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Lone octupole and bulk magnetism in osmate 5d2 double perovskites
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Cubic double perovskites that host heavy ions with total angular momentum J = 2 can exhibit a singular
magnetic state epitomized by a lone octupole and bulk ferro-type magnetism. It exists in the Chen-Balents
Hamiltonian with a quadrupole interaction and competing exchange forces between the ions. Our symmetry
inspired analysis mirrors the Dzyaloshinskii-Man’ko theory of latent antiferromagnetic ordering, and a 3k
collinear structure. Experimental tests for the singular state include neutron or resonant x-ray Bragg diffraction.
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I. INTRODUCTION

The double perovskite crystal structure (elpasolite) is com-
posed of rock-salt ordered, corner-shared octahedra. Ions B
and B′ in A2BB′O6 individually occupy face centered sublat-
tices. In consequence, three-dimensional geometric magnetic
frustration may occur when the B′ ion alone is magnetic. The
structure can host heavy B′ ions, including W, Os, and Re,
with strong spin orbit coupling and concomitant entanglement
of magnetic and lattice degrees of freedom. Structural, elec-
tronic, and magnetic properties of materials Ba2BOsO6 with
B = Mg, Zn, Ca, Cd have been measured recently in several
exhaustive studies using a variety of experimental techniques
[1–4]. In summary, no departure from cubic symmetry is
observed, and thermodynamic anomalies consistent with a
phase transition and muon spin rotation spectra indicate a low
temperature (≈30−50 K) magnetic state with a very small Os
magnetic dipole. Indeed, no magnetic Bragg spots have been
identified in neutron diffraction patterns.

We predict magnetic properties of 5d2 double perovskites
using a symmetry informed analysis grounded on available
experimental results. Our model uses magnetic space group
Pm3̄m′ in which magnetic dipoles are prohibited [5]. Instead,
diffraction is caused by a solitary axial magnetic octupole
that exists in the doubly degenerate �3 level (total angular
momentum J = 2) with phase-shifted components that form a
conjugate, or time reversed, pair of states [6,7]. The octupole
form factor in neutron diffraction h(κ ) approaches zero for
small Bragg angles, where the standard dipole form factor
achieves its maximum. The maximum value of h(κ ) occurs
at a relatively large wave vector κ ≈ 5.68 Å−1, and h(κ )
achieves 57% of the maximum of the dipole form factor.
Resonance enhancement of x-ray scattering at the osmium L1

or K edges views the octupole through an electric quadrupole-
electric quadrupole (E2-E2) absorption event. Previous spec-
ulations of octupole order in 5d2 double perovskites are short
of specific magnetic structures or site symmetries [4,7,9]. In
consequence, it was impossible for authors to predict mag-
netic multipoles or the Bragg diffraction pattern, all of which
are done here.

A valuable parallel to our study is a much earlier theoretical
investigation by Dzyaloshinskii and Man’ko [8]. The latent
antiferromagnetic ordering discussed by the authors is the
same as “latent” antiferromagnetic order of osmium octupoles
in Pm3̄m′. Notably, Pm3̄m′ (with Os in 1 b and 3d positions)
yields precisely the ordering of octupoles that Dzyaloshinskii
and Man’ko assign to one of the possibilities for magnetic
dipoles in uranium dioxide (case III, p. 917, with E < 0,
and E < D). With interactions analogous to the usual ex-
change forces between dipoles and their local anisotropies, the
thermodynamic theory carries over to octupole ordering and
underpins it from a thermodynamic point of view. Specifically,
Chen and Balents [7] represent interactions between d2 ions
on a face-centered cubic lattice by a quadrupole force and
opposing exchange forces, and all three forces are anisotropic
in position and spin space. The solitary magnetic octupole
in Pm3̄m′ belongs to one of seven mean-field states of the
Hamiltonian, after imposing sites symmetries and model pa-
rameters that are analogues of E and D in the investigation by
Dzyaloshinskii and Man’ko [8]. The centrosymmetric crystal
class m3̄m′ is not polar, and it is not compatible with con-
ventional ferromagnetism involving dipole moments. While
m3̄m′ permits the piezomagnetic effect it is forbidden in the
rock-salt structure Fm3̄m that belongs to the crystal class
m3̄m.

