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Local spin transfer torque and magnetoresistance in domain walls with variable width
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Use of a spin-polarized current for the manipulation of magnetic domain walls in ferromagnetic nanowires
has been the subject of intensive research for many years. Recently, due to technological advancements, creating
nanocontacts with special characteristics is becoming more and more prevalent. We now present a full quantum
investigation of the magnetoresistance and the spin transfer torque in a domain wall which is embedded in
a nanocontact of NiggFe,y, where the size of the domain wall becomes a relevant tunable parameter. The
dependence on the domain wall width as well as the spatial dependence of the torque along the domain wall can
be analyzed in complete detail. The magnetoresistance drops with increasing domain wall width as expected but
also shows characteristic modulations and points of resonant spin-flip transmission. The spin transfer torque has
both significant in-plane and out-of-plane contributions even without considering relaxation. A closer inspection
identifies contributions from the misalignment of the spin density for short domain walls as well as an effective
gauge field for longer domain walls, both of which oscillate along the domain wall.
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I. INTRODUCTION

Spintronics has come a long way since Berger [1] and Slon-
czewski [2] independently predicted current-induced magne-
tization dynamics almost two decades ago. The first gener-
ation of spin transfer torque (STT) magnetic random access
memories (MRAMs) are already commercially available, and
proposals for other STT-based devices are regularly being
put forward [3]. Contrary to traditional MRAMs in which
one uses an Oersted field to manipulate the magnetization,
in STT MRAMs the external magnetic field is substituted by
a current-induced switching mechanism. Current-controlled
magnetic domain wall movement in a nanowire was first
shown in Ref. [4]. This effect is also responsible for a host
of other phenomena such as spin-wave excitations [5—7] and
current-driven ferromagnetic resonance [8—13]. The short-
comings in STT-MRAMSs are endurance issues due to the
out-of-plane writing geometry and the need for large current
densities [14].

One promising route for improved STT efficiency is minia-
turization in order to create a larger spin misalignment and
also harness quantum effects such as interference and resonant
tunneling [15]. Great progress has been made in the fabrica-
tion of nanocontacts, which can be manufactured down to ~1
nm width [16]. Notches in ferromagnetic films can be used
to trap a domain wall (DW), where the length and width can
be manipulated. DW movement has been observed in these
constructions [17], and their resistivity has been investigated
[18].

An approximate theoretical understanding of STT and
magnetoresistance is possible using a number of theoretical
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approaches [19-29], which typically have to make reasonable
assumptions for the relaxation processes to capture the non-
adiabatic contributions in particular materials. Advances have
also been made in ab initio calculations of STT on the basis
of real band structure calculations [24,30-32]. In this paper
we now put emphasis on the quantum-mechanical time evo-
lution over short distances to capture interference effects and
oscillations in the local torque, which have so far not received
much attention but show interesting resonant tunneling effects
and give deeper insight into the microscopic motion. Our
calculations provide predictions for experimental signatures
of corresponding quantum oscillations in nanocontacts and
pave the way for further many-body simulations in quasi-one-
dimensional setups, for which remarkable correlation effects
have been predicted [33-36]. For long DWs and for special
resonant DW widths we find that the spin polarization of
the incoming electron is transferred coherently to the DW,
i.e., without any relaxation or production of heat. As we will
show here, scattering of electrons from sharp inhomogeneous
magnetic structures creates a spin density which is no longer
aligned with the local magnetization direction and leads to
significant in-plane and out-of-plane torques. Previous studies
have shown that scattering from successive sharp DWs can
induce nonaligned spin densities which lower the threshold
for current-induced DW motion and can lead to ordering of
the DWs [37-40].

