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Frustrated quantum Heisenberg double-tetrahedral and octahedral chains at high magnetic fields
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We consider the spin-1/2 antiferromagnetic Heisenberg model on two one-dimensional frustrated lattices,
a double-tetrahedral chain and an octahedral chain, with almost dispersionless (flat) lowest magnon band
in a strong magnetic field. Using the localized-magnon picture, we construct an effective description of the
one-dimensional chains with triangle and square traps within the strong-coupling approximation. We perform
extensive exact diagonalization and density matrix renormalization group calculations to check the validity of the
obtained effective Hamiltonians by comparison with the initial models with special focus on the magnetization
and specific heat at high magnetic fields.
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I. INTRODUCTION

The study of frustrated quantum Heisenberg antiferro-
magnets remains a hot topic in condensed matter physics
[1,2]. This special class of frustrated quantum Heisenberg
antiferromagnets, which have a dispersionless (flat) band in
the one-magnon energy spectrum, is of great interest, since
such systems can be mapped on the classical lattice gas of
hard-core objects (see, e.g., a recent review [3]). In previous
studies it was shown that the high-field low-temperature prop-
erties of such spin systems can be studied in detail within
the localized-magnon approach [4–6]. The theory developed
in Refs. [4–6] works perfectly well in the case of so-called
perfect geometry, when the one-magnon states are strictly
localized, i.e., the one-magnon band is strictly dispersionless.
Moreover, the ground-state characteristic features of such spin
systems are a plateau and a jump to the saturation in the
magnetization curve [4], the spin-Peierls instability [7], and
the residual entropy at the saturation field [5,6]. However, in
real systems, the conditions that provide a strict localization
of magnons can be violated and a theory of almost flat-band
systems is necessary.

The effects of small deviation from ideal flat-band ge-
ometry were studied in Refs. [8–13]. In particular, to study
high-field low-temperature properties of initial deformed one-
or two-dimensional frustrated Heisenberg antiferromagnets,
effective Hamiltonians were constructed using the localized-
magnon approach. In the present work, we propose a sys-
tematic theory for some other systems near the flat-band
point. To be specific, we consider two frustrated quantum
spin lattices in a strong magnetic field, the double-tetrahedral
chain and the octahedral chain (see Fig. 1). These frustrated
lattices were studied previously in the literature by various
authors. In particular, the double-tetrahedral chain, which can
be understood as a one-dimensional analog of the pyrochlore
antiferromagnet, was studied in Refs. [14–21]. Exact ground
and excited states of an antiferromagnetic quantum octahedral
chain were studied in Refs. [22–24] and low-temperature
thermodynamics or quantum phase transitions of octahedral
chains were investigated in Refs. [25,26].

It is important to note that double-tetrahedral geometry is
realized for the spin system of Cu2+ ions in the magnetic
compound Cu3Mo2O9 [27–29]. As shown in Refs. [27–29],
the exchange-interaction network of this compound comprises
spin-1/2 antiferromagnetic uniform chains J4 and antiferro-
magnetic dimers J3 which are the main determinants of the
magnetism. The exchange interactions J1 and J2 connect the
chains and dimers. A set of exchange-interaction parameters
J1–J4 were estimated from the experimental data and have the
following values: J4 = 6.5 meV ≈ 75.43 K, J3 = 5.7 meV ≈
66.15 K, and J1 − J2 = 3.06 meV ≈ 35.51 K [29]. It is
worth noting that there is a whole class of geometrically
frustrated compounds based on cobalt oxide, RBaCo4O7 with
a rare earth atom R, which has swedenborgite lattice structure
[30]. Considering one columnar stripe in such a magnetic
compound, we could single out a double-tetrahedral chain
structure. On the other hand, the solid-state realization of
the octahedral spin chain has not been found yet, but spin
clusters with the geometric shape of an octahedron can be
found in polynuclear complexes such as Cu6 [31] or V6 [32].
We believe that our theoretical findings could be useful in the
synthesis of the solid realization of the octahedral spin chain
by experimentalists.