Available neutron and high-resolution x-ray diffraction
patterns do not contain evidence of structural distortions
violating F centering, which is expected for Pm3̄m′ [4].
This implies that experiments are not so sensitive to the
magnetoelastic coupling. In turn, it might indicate that they
are also not sensitive enough to see some other structural
distortion, in particular deviation of the unit cell metric from
the cubic one. It is not possible to calculate structure factors
since the strength of the magnetoelastic coupling, and there-
fore the magnitude of the distortions, is totally unknown.
Evidence of magnetic diffraction has been derived from the
difference in neutron patterns taken at high and low tempera-
tures, 280 and 4 K in the study of Ba2CaOsO6 by Thompson
et al. [2]. Authors report difference data out to κ = 3.58 Å−1

where the intensity of the predicted octupole is essentially half
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its maximum, with [h(5.7)/h(3.58)]2 = 1.97. A more recent
report of difference data, using 50 and 10 K, for three samples
(Ba2BOsO6 with B = Zn, Mg, Ca) extends to κ = 1.2 Å−1

[4,9]. Neutron polarization analysis is the preferred technique
for measuring the magnetic content of a Bragg spot indexed
on the chemical structure.

Many materials possess magnetic octupoles formed with
atomic states drawn from nd and n f atomic configuration, and
known cases include both axial and polar varieties [10,11].
Our candidate for the magnetic state of double perovskites
hosting heavy ions with J = 2 is a singular case, however, in
that magnetism is due to a lone octupole. Materials hosting
nd-ions that possess axial or polar magnetic octupoles, in
addition to multipoles of other rank, include NiO [12], V2O3

[13], Cr2O3 [14], Sr2IrO4 [15,16], FeSe [17], and Ca3Ru2O7

[18].

II. MATERIAL PROPERTIES

Materials of interest retain the rock-salt structure with a
lattice constant a ∼ 8.1 Å to a very low temperature [1–4]
using sites; Os (4a) (0, 0, 0), B (4b) (1/2, 1/2, 1/2), and A
(8c) (1/4, 1/4, 1/4). Osmium ions occupy centrosymmetric
sites with an ideal octahedral crystal field formed by six oxide
ions (symmetry m3̄m). Hexavalent osmium (Os6+) has an
incomplete 5d2 shell and a high-spin state 3F. Following Figs.
7.3 and 8.1(b) in Abragam and Bleaney [6], the ground state
J = 2 in octahedral (sixfold) coordination is doubly degener-
ate (�3 level) and, from Table 4 in the same monograph, mag-
netic projections M = 0,±2. Identical results are reported
by Weissbluth, Georges et al., and Yuan et al., for example
[6]. Projections obey �M = 0,±2,±4 because of a diad axis
of rotation symmetry 2z. The time-reversed (conjugate) state
of γ |J, M〉 = γ ∗ (−1)J−M |J,−M〉, where γ is a c number.
The double direct product �3 × �3 of the cubic group does
not contain �4 (or T1, basis x, y, z). Thus a dipole operator
has vanishing matrix elements in the �3 manifold, and the
doublet is non-magnetic. On the other hand, the direct product
�3 × �5 contains �4 once and non-vanishing matrix elements
of a dipole between the two manifolds may exist, which
implies that the �5 manifold is magnetic. We use (ξ , η, ζ ) with
ξ = [1,−1, 0]/

√
2, η = [1, 1,−2]/

√
6, ζ = [1, 1, 1]/

√
3

for local Os coordinates, and reserve Cartesian (x, y, z) for
axes parallel to cell edges that contain the tetrad symmetry
axes.

III. MULTIPOLES

Axial (parity-even) multipoles of integer rank K are de-
noted 〈T K

Q〉, where projections Q obey −K � Q � K , and
angular brackets 〈 … 〉 specify the time average, or expecta-
tion value, of the enclosed spherical operator. The Hermitian
property 〈T K

Q〉 ∗ = (−1)Q〈T K −Q〉 yields 〈T K
0〉 purely real.

For x-ray Bragg diffraction enhanced by a parity-even absorp-
tion event the time signature of 〈T K

Q〉 depends on K alone,
with K even (odd) chargelike (magnetic). All multipoles are
time-odd for magnetic neutron scattering, of course. Multi-
poles engaged in magnetic neutron diffraction are defined in
Appendix; they have an odd rank when atomic states belong
to a J manifold, as in the present case [16].