This paper is organized as follows: In Sec. II we present
the model and theory to find the STTs in magnetic DWs
constrained in nanocontacts, which is used in Sec. III to
calculate the magnetoresistance as a function of DW width.
In Sec. IV we calculate the spin density caused by scattering
of conduction electrons from the DW, which results in a
characteristic behavior of STTs as a function of DW width
and momenta of the incident particle as presented in Sec. V.
Finally, in Sec. VI we conclude.
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II. DOMAIN WALLS IN NANOCONTACTS

Nanocontacts in ferromagnetic strips are energetically
preferential locations for DWs to locate. The transport across
the DW involves only the one-dimensional momentum per-
pendicular to the wall, while the momentum components
parallel to the wall are conserved or simply correspond to
a confined standing wave due to the constriction. Therefore,
the theoretical description of the scattering is inherently one-
dimensional even though the experimental setup may be much
more complicated. While the parallel momentum components
are irrelevant in the scattering, they nonetheless must be
considered to obtain the correct total energy of the incoming
wave, which is typically close to the Fermi energy. This can
be taken into account by averaging over all directions, as
discussed in the next section.

We are interested in a wire with bulk ferromagnetic order
and a single DW located at the nanocontact. We use the stan-
dard s-d approximation of conduction electrons interacting
with a bulk classical magnetization, which can be regarded
as static on the typical electronic timescales. The s-d model
was recently shown to describe permalloy (NiggFeyy) near
the Fermi-energy well [18]. This is then used to calculate
the scattering of the electrons from the noncollinear magne-
tization. The Hamiltonian H = H, + Hjs on the lattice along
the direction of changing magnetization is given in terms of
electron creation operators ‘/f;a with spin o = *£1,

Ho ==Y [t ), Vi1 + V)1, ¥i0) + 0¥, 501, (1)

jo

and an s-d coupling to the magnetization,

J T > A
Hy = =53 V] VoG - ). ©)

joao’

Here, 1 is the chemical potential, ¢ is the hopping integral, and
J is the s-d coupling strength, which are known for NigyFe,g
from Ref. [18]. We will use z = 1 throughout. For a Néel DW
the magnetization is assumed to change along the lattice in the
direction of the unit vector 71;, which can be parameterized by
an angle ©; in the x-z plane going from up (®_, = 0) to
down (Oy = ),

;= sin[O;]] + cos[O;]2. 3)

We note here that this single-band model may tend to over-
estimate the coherent effects of electronic transport, thus
changing the quantitative predictions for the modulations we
see in the transmission and reflection coefficients.

The resistance [41,42] and STT can now be found by
directly solving Schrodinger’s equation either analytically,
where possible, or numerically as follows. Using the general
ansatz

W) =Y i, 10), )
Jjo

where |0) is the vacuum state, one finds that Schrodinger’s
equation H |{r) = €|yr) results in

Ivs -
_t(¢j+la + ¢j—10) - Ea‘pja - E ZU(TJ’ . nj¢ja" =0 (5)

Vj,o, where ¢, =€ + u, with € being the energy. For
lattice sites in the regions of homogeneous magnetization
this is solved by plane wave solutions ¢;, = e’**/* with
eigenenergies

J
&; = —2t cos[kya] + O'E, 6)

so that the velocities are
uy, = 2tasinlkyal, 7

where a is the lattice spacing. For the scattering problem with
a polarized incoming electron from the left we have to solve
for the coefficients inside the DW,

a,efeia 4 p e=iksja if j < —¢,
$jo =1 b0 it—e<j<t  @®
tyeikaia if j > ¢,

where 8w = (2¢ + 1)a is the width of the DW and o = —6 =
+1. In the limit of a sharp DW, £ =0, or, equivalently,
dw =a,

i ifj< -1,
aj={n ifj=0, )
3 ifj>1,

a fully analytical solution can be found for an arbitrary direc-
tion 7y,
as(J + 2080—)[.](1 + né) — 208, — ic?u]
2J(J — isu)(1 + n§) — su? — 4¢2
asJ(J —20¢8,)(nf — oiny)
7200 = isu)(1 +n5) — ou? — 4e2’

o =

+

(10)

for the transmitted part of the wave function where du =
uy — u_. The tunneling amplitude is then given by

|ta|2ua

T, (11

lay Puy + lay Pu_y”

For the more general case of Néel DWs with an arbitrary
width we use a linear change in the direction,

0 if j < —4,
O, =38 if —e> >, (12)
4 if j > ¢,

which can be solved numerically. Of course, any form of
the DW is possible here, but the dependence on width éw =
(2¢ + 1)a remains the same, while the detailed shape in the
plane has little effect on the results. The scattering calculations
can then be used to find spin densities, magnetoresistance, and
spin transfer torques as described below.