In what follows, we consider the spin-1/2 antiferromag-
netic Heisenberg model on a double-tetrahedral chain and
an octahedral chain (see Fig. 1) in a magnetic field with the
Hamiltonian

H =
∑
(i j)

Ji jsi · s j − hSz, Sz =
N∑

i=1

sz
i . (1.1)

Here the first sum runs over all nearest neighbors on a lattice,
whereas the second one runs over all N lattice sites. Note that
[Sz, H] = 0, i.e., the eigenvalues of Sz are good quantum num-
bers. To accomplish a description of the model, we introduce
a convenient labeling of the lattice sites by a pair of indices,
where the first number enumerates the cells (m = 1, . . . ,N ,
N = N/4 for the double-tetrahedral chain or N = N/5 for
the octahedral chain, and N is the number of sites) and the
second one enumerates the position of the site within the
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FIG. 1. The schematic of (a) the double-tetrahedral chain and
(b) the octahedral chain described by Hamiltonian (1.1).

cell (see Fig. 1). Both these models may support indepen-
dent localized-magnon states, which dominate their high-field
low-temperature thermodynamics. A localized magnon state
can be located within a trapping cell (equilateral triangle or
square) due to destructive quantum interference. It has the
lowest energy in the subspace Sz = N/2 − 1 if the strength of
the antiferromagnetic bonds of the trapping cells J2 exceeds
a lower bound [4]. Owing to the localized nature of these
states the many-magnon ground state can be constructed by
filling the traps by localized magnons. Moreover, magnon
localization occurs due to the specific lattice geometry and
hence requires a certain relation between the exchange inter-
actions Ji j . For the considered traps (triangle or square) this
condition is fulfilled if an arbitrary bond of the trapping cell
and the surrounding bonds attached to the two sites of this
bond form an isosceles triangle, i.e., Ji = J (i �= 2) in Fig. 1. In
the present study we deal with the case when the localization
conditions are slightly violated.

In previous investigations it was shown, that localized
states on trapping cells with even numbers of sites (verti-
cal bond for diamond or dimer-plaquette chains, square for
square-kagome lattice) have a nondegenerate ground state for
the one-particle problem [8–10]. A new interesting feature
concerns the frustrated double-tetrahedral chain. In general,
lattices with odd sites in trapping cells have an additional
degree of freedom—chirality [33]—which leads to increasing
of the degeneracy of the ground state of the double-tetrahedral
chain. That is why one of the main goals of the present
research is to develop a systematic theory not only in the case
of distorted lattice geometry but also in the presence of an
additional degree of freedom in the system, namely, chirality.

The paper is organized as follows. In Sec. II we construct
effective Hamiltonians for the double-tetrahedral chain and
the octahedral chain in a strong magnetic field within the
strong-coupling approximation. In Sec. III we compare exact
diagonalization and density matrix renormalization group re-
sults for the initial and the corresponding effective models to
estimate the validity of the obtained effective models and dis-
cuss the magnetization process and temperature dependence
of specific heat. We summarize our findings in Sec. IV.

II. EFFECTIVE HAMILTONIANS: STRONG-COUPLING
APPROACH

To study the low-energy behavior of the introduced models
we use a strong-coupling perturbation theory. For considered

systems one can easily single out a regular pattern of N
trapping cells which do not have common sites and have
sufficiently large couplings J2 (the squares for the octahedral
chain or the equilateral triangles for the double-tetrahedral
chain). The traps are joined via weaker connecting bonds Ji

(i �= 2), which in the ideal geometry case prevent the escape
of the localized magnons from the traps.

Within the strong-coupling approach one assumes that the
coupling J2 is the dominant one, i.e., Ji/J2 � 1 (i �= 2). At
high fields only a few states of the trapping cell are relevant,
namely, the fully polarized state |u〉 and the localized-magnon
state |d〉; in the case of the triangular trap there are two
localized-magnon states |d+〉 and |d−〉 with different chiral-
ities. All other sites m, 4 or m, 5 (m = 1, . . . ,N ) have fully
polarized spins. As the magnetic field decreases from very
large values, the ground state of the trap undergoes a transition
between the state |u〉 and the state |d〉 at the “bare” saturation
field h0. The Hamiltonian H is split into a “main” part Hmain

(the Hamiltonian of all traps and the Zeeman interaction of all
spins with the magnetic field h0) and a perturbation V = H −
Hmain. The ground state |ϕ0〉 of the Hamiltonian without the
connecting bonds Ji = 0 (i �= 2) and at h − h0 = 0 is 2N -fold
degenerate for the case of the octahedral chain and 3N -fold
degenerate in the case of the double-tetrahedral chain. These
ground states form a model subspace defined by the projector
P = |ϕ0〉〈ϕ0|. When Ji (i �= 2) and h − h0 deviate from zero
we are interested in an effective Hamiltonian Heff which
acts on the model space only but gives the exact ground-
state energy. Heff can be found perturbatively [34–36] and is
given by

Heff = PHP + PV
∑
α �=0

|ϕα〉〈ϕα|
ε0 − εα

V P + · · · . (2.1)

Here |ϕα〉 (α �= 0) are excited states of Hmain. To rewrite the
effective Hamiltonian in a more transparent form amenable
for further analysis it might be convenient to introduce
(pseudo)spin operators representing the states of each trap-
ping cell.