IV. CANDIDATE MAGNETIC STRUCTURES

Suitable magnetic structures are derived from Fm3̄m. Ax-
ial magnetic multipoles alone are allowed with the specific
constraint that dipoles are prohibited. A cubic magnetic motif
described by a three-armed star with propagation vectors
aligned along crystal axes k1 = (1, 0, 0), k2 = (0, 1, 0), k3 =
(0, 0, 1) is required. The fact that the propagation vector is
nonzero immediately rules out a ferromagnetic ordering of
octupoles used by Maharaj et al. [4]. Of three candidates
retrieved from the conditional search one, Pm3̄m′( No. 221.95
[5]), permits investigation by magnetic diffraction of x rays
and neutrons, and corresponding diffraction amplitudes are
the main subjects of this communication.

First, we describe the three candidates and argue that two
are unacceptable, even though they meet the foregoing re-
quirements, namely, cubic antiferromagnetism with no dipole
moments. Osmium ions in Pm3̄m use nonequivalent sites
(1a) and (3c) with site symmetries m3̄m(Oh) and 4/mm.m
(D4h), respectively. Site symmetry m3̄m restricts multipoles
to two hexadecapoles 〈T 4

0〉 and 〈T 4+4〉 = √
(5/14) 〈T 4

0〉 for
K � 5. The triad axis of rotation symmetry 3xyz is imposed in
local coordinates (ξ , η, ζ ) [19]. Charge-like hexadecapoles are
engaged in resonant x-ray diffraction enhanced by an E2-E2
event [14], and even rank multipoles are absent in neutron
diffraction by ions with an atomic state �3 [16]. Multipoles
do not satisfy the tetrad axis of rotation symmetry, 4x, in
4/mm.m. A second candidate, Pn3̄m, uses sites (4c) with
symmetry 3̄m (D3d ) for osmium ions (D3d is appropriate for
neptunium ions in NpO2 using Pn3̄m [20]). All magnetic
multipoles (K odd) are found to be purely real, whereas
multipoles in �3 are purely imaginary, as we see in Eqs. (2)
and (5). The acceptable candidate, Pm3̄m′, has osmium ions
in sites (1b) and (3d) with symmetries m3̄m′ and 4′/mm.m′,
respectively.

Of ten possible magnetic multipoles, site symmetry m3̄m′
forbids all but the axial octupole 〈T 3+2〉 . An argument for
this remarkable result starts with the operation 2z that imposes
projections Q = 2n, with n an integer. Symmetry 4z

′ is satis-
fied by n odd. A specific calculation reveals that symmetry 4x

′

is satisfied by K = 3 alone, whereas 4x cannot be satisfied by
any K. The Hermitian property and the symmetry requirement
2y〈T K

Q〉 = (−1)K+Q〈T K −Q〉 = 〈T K
Q〉 shows that 〈T 3+2〉 is

purely imaginary. Symmetries 2z, 2y, and 4x
′ are among

4′/mm.m′ operations. A proof that symmetry 2yz
′ is satisfied

uses the identity 2yz = 2y 4x. Evidently, 〈T K
0〉 = 0 for K odd

for both sites, and K = 1 or 3 for a J = 2 manifold of states.
This result and Q = 2n with n odd prohibit a dipole. Figure 1
depicts the arrangement of magnetic octupoles in Pm3̄m′.

V. NEUTRON DIFFRACTION

A general form of a partner in �3 is

|g〉 = α|0〉 + β[|+2〉 + |−2〉], (1)

where |M〉 = |J = 2, M〉. (Eigenstates used in Ref. [9] corre-
spond to β = ±(i/

√
2)α, while the ground-state wave func-

tion (52) in Sec. III C 4 of Ref. [7] coincides with Eq. (1)
using x±1 = 0 and x±2 = β.) In Eq. (1), the coefficients
are α = (α′ + iα′′) with α′, α′′, and β purely real, and
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FIG. 1. Magnetic octupoles 〈T 3+2〉′′ ∝ (xyz) in Pm3̄m′. Os oc-
tupoles in two independent crystallographic positions are shown with
different degree of transparency (less transparent in 1b and more
transparent in 3d position). B cations are shown as green spheres. The
structure is shown in the settings of the parent paramagnetic Fm3̄m
space group and Ba and O are omitted for clarity.