For permalloy we take / = 0.29 eV and © = 0.45eV along
with vf = 0.91 x 10°ms™" and kg = 0.159/;\ [18]. The lat-

tice parameter of bulk NisFe is a = 3.55 A, and we find
FlUf
= ——+—— (13)
2a sin [kga]

for the hopping integral of our lattice model. This results in
t = 1.58eV and wave vectors kja = 1.76 and k_ja = 1.67.
We use these values through the rest of this paper, unless
explicitly stated otherwise.
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FIG. 1. (a) The transmission amplitude 7;, and (b) the reflection
amplitude R, for a polarized electron a; = 1 at the Fermi momentum
as a function of DW width .

In Fig. 1 we show the transmission and reflection for a
polarized incoming particle a; = 1 at the Fermi momenta
as a function of DW width dw. For the shortest DWs we
observe a small amount of reflection and large transmission
with the same spin; that is, the electrons retain the original
polarization without relaxation if the magnetization changes
abruptly, which is natural as the electron cannot follow the
magnetization quickly. The reflection R; drops with increas-
ing DW width, but so does the transmission 77 into the same
spin channel. Instead, the transmission 7_; and reflection
R_; into the opposite spin channel increase and dominate for
dw = 18nm. For even longer DW width we enter a second
regime, where periodic modulations can be observed, which
can be understood as interference effects as the relevant
length scales, A, = 27 /k, and AL = 27 /(k; £ k_;), become
commensurate and incommensurate with the DW width. In
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FIG. 2. (a) The spin-preserving transmission amplitude 77 and
(b) the spin-flip transmission amplitude 7_,. Exact results from the
numerical and analytical calculations (black squares) are compared
to the fits to Eqs. (14) and (15) for dw < d. (dashed green line) and
dw > . (solid red line). The two regimes are clearly visible. See
Table I for fitting parameters.
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FIG. 3. (a) The spin-preserving reflection amplitude R; and
(b) the spin-flip reflection amplitude R_;. Exact results from the
numerical and analytical calculations (black squares) are compared
to the fits to Eqs. (14) and (15) for dw < d. (dashed green line) and
Sw > & (solid red line). See Table I for fitting parameters.

particular, we observe almost perfect transmission 7_; — 1
approximately every 15 lattice spacings, which is related
to the well-known phenomenon of resonant tunneling [15],
albeit into the opposite spin channel. This implies that the spin
polarization of the incoming spin is coherently and completely
transferred to the DW without relaxation or production of
heat. This is far from obvious since, naively, one could have
expected a precession in an arbitrary nonequilibrium state
outside the DW if relaxation is suppressed.

A more quantitative analysis is possible in terms of phe-
nomenological fitting functions describing decaying periodic
modulations. As shown in Figs. 2 and 3, there are two regimes
with distinctly different behavior. For shorter DWs, Sy <
8. = 50a = 17.75nm, we find that all coefficients can be
fitted to the form

8 -r 8 2
F(Sw < 8) = C+A<—W) cos [Qo + Ql—w} . (14)
a a

In the short DW limit the abrupt change in magnetization
does not allow significant transmission into the opposite spin

TABLE I. Fitting parameters for the scattering amplitudes in
Figs. 2, 3, and 5. The critical width is 8y, = 50a.

F C A r Qo Q
T 0 1 0.02 0 0.0276
T, 1 —0.993 0 0 0.0305
R, 0 15 x 107° 0.49 2.985 0.031
R_, 0 0.00251 2 0.4 0.191
DWMR 0 1 0.2 0 0.026
F B y wo w1 wy
T 494 1.85 2.18 0.435 2x 1078
T, 494 1.85 2.18 0.435 2x 1078
R, 0 3.8 2.2 0.0432 2x 1078
R_, 0.0033 1.89 2 0.139 6 x 1078
DWMR 5720 2.7 0.72 0.04 5% 1078
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channel, so that the transmission 7; remains large, albeit with
substantial backscattering with either spin. For longer DWs
we observe that 7_; dominates, but the misalignment of the
electron spin remains large and contributes to the change in
the electron motion, so the coefficients are described by a
different set of parameters for w > &,

-y 372
F(w > 6.) =C +B<87W) cos |:a)o +w157w + wgi—‘g’} .