A. Heisenberg double-tetrahedral chain

A new feature in the case of the double-tetrahedral chain
is related to the chirality [33] of the triangle. As a result, in
a strong magnetic field for each triangle we consider three
states:

|u〉 = |↑↑↑〉,
|d+〉 = 1√

3
(|↓↑↑〉 + ω|↑↓↑〉 + ω2|↑↑↓〉),

|d−〉 = 1√
3

(|↓↑↑〉 + ω2|↑↓↑〉 + ω|↑↑↓〉),

ω = ei 2π
3 . (2.2)

Their energies are 3J2/4 − 3h/2, −3J2/4 − h/2, and
−3J2/4 − h/2, respectively. The saturation field is
h0 = 3J2/2. If h = h0 and J1 = J3 = J4 = 0 the ground
state of H , |ϕ0〉, is 3N -fold degenerate. The projector onto the
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ground states of Hmain is

P = |ϕ0〉〈ϕ0| = ⊗mPm,

Pm = ((|u〉〈u| + |d+〉〈d + | + |d−〉〈d − |) ⊗ |↑4〉〈↑4|)m.

(2.3)

Evidently, we face a spin-1 problem. We use the following
representation for the (pseudo)spin-1 operators:

T x = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, T y = 1

i
√

2

⎛
⎝ 0 1 0

−1 0 1
0 −1 0

⎞
⎠,

T z =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (2.4)

Let us put

|d+〉〈d +| →
⎛
⎝1

0
0

⎞
⎠(

1 0 0
)

=
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ = 1

2

(
T z + T z2)

,

|u〉〈u| →
⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ = 1 − T z2

,

|d−〉〈d −| →
⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠ = 1

2

(− T z + T z2)
. (2.5)

We have to notice here that such an encoding contradicts
the intuitive expectation that “the fully polarized state corre-
sponds to T z = +1.” According to the introduced correspon-
dence, the fully polarized state corresponds to T z = 0. Indeed,
while s is real spin which interacts with the magnetic field, T
is a pseudospin which simply represents three states of the
triangle.

The chirality operator for a triangle in the double-
tetrahedral chain was introduced in previous work [19] as

χm = 4√
3

(sm,1 · [sm,2 × sm,3]) (2.6)

and it was shown that χm|d+〉m = |d+〉m, χm|d−〉m =
−|d−〉m. Moreover, this operator can be expressed in terms
of states |d+〉, |d−〉 as

χm = |d+〉〈d +|m − |d−〉〈d −|m, (2.7)

that coincides with the T z
m operator.

Then the first term in Eq. (2.1) can be written in the terms
of (pseudo)spin-1 operators:

PHP = P
N∑

m=1

(
−2h + 3

4
J2 + 3J

2
+ (h − h1)T z

m
2
)

P,

h1 = 3

2
J2 + J, J = J1 + J3 + J4

3
. (2.8)

For the ideal geometry case this is the well-known result [19].
Relevant excited states contain only one flipped spin on the

site connecting two neighboring triangles. The energy of these
excited states is ε0 + h0 with h0 = 3J2/2 and therefore for the
second term in Eq. (2.1) we have

PV
∑
α �=0

|ϕα〉〈ϕα|
ε0 − εα

V P = − 2

3J2

N∑
m=1

P

(
J4

2
s−

m,1+
J3

2
s−

m,2+
J1

2
s−

m,3

+J4

2
s−

m+1,1 + J1

2
s−

m+1,2 + J3

2
s−

m+1,3

)

×
(

J4

2
s+

m,1 + J3

2
s+

m,2 + J1

2
s+

m,3

+ J4

2
s+

m+1,1+
J1

2
s+

m+1,2+
J3

2
s+

m+1,3

)
P.