{|α|2 + 2β2} = 1 for normalization. Partners in the �3 con-
jugate pair are separated in energy by a molecular field, and
|g〉 is chosen as the ground state. Evidently, a magnetic dipole
is prohibited and 〈T K

0〉 = 0 for K odd, as required by site
symmetry, although a dipole is permitted in the ground-state
wave function (52) in Ref. [7]. On the other hand,

〈g|T 3+2|g〉 = 〈
T 3+2

〉 = −i(12/7)
√

(1/35) α′′β h(κ ), (2)

for the saturation value of the octupole in Pm3̄m′. The
form factor h(κ ) = [〈 j2(κ )〉 + (10/3)〈 j4(κ )〉] is displayed in
Fig. 2, and κ = {(4π/λ)sin(θ )} where θ is the Bragg angle,
as in Fig. 3, and λ the neutron wavelength. Radial integrals
〈 jm(k)〉 are calculated from results in Ref. [21]. The octupole
form factor is a maximum for κ ≈ 5.68 Å−1 where h(κ ) ≈
0.567.

Miller indices for the parent structure Fm3̄m satisfy F-
centering with Ho + Lo, Ko + Lo, Ho + Ko simultaneously
even. The basis vectors of Pm3̄m′. are {(0, −1, 0), (−1,
0, 0), (0, 0, −1)} with Miller indices h = −Ko, k = −Ho,
l = −Lo. There are no systematic absences in the diffraction
pattern that arise from translational components of the sym-
metry elements alone. Osmium sites are (1b) at (1/2, 1/2,
1/2), and (3d) at (1/2, 0, 0), (0, 0, 1/2), (0, 1/2, 0) with
environments at the second and third sites related to (1/2, 0,
0) by tetrad antirotations 4y

′ and 4z
′, respectively. Diffraction

amplitudes are constructed from an electronic structure factor
�K

Q = [exp(iκ · d)〈T K
Q〉d], where the Bragg wave vector

κ = (h, k, l ) and the implied sum is over all osmium sites.
For the singular case in hand, K = 3. In general, a bulk
(macroscopic) property associated with 〈T K

Q〉 is permitted
if one component of �K

Q is different from zero for κ = 0,

FIG. 2. Octupole form factor h(κ ) = { j2(κ ) + (10/3) j4(κ )} for
Os6+, 5d2. Radial integrals 〈 jm(κ )〉 are derived from results pub-
lished in Ref. [21]. Maximum value occurs at the wave vector κ ≈
5.68 Å−1 with h(κ) ≈ 0.567. A dipole contribution to scattering 〈T1〉
is proportional to 〈 j0(κ )〉 that is unity in the forward direction, by
definition, and it decreases monotonically to zero at κ ≈ 5.0 Å−1.
Magnetic dipoles are forbidden in Pm3̄m′, however.

and this quantity is prescribed by symmetry of the magnetic
crystal class.

A theory of magnetic neutron scattering used in subsequent
calculations is outlined in an Appendix [22,23]. A unit vector
(p, q, r) = (h, k, l )[h2 + k2 + l2]−1/2 proves useful in expres-
sions for the amplitudes of magnetic diffraction. The latter are

〈Q⊥,x〉 = C(qr)(1 − 3p2), 〈Q⊥,y〉 = C(pr)(1 − 3q2),

〈Q⊥,z〉 = C(pq)(1 − 3r2), (3)

with a common spatial phase [(−1)h + (−1)k + (−1)l ] for
sites (3d). The common spatial phase = [(−1)h+k+l ] for (1b).
Both phases are different from zero for the trivial wave
vector h = k = l = 0. In consequence, bulk octupole order is
allowed in Pm3̄m′. Conventional ferromagnetic order using

FIG. 3. X-ray diffraction. Primary (σ , π ) and secondary (σ ′, π ′)
states of polarization. Corresponding wave vectors q and q′ subtend
an angle 2θ . Cell edges of A2BB′O6 and depicted Cartesian coordi-
nates (x, y, z) coincide in the nominal setting of the crystal.
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dipoles does not exist, since 〈T1〉 = 0, which accords with
properties of the magnetic crystal class. The purely real pre-
factor C = {(1/2)