15)

We also observe a slight dependence of wavelength on the
DW width, so a higher-order correction to w; is included here.
The values of the fitting parameters {c, A, B, €201, wp,1,2} are
shown in Table I; the resulting domain wall magnetoresistance
(DWMR) will be discussed in the next section.

In the first regime, dw < 8., the exponent I" is very small;
that is, there is very little drop at small DW widths for the spin-
flip transmission since it takes a longer DW for the electrons
to change magnetization. In the second region, dw > §., the
exponent is much larger, y ~ 2. This value is very close to
the value predicted by analytical methods for the behavior of
the DWMR in the adiabatic regime which closely relates to
these scattering rates. For w > §., all amplitudes decay with
arate y &~ 2, except reflection into the same channel, which
decays approximately twice as fast y = 3.8.

The inverse modulation lengths w; and €2; become larger
for particles with higher incident energies as expected as the
relevant length scales are shorter. In the Appendix we show
how the scattering amplitudes change for different incoming
electron momenta.

II1. RESISTANCE

We now consider the resulting resistance through a clean
wire connected to two reservoirs on the left and right held
at slightly different biases. The resistance for each incident
particle can be determined from

2 2
R=R + R, = [ri 7wy + [r—17u_;

larPur + a1 Pu_y’ (10
with the coefficients from the solutions to the scattering
problem.

In order to find the total DWMR we consider particles
at the Fermi energy but with an arbitrary incident direction
on the DW, with the momentum perpendicular to the DW
conserved. Accordingly, the DWMR is given by the aver-
age over the resistance R(k,) for different incident particles
with momentum k, over the three-dimensional Fermi sphere
[43,44],

= [ @252 | an
Rpw 8w R(ks) ke
where e is the electron charge, v(lz) is the velocity, and f (l?)
is the Fermi-Dirac distribution. In our case, the scattering
parameters depend on only the Ky components in the direction
of changing magnetization if the perpendicular components

are approximately conserved. It is therefore sufficient to use
the one-dimensional scattering result in Eq. (16) from the
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FIG. 4. Behavior of the DW resistance from Eq. (16) at the
Fermi momenta as a function of DW width §w. For shorter DWs
(see inset) the modulations are sizable, and for longer DW widths
backscattering becomes very small.

plane-wave ansatz in Sec. II. We will consider here an un-
polarized spin current, a, = \sz

From Eq. (17) and after going to polar coordinates, the
resistance for each dw averaged over different momenta is

simplified as

1 1 v(kFZ)2
— = | dzk? , 18
Row /0 F R(kz) (15

where z = cos 6 parameterizes the incoming direction and we

have approximated % with a § function which is justified

for the relevant paramgter ranges. Since this is solved for a
number of incident particles with different momenta numeri-
cally, the integral is turned into a summation over the values
obtained for a reasonably large number of incident particles
(here we found out that 150 different k values suffice).

In Fig. 4 we show the dependence of the DW resistance
on dw. Large periodic modulations with the DW width can
be seen, which persist up to long DWs. These modulations
are still apparent in the DWMR after averaging over all
particle directions in Fig. 5. Fits to decaying modulations in
the different regimes are also shown, which yield the values
in Table I, where the exponent is now slightly larger than 2.
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FIG. 5. DWMR as a function of DW width §w and several fits
to the numerical data. The black squares visualize the numerical
data, which are normalized by the maximum value of the obtained
DWMR. The magenta line is the fit for dw < dy,, and the cyan line is
the fit for w > &y, to Egs. (14) and (15). The purple line is the fitted
line given by the function C(S\;}? with the experimental value of the
decay exponent ¥ = 2.3. The purple line fits very well to the maxima
of the DWMR over the sample. Effective Permalloy parameters were
used. See Table I for fitting parameters.
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FIG. 6. The orientation of three Néel domain walls confined to the x-z plane and the conduction electrons’ spin density in the x-z plane and
in the y-z plane. Even for the longer DWs, the conduction electrons spin is not collinear with the DW. The DW widths are (a) £ = 1 (6pw = 3a),

(b) £ = 12 (6pw = 25a), and (c) £ = 22 (Spw = 45a).