(2.9)

After the evaluation of all necessary matrix elements Ps∓
m,iP,

we get

PV
∑
α �=0

|ϕα〉〈ϕα|
ε0 − εα

V P = − 1

18J2

N∑
m=1

P((a|d+〉 + a∗|d−〉)〈u|m

+ (a∗|d+〉 + a|d−〉)〈u|m+1)

× (|u〉(a∗〈d +| + a〈d −|)m

+ |u〉(a〈d +| + a∗〈d −|)m+1)P.

(2.10)

Here

a = J4 + ω2J3 + ωJ1 = |a|eiα,

|a| =
√

J2
1 + J2

3 + J2
4 − J1J4 − J1J4 − J3J4.

(2.11)

Using (pseudo)spin-1 T α
m operators, we have the following

expression for the effective Hamiltonian:

Heff =
N∑

m=1

[
C +

(
h − h1 − |a|2

9J2

)
T z

m
2 − 1

18J2

[
(a2 + a∗2)

(
T x

m
2 − T y

m
2)

+ 1

2

(
(a − a∗)2

(
T z

mT x
m T x

m+1T z
m+1 + T x

m T z
mT z

m+1T x
m+1

) + (a + a∗)2
(
T z

mT y
mT y

m+1T z
m+1 + T y

mT z
mT z

m+1T y
m+1

)

+ i(a∗2 − a2)
(
T z

mT x
m T y

m+1T z
m+1 + T x

m T z
mT z

m+1T y
m+1

) + i(a2 − a∗2)
(
T z

mT y
mT x

m+1T z
m+1 + T y

mT z
mT z

m+1T x
m+1

))]]
,

C = −2h + 3

4
J2 + 3J

2
, h1 = 3

2
J2 + J, J = J1 + J3 + J4

3
, a = J4 + ω2J3 + ωJ1, ω = ei 2π

3 . (2.12)
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This result can be also written in more compact matrix notation:

Heff =
N∑

m=1

⎡
⎣C

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ +

⎛
⎝h − h1 0 0

0 0 0
0 0 h − h1

⎞
⎠

m

− 1

18J2

⎛
⎝

⎛
⎝ 2|a|2 0 a2 + a∗2

0 0 0
a2 + a∗2 0 2|a|2

⎞
⎠

m

+ 1

2

⎛
⎝0 a 0

0 0 0
0 a∗ 0

⎞
⎠

m

⎛
⎝0 0 0

a 0 a∗
0 0 0

⎞
⎠

m+1

+ 1

2

⎛
⎝ 0 0 0

a∗ 0 a
0 0 0

⎞
⎠

m

⎛
⎝0 a∗ 0

0 0 0
0 a 0

⎞
⎠

m+1

⎞
⎠

⎤
⎦,

C = −2h + 3

4
J2 + 3J

2
, h1 = 3

2
J2 + J, J = J1 + J3 + J4

3
, a = J4 + ω2J3 + ωJ1, ω = ei 2π

3 . (2.13)

The obtained effective Hamiltonian acts in the space of 3N ground states of Hmain and corresponds to the unfrustrated
(pseudo)spin-1 chain in the magnetic field. For the ideal geometry case, i.e., when J1 = J3 = J4 (J4 + ω2J3 + ωJ1 = 0), we
have noninteracting (pseudo)spins 1 in a magnetic field and obtained effective model (2.13) commutes with scalar chirality
operator (2.7). It is important to notice that for the distorted geometry case the chirality operator (2.7) commutes only with terms
in effective model (2.13) which are proportional to T z2

m and this means that deviation from the ideal geometry leads to breaking
of chiral symmetry.

B. Heisenberg octahedral chain

In the case of the octahedral chain the following two states
of each square are relevant in a strong magnetic field:

|u〉 = |↑↑↑↑〉,
|d〉 = 1

2 (|↑↑↑↓〉 − |↑↑↓↑〉 + |↑↓↑↑〉 − |↓↑↑↑〉). (2.14)

Their energies are J2 − 2h and −J2 − h, respectively. For the
projector onto the ground-state manifold of Hmain we have

P = |ϕ0〉〈ϕ0| = ⊗mPm,

Pm = (
(|u〉〈u| + |d〉〈d|) ⊗ |↑5〉〈↑5|

)
m.