√
(105/2)〈T 3+2〉′′} with the result (2) for

〈T 3+2〉′′ ∝ (xyz) derived for �3.
Intensities of magnetic Bragg spots |〈Q⊥〉|2 can be dif-

ferent from zero for all reflections. Intensities for indepen-
dent sites add, i.e., intensity of a magnetic Bragg spot =
{|〈Q⊥(1b)〉|2 + |〈Q⊥(3d )〉|2} for Pm3̄m′. It follows from (3)
that |Q⊥|2 is a function of p2, q2, and r2, which is explicit
in the useful result (A8). Conditions for optimal intensity can
be estimated by treating p, q, and r as continuous variables.
Using (A8), we find q = 0, p = r = 1/

√
2, leading to an

optimal magnetic neutron scattering intensity = [10C2(1/4)],
where the factor 10 is from spatial phases. The established p,
q, and r, together with κ ≈ 5.68 Å−1 for the position of the
maximum of the octupole form factor in 〈T 3+2〉′′ reveals that
intensity is a maximum at κ = (2π/a)(0, 6, 6). The powder
average intensity (A5) amounts to 18% of [10C2(1/4)].

Magnetic signal atop relatively strong nuclear scattering
can be disentangled by polarization analysis [24]. We report
some values of the spin-flip intensity,

SF = |〈Q⊥〉 − P(P · 〈Q⊥〉)|2, (4)

where P is a unit vector in the direction of the polarization in
the primary neutron beam. For P parallel to the Bragg wave
vector κ � (p, q, r) the result is SF = |〈Q⊥〉|2. Using (p, p,
r) as an example, we consider the opposite extreme of P � κ.
First, P = (r, r,−2p)/

√
2 yields P · 〈Q⊥〉 ∝ [p

√
2(r2 − p2)]

and SF = 0. On the other hand, P = (−1, 1, 0)/
√

2 leads
to P · 〈Q⊥〉 = 0 and SF = [20C2 p2(1 − 3p2)2] is readily ob-
tained from (A8).

VI. RESONANT X-RAY DIFFRACTION

Resonant x-ray Bragg diffraction enhanced by an electric
quadrupole- electric quadrupole (E2-E2) event accesses mag-
netic multipoles with rank K = 1 and 3 (an E1-E1 event does
not access K = 3 [25]). Corresponding multipoles, denoted
〈tK

Q〉, depend on the quantum numbers that define the absorp-
tion event [14]. In the context of Pm3̄m′ we need consider K =
3 alone. Multipoles observed through absorption at the Os K
edge (EK ≈ 73.871 keV, 1s core state) and L1 edge (EL ≈
12.968 keV, 2s core state) depend on the orbital state and
not the spin state of the resonant ion [12]. To the extent that
radial wave functions in a highly ionized ion are hydrogenic
in form, 〈ns|R2|5d〉 is proportional to (1/Zc)2, where Zc is the
effective nuclear core charge seen by the jumping electron.
And an explicit calculation for relative intensities at the two
edges yields {[〈2s|R2|5d〉EL]/[〈1s|R2|5d〉EK ]}2 = 0.32 [19].
The saturation value of the Os octupole,

〈t3+2〉 = −i(3/7)
√

(2/7) α′′ β, (5)

is purely imaginary, like its counterpart (2) in neutron diffrac-
tion.

For the purpose of immediate illustration, we consider
diffraction in the rotated channel of polarization π ′σ , with
polarization states depicted in Fig. 3, and examine two Bragg
wave vectors κ � (1, 0, 0) and κ � (1, 1, 0). The crystal
can be rotated about κ by an angle ψ , and crystal axes a
and b are contained in the plane of scattering at the origin

of an azimuthal-angle scan ψ = 0. A diffraction amplitude
F (π ′σ ) is calculated from general expressions for all four
channels of polarization [26]. First, the Bragg wave vector
p = 1, q = r = 0:

F (π ′ σ ) = − (1/8)
√

3〈t3+2〉[(−1)h + (−1)k + (−1)l ]

× [sin(θ ) + sin(3θ )]sin(2ψ ). (6)

The spatial phase factor is correct for sites (3d), and it is
replaced by [(−1)h+k+l ] for (1b). The amplitude has simple
two-fold rotation symmetry since κ is parallel to a high-
symmetry axis. As a second example, p = q = 1/

√
2, r = 0

:

F (π ′ σ ) = − (1/4)
√

3〈t3+2〉cos(θ ) sin(ψ )[(−1)h + (−1)k

+ (−1)l ][cos2(θ ) + {3 cos2(θ ) − 2} cos(2ψ )].
(7)

Amplitudes F (π ′σ ) for the two wave vectors have very dif-
ferent dependences on ψ , apart from the fact that (6) and (7)
are zero at the azimuthal origin.