IV. SPIN DENSITY

To get deeper insight into the time evolution and to predict
the STT, we now consider the total spin density at site j,

1 -
= E Z ¢;<UO-U'U/¢j0/ |aT=1,af:0’ (19)
oo’
where T = +£1 = —7 specifies the polarization of the incom-

ing current. For the sharp DW limit éw = a we can again find
analytical expressions, including at the site of the DW j = 0,

rJ(J +2te)*[my(J — 21€) — Tumy|
20(8u? + 42)2 + 4J% — 16J2¢2]
J(J + 28 [ny(J — 2te) + Téung]
T T U 42 + 4T — 167%7]
(J +21e)?[6u? + 4e — 41 J¢]
20(8u? + 42)2 + 4J4 — 16J22)]’

Already in this limit it becomes clear that a Néel DW confined
to the x-z plane nonetheless produces spin densities in all
directions. In fact, for the ratio

587 _|sink; —sink_;
8sx| 2 cos kz

one finds I'y = 0.0344 and I'_; = 0.0653. Thus, we expect
spin torques which tend to rotate the DW out of plane as well
as terms which tend to move it along the plane. As discussed
in the next section both torques are relevant even without
relaxation processes.

In Fig. 6 we show examples of the spin density of the
conduction electrons compared to the DW orientation for
several exemplary DW lengths. In all cases the spin density
of the electrons can be seen to deviate far from collinearity
with the DW orientation. This is true even for the case £ = 22
in which the DW width is 45a, much longer than the relevant
wavelengths A; = 3.57a and A_; = 3.78a. We note here the
other relevant length scales for scattering are A, = 1.84a and
A_ = 62.8a.

Similar to the sharp DW case the fact that the spin density
is not close to collinearity with the DW ensures that there will
be a complicated local spin torque acting on the DW. Under

)

5% =

(20)

88: =1

r= ‘ @1)

the assumption that the DW dynamics are very slow on the
timescale of electron motion, the DW orientation can be taken
to be quasistationary, allowing one to solve the equilibrium
scattering problem for a stationary DW profile to find the spin
densities.

V. SPIN TRANSFER TORQUES

In the s-d model the spin torque acting on the DW can
be deduced from the spin lost by the conduction electrons.
The STT can therefore be found from the Helsenberg equation
for the spin of the conduction electrons: 43 = = i[H, S;], where
after quantum-mechanical averaging (- - ) we have

RS T s
at < ) ( i—1

Here, the spin current J *is defined as

= —it Z(CI:_IO-SO’U/Ciﬂ/ - C,‘T(,Sa(r’ci-i—l(r’)- (23)

)+ Jn; x (S;). (22)

In the steady state, the time derivative vanishes, and the
change in spin current must be entirely due to the torque,
which in turn is therefore given by the last term in Eq. (22),

T,' = —Jn,- X S,‘, (24’)

where we choose to omit relaxation in order to identify all
torques from the quantum equation of motion. All torques
shown in the following are calculated at the Fermi wave
vector. Note that the torque is perpendicular to the magneti-
zation but can be either in the x-z plane or perpendicular to it,
depending on the misalignment of the electron spins. For an
almost uniform magnetization it is commonly argued that the
in-plane component is due to the adiabatic change in motion
[44], while the out-of-plane torque comes from nonadiabatic
relaxation processes [45]. This is no longer true for a changing
magnetization, where we observe in-plane and out-of-plane
torques both for a very abrupt change and for longer DWs,
which can be traced to an effective gauge field in the frame of
reference of the magnetization [46].