(2.15)

Similar to the double-tetrahedral chain, the set of relevant
excited states |ϕα〉 (α �= 0) is the set of the states with only one
flipped spin |↓5〉 on those sites which connect two neighboring
squares J2. Using (pseudo)spin-1/2 operators for each cell,

1 = |u〉〈u| + |d〉〈d|, T z = 1
2 (|u〉〈u| − |d〉〈d|),

|u〉〈u| = 1
2 + T z, |d〉〈d| = 1

2 − T z, (2.16)

Eq. (2.1) becomes

Heff =
∑

m

(
C − hT z

m − J
(
T x

m T x
m+1 + T y

mT y
m+1

))
,

C = −2h + J2 + 3

2
J − (J1 − J3 + J4 − J5)2

16J2
,

h = h − h1 − (J1 − J3 + J4 − J5)2

8J2
,

J = (J1 − J3 + J4 − J5)2

16J2
.

(2.17)

The obtained effective Hamiltonian in the strong-coupling
approach acts in the space of two ground states of Hmain

and corresponds to an unfrustrated spin-1/2 isotropic XY
chain in a transverse magnetic field [37]. Therefore, the free
energy (per cell) of the initial frustrated quantum spin model
in the low-temperature strong-field regime for N → ∞ is

given by

f (T, h) = C − T

2π

∫ π

−π

dκ ln

(
2 cosh

	κ

2T

)
(2.18)

with

	κ = h + J cos(κ ). (2.19)

Knowing the free energy (2.18), one can easily obtain all
thermodynamic quantities. For example, the magnetization
per cell is given by M(T, h) = −∂ f (T, h)/∂h, and the specific
heat C(T, h) can be found as C(T, h) = −T ∂2 f (T, h)/∂T 2

[the magnetization per site and specific heat are five times
smaller: m(T, h) = M(T, h)/5, c(T, h) = C(T, h)/5)]. In the
case of the ideal geometry, i.e., when J1 = J3 = J4 = J5, we
face noninteracting (pseudo)spins 1/2 in a magnetic field.

III. HIGH-FIELD LOW-TEMPERATURE
THERMODYNAMICS

In this section we verify the region of validity of the ob-
tained effective Hamiltonians (2.13) and (2.17). To check the
quality of the obtained effective description we perform ex-
act diagonalization (ED) and density matrix renormalization
group (DMRG) calculations [38]. We consider initial chains
with periodic boundary conditions (N = 4N = 16 for the
double-tetrahedral chain and N = 5N = 15 for the octahedral
chain) in ED calculations or open chains with N = 60 in
DMRG calculations and compute the magnetization m(T, h)
at low temperatures and the specific heat c(T, h) at high fields.
Periodic boundary conditions are applicable to systems with a
small number of sites to ensure the equivalence of all sites.
This reduces the volume of computations by reducing the
Hilbert dimension of the entire system. We have used the
DMRG method to expand our chain length beyond the exact
limit. The most important difference from other numerical
methods is that DMRG prefers open boundary conditions
and in the present study it is used for the zero-temperature
condition. In the evaluation of magnetization curves by the
DMRG method we used the control parameters sweeps = 4
and maxstates = 100. Results for the initial full model (1.1)
are compared with corresponding data for effective models.
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In main panels of Figs. 2 and 3 we show the total magneti-
zation curves at zero temperature for the considered models
of N = 16 (the double-tetrahedral chain, Fig. 2) and N =
15 (the octahedral chain, Fig. 3). In these figures dotted
red curves indicate the ED results for ideal geometry and
thick solid green and blue curves denote the ED results for
slightly distorted geometry; magenta symbols indicate the
DMRG results for initial deformed models; thin black curves
indicate the results for effective models. The magnetization
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saturation magnetization in the case of the double-tetrahedral
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FIG. 4. Temperature dependencies of (a) the specific heat (per
site) c(T, h) and (b) the entropy (per cell) s(T, h) of the double-
tetrahedral chain for ideal (J1 = J3 = J4 = 1, J2 = 5) geometry of
the lattice. ED data for the initial model (N = 16) are compared
with corresponding data for the effective model (N = 4, thin black
curves).

chain (Fig. 2) and at one-fifth and three-fifths of the saturation
magnetization for the octahedral chain (Fig. 3). Insets demon-
strate the influence of finite temperature, i.e., T = 0.001, on
magnetization and also show the region of applicability of the
constructed effective theory for ideal and distorted geometry
of the lattice. To be specific, the left insets in Figs. 2 and 3
demonstrate the strict jump of magnetization to the saturation
value for the ideal double-tetrahedral and octahedral chains.
Comparing the results of ED calculations for initial (dotted
red curves) and effective models (thin black curves) for ideal
chains indicates their excellent agreement. The right insets in
Figs. 2 and 3 show how these the strict jumps modify due to
small deviations from the ideal geometry.