VII. CONCLUSIONS AND DISCUSSION

Our symmetry consideration of 5d2 double perovskites is
predicated on the assumption that octupole ordering is associ-
ated with k = (1, 0, 0) propagation vector. This assumption
is based on the experimental observation by Maharaj et al. [4]
in their inelastic neutron scattering measurements of magnetic
spectral weight centered at Bragg positions consistent with
this propagation vector. The fact that the propagation vector
is nonzero immediately rules out a ferromagnetic ordering
of octupoles (k = 0 and k = (1, 0, 0) propagation vectors
are not equivalent in a F-centered lattice). We analyzed all
possible cubic magnetic isotropy subgroups associated with
k = (1, 0, 0) propagation vector and found that only Pm3̄m′
supports the octupole ordering as a primary instability. In
addition, this symmetry naturally comes from the thermody-
namic theory by Dzyaloshinskii and Mon’ko [8]. The key con-
straints in our analysis are that the symmetry has to be cubic,
to be consistent with the reported high-resolution diffraction
data, and should not allow a magnetic dipole component
detectable in a standard diffraction experiment at a region with
low magnitude of the scattering vector. Maharaj et al. [4] did
not set any constraints and this causes the difference between
their and our models.

In summary, we propose that osmate double perovskites,
e.g., Ba2BOsO6 with B = Mg, Zn, Ca Cd, possess an unusual
magnetic state that supports a macroscopic ferri-octupole
moment. It is compatible with entropy release, zero-field os-
cillations in μSR measurements, and the absence of magnetic
Bragg spots in a conventional diffraction pattern [1–4]. The
magnetic state in question is defined by a cubic space group
with Os ions in two independent sites, both endowed with
symmetry that admits a lone octupole. Additional notable
features include, structural distortions that violate F-centering
in the parent rock-salt structure, permitted by magnetoelastic
couplings in Pm3̄m′, a piezomagnetic effect, and a one-to-one
correspondence with latent antiferromagnetic ordering [8].
Magnetic diffraction of neutrons and x-rays are discussed
in Secs. V and VI. In the case of neutron diffraction, the
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octupole form factor, displayed in Fig. 2 for Os6+ (5d2)
specifies relatively large wave vectors not used hitherto. The
form factor is different for 3d2 and 4d2, because of different
radial extensions of unpaired electrons, while retaining the
same general shape.

It is appropriate to mention an interpretation of an uncom-
mon electronic phase transition in neptunium dioxide at a
temperature ≈25.5 K that uses reduction in spatial symmetry
from Fm3̄m (No. 225) to Pn3̄m (No. 224) [27]. Neptunium
site symmetry descends from Oh (m3̄m), with all multipoles
prohibited other than 〈T4〉, to D3d (3̄m) that allows multipoles
with even and odd ranks K � 2. The two structures, Fm3̄m
and Pn3̄m, possess identical extinction rules yielding identi-
cal conventional Bragg diffraction patterns, although extinc-
tion rules arise from simple translations in the former and
screw axes and glide planes in the latter. The interpretation
is founded on an observation of diffraction by chargelike
quadrupoles in resonance enhanced Bragg diffraction, so-
called Templeton-Templeton scattering that occurs in basis-
forbidden Bragg spots [20,27]. In contrast, our proposal for
cubic double perovskites uses a magnetic transition Fm3̄m →
Pm3̄m′ that results in an absence of extinction rules, since
Pm3̄m is one of the 73 symmorphic space groups (no screw
axes parallel to principal directions and no glide planes per-
pendicular to the principal directions).
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APPENDIX

We outline a theory for the magnetic scattering of neutrons
by unpaired electrons in an atomic shell. As early as 1953,
Trammell calculated the amplitude in the context of diffrac-
tion by rare earth ions [28]. He did not introduce multipoles
with discrete symmetries, and his final result is unnecessarily
complicated with different radial integrals for the spin and
orbital components of the interaction operator (A1) [29,30].