In Fig. 7 we show this torque over the whole DW region
for two exemplary DW widths. As reflection of the electrons
is small and the incident electrons are polarized parallel to
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FIG. 7. The STT caused by the misalignment of the spin density
with the DW profile per site, Eq. (24), for DWs of width (a) éw = 11a
and (b) dw = 51a. The limits of the DW are shown by dashed lines.

the bulk magnetization direction, there is little torque on the
left-hand side. However, the transmitted electrons may apply
a torque to the bulk magnetization of the right of the DW.
Over the region of the DW a large torque is produced which
has components in all three directions of a similar magnitude.
The torque in the y direction would distort the DW out of
plane and corresponds to ordinary precessional motion for
an in-plane misaligned electron spin, as in the commonly
assumed scenario for uniform magnetization. However, the
in-plane forces are just as large and tend to move the DW. The
spatial dependence across the DW width of all terms will start
to deform the DW for longer times. It has been seen elsewhere
that such spatially varying torques can lower the threshold for
lateral DW motion [38].

The y component of the STT is nonzero for short DWs due
to mistracking between the DW orientation and the electron
spin density. In longer, slowly varying DWs where mistrack-
ing should be small this contribution remains sizable, which
can be associated with the slow change in the magnetization
direction and the geometrical phase associated with it [27,46].

The total STT applied to the DW is obtained by summing
over the DW width as shown in Fig. 8 as a function of the DW
width Sw. Because spin is conserved, this is closely related
to the transmission coefficient 7_;, so that in the long-DW
limit and for resonant widths 7_; — 1 the total transferred

e T
T
2
S 1
20 .
£ 3
w ]
=2 E
6 ]
e 3
4 P R R
0 25 50 75 100
3, [nm]

FIG. 8. The total STT applied to a DW from spin density mis-
alignment as a function of the DW width.

spin always moves the DW without the need of relaxation
or production of heat. However, in addition the relatively
large variation of strong forces will lead to relevant local
distortions.

VI. CONCLUSIONS

We have investigated the DWMR and the STT in systems
with changing magnetization using microscopic simulations
of electron transport. To illustrate the effects we use the
particular example of DWs of variable width dw in permalloy.
Modulations with DW width dw are observed in the trans-
port coefficients, which can be traced to commensurate and
incommensurate behavior of the relevant length scales. For
very short DWs the electron spin is not transferred along the
magnetization direction. Accordingly, two different physical
regions for short DWs and long DWs are identified, which are
characterized by distinct modulation lengths and decay with
DW width. By averaging over all incoming electron directions
the complete DWMR can be calculated, which also exhibits
periodic modulations with DW width. These results could be
used for fine-tuning the DWMR, especially if shorter DWs or
geometrical pinning are employed.

In a wide range of DW widths we find that the adiabatic
approximation misses important effects from the spin den-
sity of the conduction electrons, which is no longer even
approximately collinear with the bulk magnetization. This is
reflected in the corresponding local STT, which were analyzed
as a function of position along the DW. Both in-plane and
out-of-plane torques are significant without assuming any
relaxation mechanisms, and the complete spin of polarized
incoming electrons can be transferred to the DW by coherent
time evolution even for a short DW width dw ~ 20 nm. This
resonance effect is notable since it implies that the spin po-
larization of the incoming spin can be transferred coherently
to the DW without relaxation or heat production. Equally
interesting are the large oscillations of strong local torques
in all directions in both short and long DWs, which will
lead to significant DW distortions and movements on longer
timescales. Understanding the microscopic behavior of the
local torques therefore paves the way for engineering efficient
magnetization manipulations on the nanoscale.

ki [nm™]
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N
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14
0 20 20 60 80 100 0
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FIG. 9. The spin-preserving transmission amplitude as a function
of the DW width and incoming electron momentum k;. The dashed
line shows the momentum used for the Permalloy calculations in the
main text.
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APPENDIX: MOMENTUM DEPENDENCE
OF SCATTERING AMPLITUDES

Figures 9 and 10 show the momentum and DW width
dependence of the scattering amplitudes.
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FIG. 10. The spin-flip transmission amplitude as a function of
the DW width and incoming electron momentum k;. The dashed line

shows the momentum used for the permalloy calculations in the main
text.
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