In Figs. 4(a), 5(a), and 6 we also show the temperature
dependencies of the specific heat at high magnetic fields for
ideal (red symbols) and slightly distorted geometries (green
and blue symbols). Temperature dependencies of the entropy
of ideal and distorted double-tetrahedral chains in strong
magnetic field are depicted in Figs. 4(b) and 5(b). Results
for the corresponding effective models [see Eqs. (2.13) and
(2.17)] are denoted by thin black curves. The results of
Jordan-Wigner fermionization for the effective model for
the octahedral chain are denoted by black open circles in
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FIG. 5. Temperature dependencies of (a) the specific heat (per
site) c(T, h) and (b) the entropy (per cell) s(T, h) of the double-
tetrahedral chain for deformed geometry (J1 = 1.2, J2 = 5, J3 = 0.8,
J4 = 1) of the lattice. ED data for the initial model (N = 16) are
compared with corresponding data for the effective model (N = 4,
thin black curves). (c) Thermal average of the chirality operator (2.7)
for the distorted double-tetrahedral chain.

Figs. 3 and 6. The thermal average of the chirality operator
(2.7) for the distorted double-tetrahedral chain in a magnetic
field below the saturation value is depicted in Fig. 5(c).

Now we can discuss generic features, which arise as the
consequence of small deviation from the perfect geometry
of the lattice. First of all, deviation from the ideal geom-
etry does not affect the noticeable change in width of the
plateau preceding the jump of magnetization to saturation
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FIG. 6. Temperature dependencies of the specific heat (per site)
c(T, h) of the octahedral chain for (a) ideal (J1 = J3 = J4 = J5 = 1,
J2 = 4, red symbols) and (b) deformed geometry (J1 = J4 = 0.8,
J3 = J5 = 1.2, J2 = 4, blue symbols) of the lattice. ED data for
the initial model (N = 15) are compared with corresponding data
for the effective model (N = 3, thin black lines). Effective-model
predictions for thermodynamically large chains are denoted by empty
black circles.

(see Figs. 2 and 3), but has an essential influence on the
magnetization jump present for the ideal geometry. As one
can see from right insets in Figs. 2 and 3, deviation from
the ideal geometry together with finite temperature leads to
the smearing of the jump to saturation in the magnetiza-
tion curve, which is another prominent feature of localized
magnons both for the double-tetrahedral and the octahedral
chains. For deformed initial chains the agreement between the
effective theory given in Eqs. (2.13) and (2.17) and the exact-
diagonalization data become worse. The constructed effective
theory within the strong-coupling approximation reproduces
the low-temperature behavior of magnetization in the vicinity
of the saturation field only qualitatively and underestimates
the width of the region where the low-temperature magnetiza-
tion shows a steep increase between two plateau values.

As one can see from Figs. 4(a) and 6(a), specific heat
demonstrates a two-peak structure, which is typical for ideal
geometry both for the double-tetrahedral and the octahedral
chains. The low-temperature peak of the specific heat cor-
responds to the energy scale set by the degenerated man-
ifold of states being ground states at magnetic fields near
the saturation. Moreover, such a characteristic extra low-
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FIG. 7. Energy levels of the distorted double-tetrahedral chain
(J1 = 1.2, J2 = 5, J3 = 0.8, J4 = 1) in the subspaces with different
value of Sz operator in a magnetic field (a) slightly below the
saturation value (b) just above the saturation value.

temperature peak in the specific heat survives in distorted
systems. In the case of the double-tetrahedral chain, deviation
from ideal geometry leads to the lifting of the degeneracy due
to the chirality degrees of freedom and one of the twofold
degenerate flat bands in the energetic spectrum acquires a
small dispersion. As a result, the temperature dependence of
the specific heat of a deformed double-tetrahedral chain in a
magnetic field slightly below saturation value demonstrates
a three-peak structure [see Fig. 5(a)]. It should be noted
that such a three-peak structure of the specific heat appears
exclusively at high magnetic fields just below the saturation
value. The confirmation of this statement can be understood
from the energy levels of the deformed double-tetrahedral
chain in subspaces with different values of the operator Sz,
Sz = N

2 , N
2 − 1, . . ., which are shown in Fig. 7. In a mag-

netic field a bit under the saturation value in subspace, for
example, one flipped spin(Sz = N

