor two-spin concurrence is finite but min-
imal. Exactly at hpf, all higher order two-spin concurrences
Ci, j, j > i + 1 vanish. The existence of the pseudofactorizing
field can be associated with an entanglement transition with
a finite increase in the range of the nearest neighbor two-spin
concurrence in its vicinity. This is in contrast to the diverging
range of the nearest neighbor two-spin concurrence in the
vicinity of the factorizing field (in the absence of DMI). We
associate the existence or nonexistence of the factorization
phenomenon with the absence or presence of the chiral cur-
rent: a transverse DMI does not lead to any chiral current in
the AFMz phase while there is a finite chiral current in the
presence of a longitudinal DMI. Specifically, in the presence
of a longitudinal Dz, the nonfactorizablity phenomenon at
any transverse magnetic field is related to the violation of a
U (1) rotation symmetry about the local magnetization axis
which physically manifests in a nonzero finite chiral current
〈Kz〉 in the AFMz phase [20]. The asymmetry properties have

been quantified through the WYSI. The symmetry is broken
minimally at the pseudofactorizing field.

We can also relate the asymmetry to frameness since an
asymmetry of a state determines its ability to be used as a
reference frame for some measurement or to act as a reference
frame under a superselection rule [29,34,36]. The asymmetry
here is the quantum coherence lost by applying the phase
shift with respect to the eigenbasis of a “supercharge” Q
[34]. In our model, the number operator defined at each site
as nk ≡ Sz

k + 1/2 serves as the supercharge. In the absence
of DMI (Dz = 0), the factorized ground state is specified
completely by the local magnetization. Since all the unitary
operations that are U (1) invariant have the effect of merely
changing the relative phases between the states ψk at each
site, this implies that the local magnetization axis at each
site serves to specify locally the z axis at each site. In a
translationally invariant system, then this implies that the
single site magnetization axis serves to specify the common
z axis for the full system. However, due to the U (1) rotation
symmetry about the magnetization axis, what is lacking to
specify a full Cartesian reference, is the angle between the
local x axis at different sites. This lack of a phase reference
is a form of “decoherence.” Essentially, the spin at each
site points along the z axis; there is a number conservation,
but there is complete loss of information about the relative
phase between the the spin states at neighboring sites. The
breaking of the U (1) symmetry by the longitudinal DMI Dz

serves to specify the relative phase between neighboring spin
states or equivalently the relative angle between the x axis at
neighboring sites. Physically, the nonzero finite chiral current
〈Kz〉 serves as the macroscopic quantity to determine the
phase relations between the spin states at neighboring sites.
At hx = hpf, the symmetry is broken minimally; our numerical
results indicate that the two-spin density matrix is an X state
leading to a phase coherent ground state with phase coherence
between nearest neighbor spin states. Akin to what happens
in a superconductor with the breaking of U (1) symmetry, the
ground state in the presence of a longitudinal DMI can be
described at the pseudofactorizing field by a phase coherent
macroscopic quantum wave function with minimum nonzero
bipartite entanglement. Exactly at hpf, then the local magne-
tization and chiral current are sufficient to specify the ground
state completely; they also serve to specify the full Cartesian
reference frame for the many-body system with the chiral
current serving as the macroscopic quantity to determine the
phase reference.
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