The magnetic scattering operator Q⊥ = {κ−2[κ × (Q ×
κ)]} with an intermediate operator,

Q = exp(iR j · κ)[s j − κ−2(i/h̄)(κ × p j )], (A1)

and the implied sum is over all unpaired electrons. In (A1),
R and p are conjugate operators for electronic position
and linear momentum, respectively. It can be shown that,
[14,22,23]

Q=
∑

K′

[
(2K ′+1)/(K ′+1)

]
(2K ′−1)1/2{CK ′−1(κ)⊗TK ′ }K ′

+ i
∑

K

(2K + 1)1/2{CK (κ) ⊗ TK}K , (A2)

where Ca(κ ) is a spherical harmonic normalized such that
C1(κ) = κ. (With J an integer, 〈T K〉 and CK (R) are equivalent

under simple rotations, and a factor i in CK (R) is the time
signature. Specifically, 〈T 3+2〉′′ ∝ (xyz) from C3+2(R) ∝
[(x + iy)2z].) A tensor product {Ca(κ) ⊗ Tb}c is defined by

{Ca(κ) ⊗ Tb}c
γ =

∑
α,β

Ca
α (κ)Tb

β (aα bβ|cγ ). (A3)

The Clebsch-Gordan coefficient in (A3) is purely real, and
related to the standard Wigner 3-j symbol,

( aαbβ|cγ ) = (−1)−a+b−γ
√

(2c + 1)

(
a b c
α β −γ

)
. (A4)

Allowed multipoles in (A2) are K even (= 2, . . . , 2l ) and
K ′ odd (= 1, 3, . . . , 2l + 1), where l is the orbital angular
momentum of the shell. Multipoles with K even are forbidden
in a J manifold and they are absent in calculations using the
osmium �3 ground state.

An average of the neutron cross-section with respect to
directions of the scattering wave vector yields a powder
diffraction pattern,

I = (1/4π ) ·
∫

d κ̂ {〈Q⊥〉 · 〈Q⊥〉}

=
∑
K,Q

[3/(2K + 1)]|〈T K
Q〉|2 +

∑
K ′,Q′

[3/(K ′ + 1)]|〈T K ′
Q′ 〉|2,

(A5)

with K even and K’ odd as in (A2).
An approximate dipole T1 ≈ (1/3) {2S〈 j0(κ )〉 +

L[〈 j0(κ )〉 + j2(κ )]} is often used in the interpretation of
elastic and inelastic scattering. The radial integral 〈 j0(0)〉 = 1,
while 〈 jm(0)〉 = 0 for m � 2. In the general case, reduced
matrix elements for the two multipole operators in (A2) are

(θ‖TK ′ ‖θ ′) = − (−1)J ′−J (2J + 1)1/2{A(K ′ − 1, K ′)

+ B(K ′ − 1, K ′)}, (A6)

(θ‖TK‖θ ′) = −i(−1)J ′−J (2J + 1)1/2B(K, K ), (A7)

where purely real A(K′ − 1, K′), B(K′ − 1, K′), and B(K, K)
are tabulated for dn and f n configurations [23]. Contributions
A(K′′, K′) and B(K′′, K′) are created by the orbital and spin
parts of (A1), respectively. The shorthand for quantum labels
is θ = J, S, L and θ ′ = J ′, S′, L′ (Russell-Saunders coupling
scheme). In a J-manifold drawn from an atomic nd shell
K ′ = 1, 3 and 5, with K ′ = 5 proportional to B(4, 5) alone.
However, K ′ = 5 is absent in the first half of the nd shell since
2J < 5 for these ions.

Using results (3) for the components of 〈Q⊥〉,

|〈Q⊥〉|2 = (C/2)2[sin2(2χ )

+ {sin2(χ ) sin(2ϕ)}2{9 sin2(χ ) − 8}], (A8)

where (p, q, r) = (sin(χ )cos(ϕ), sin(χ ) sin(ϕ), cos(χ )).
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