2 − 1) system has degenerate
low-lying excitations from the ground state to first-excited
states. Such excited states are ground states in a magnetic
field below the saturation [see Fig. 7(a)]. There are also a
lot of low-lying excitations in other subspaces with smaller
eigenvalues of the total spin Sz � N

2 − N , which are closely

related to nearly flat-band states differing in chirality. To
emphasize the contribution of the chirality degree of free-
dom let us consider the temperature dependence of chiral-
ity operator (2.7). We find from Fig. 5(c) that in magnetic
fields below the saturation value chirality not only plays a
crucial role, but it obviously has certain correlations with
observed maximums of the specific heat. However, when the
magnetic field is above the saturation value [see Fig. 7(b)]
those states are not ground states anymore and therefore do
not contribute to the specific heat at very low temperature.
On the other hand, the explanation of the appearance of an
additional low-temperature peak in the specific heat can be
understood from the temperature dependence of the entropy
of the double-tetrahedral chain in a strong magnetic field
[see Figs. 4(b) and 5(b)]. In the case of the ideal geometry
of the double-tetrahedral chain (J1 = J3 = J4 = 1, J2 = 5)
the high degeneracy of the localized eigenstates leads to a
residual ground-state entropy in a magnetic field a bit below
the saturation, S(h = 0.98hsat ) = ln(2), which stems from the
chiral degree of freedom. The deviation from ideal geometry
of the lattice eliminates the degeneracy of the ground states
and the temperature dependence of the entropy acquires a
three-peak shape. Moreover, the appearance of an additional
low-temperature peak in the specific heat can be interpreted
from a symmetry viewpoint: deviation from ideal geometry
leads to explicit breaking of a discrete Z2 symmetry of the
unit cell (tetrahedron) of the double-tetrahedral chain, while
in the case of the ideal lattice geometry such breaking sym-
metry is not present. An effective Hamiltonian is capable of
reproducing not only the low-temperature peak of the specific
heat (ideal and deformed octahedral chains and ideal double-
tetrahedral chain), but also the second peak in the specific heat
of the deformed double-tetrahedral chain [see Figs. 4(a), 5(a),
and 6]. However, the constructed effective theory concerns the
low-temperature physics, and therefore does not reproduce
the high-temperature maximum of the specific heat for both
Heisenberg chains considered in this paper.

IV. CONCLUSIONS

In conclusion, we have examined the high-field low-
temperature properties of the spin-1/2 Heisenberg model on
the double-tetrahedral and octahedral chains both for ideal
and distorted geometry of the lattice. Using the concept of
localized magnons and a strong-coupling approximation we
proposed an effective theory to explain the low-temperature
thermodynamics of the considered systems in a high magnetic
field. It was shown that the presence of an additional degree
of freedom of trapping cells in the double-tetrahedral chain,
i.e., chirality, leads to increasing degeneracy of one-magnon
states and these states differ by chirality values. An effective
description of the double-tetrahedral chain at high magnetic
field corresponds to an unfrustrated spin-1 chain with nearest-
neighbor interactions in a magnetic field while the octahedral
chain is described by the exactly solvable spin-1/2 isotropic
XY chain in a magnetic field. Moreover, the obtained effective
Hamiltonians are much simpler than the initial ones: they are
free of frustration, have a smaller number of sites, and refer
to the reduced Hilbert space. New features which appear due
to small deviation from ideal geometry at strong magnetic
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fields are (i) the smearing of the perfect jump to the saturation
in the magnetization curve for both deformed chains and (ii)
lifting of the degeneracy due to chirality degrees of freedom
on a triangle and the appearance of the additional peak in
the specific heat of the distorted double-tetrahedral chain in
a magnetic field just below the saturation value.

The developed approach can be also adapted to other frus-
trated quantum Heisenberg antiferromagnets with spin higher
than 1/2 and extended to the case of low magnetic fields. It is
necessary to choose the dominant states with the least energy
in the vicinity of zero magnetic field and repeat all required
calculations to construct an effective Hamiltonian. However,
the aim of the present investigation concerns the high-field
regime, where manifestation of almost localized magnons is
the most striking.

It is worth noting that Cu3Mo2O9 [27–29] can be presented
as a double-tetrahedral chain, but with a different deforma-
tion type than was considered here. The construction of an
effective theory in the case of the deformation of equilateral
triangles will be a task for future study.
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