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Magnetic anisotropy of a Dy atom on a graphene/Cu(111) surface
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The electronic structure and magnetism of individual Dy atoms adsorbed on the graphene/Cu(111) surface
is investigated using the combination of the density functional theory with the Hubbard-I approximation to
the Anderson impurity model (DFT + U + HIA). We find that the results of the DFT + U + HIA depend
on the choice of the double-counting term. For fully localized limit, the divalent Dy2+ adatom is found, with
the total magnetic moment of 9.71 μB. The spin and orbital magnetic moments are evaluated, and compared
with the x-ray magnetic circular dichroism data. The calculated positive magnetic anisotropy energy determines
the out-of-plane orientation of the Dy adatom magnetic moment, in agreement with available experimental data.
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I. INTRODUCTION

Surface supported single atom magnets (SAM) play a
promising role in reducing the magnetic domain size for the
ultrahigh density magnetic memory components. Magnetic
rare-earth (RE) atoms adsorbed on metallic [1,2] and insulat-
ing [3] solid surfaces recently attracted a lot of attention in an
attempt to create the atomic-size magnets. Another important
aspect is the use of SAM as qubits for quantum information
processing [4]. This proof-of-principle experimental realiza-
tion of Grover’s search algorithm [5] on a single RE adatoms
may open new opportunities in further practical realization of
quantum qubits.

The magnetic remanence, together with long magnetic
relaxation time are prerequisites for the magnetic stability
of adatoms. Experimental studies [6] have shown that Dy
adatoms deposited on the graphene on the top of Ir substrate
display a SAM behavior. This experimental observation pro-
vides an opportunity to manipulate individual Dy moments by
using microwave electromagnetic field and dc-electric current.
The large magnetic anisotropy energy (MAE) is the key quan-
tity to achieve the magnetic stability. Another condition is the
doubly degenerate ground state, which has to be protected by
the crystal field of the substrate against the quantum tunneling,
and decoupled from conduction electrons and phonons of the
substrate in order to reduce the spin-flip scattering.

The MAE of single magnetic RE impurities adsorbed
on surfaces can be measured mainly by the x-ray magnetic
circular dichroism (XMCD). The interpretation of XMCD
data relies on the atomic sum rules [7]. The atomic multiplet
calculations with several fitting parameters are employed to
determine the crystal electric field (CF), and the spin-orbit
coupling (SOC) strength. The outcome of these multiplet cal-
culations are the spin and orbital magnetic moments, together
with the ground and exited states energy spectrum [8].

In this work, we present the theoretical approach based on
the combination of the density functional theory (DFT) with
the multiorbital impurity Hamiltonian, which includes the

electron-electron interaction effects together with the CF and
SOC. Previously, the method was used to treat the magnetic
properties of Dy adatom deposited on the graphene on the top
of Ir(111) substrate [Dy@GR/Ir(111)], and now we apply it
to examine the anisotropic magnetic character of Dy on the
graphene on Cu(111) [Dy@GR/Cu(111)].

We aim to examine the role of the double-counting in
density functional theory with the Hubbard-I approximation
to the Anderson impurity model (DFT + U + HIA) on the
Dy- f -shell valence, spin and orbital magnetic moments, and
the MAE. We find that the results of charge-self-consistent
DFT + U + HIA strongly depend on the choice of the double-
counting: the so-called around-mean-field (AMF) [9] yields
the trivalent Dy3+, while the divalent Dy2+ is found with the
fully-localized-limit (FLL) [10] double-counting. We calcu-
late the uniaxial MAE making use of the crystal-field theory
model, and show that it is in semiquantitative agreement with
the zero-field-splitting (ZFS) obtained from the solution of the
Anderson impurity model. This MAE is calculated negative
for the AMF, and positive for the FLL calculations. In the
latter case, the out-of-plane direction of the magnetic moment
and XMCD spectrum are in agreement with experimental
data. We use this agreement to select FLL as the appropriate
choice for the double counting.

II. DFT + U + HIA METHOD

We extend the DFT + U method making use of a combi-
nation of DFT with the exact diagonalization of the Anderson
impurity model. We assume that electron interactions in the
s, p, and d shells are well approximated in DFT. We used the
rotationally invariant implementation of the DFT + U method
in the full-potential linearized augmented plane wave basis
that includes both scalar-relativistic and spin-orbit coupling
effects [11,12].

The effects of the Coulomb interactions on the electronic
structure are described with the aid of a ionic model de-
scribing the complete seven-orbital 4 f shell. This multiorbital
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model includes the full spherically symmetric Coulomb in-
teraction, the spin-orbit coupling, and the crystal field. The
corresponding Hamiltonian can be written as [13],

Ĥimp =
∑
mσ

ε f f †
mσ fmσ

+
∑

mm′σσ ′

[
ξ l · s + �̂CF + �EX

2
σ̂z

]σ σ ′

mm′
f †
mσ fm′σ ′

+ 1

2

∑
mm′m′′
m′′′σσ ′

Umm′m′′m′′′ f †
mσ f †

m′σ ′ fm′′′σ ′ fm′′σ , (1)

where f †
mσ creates an electron in the 4 f shell. The parameter ξ

specifies the strength of the SOC, �CF is the crystal-field po-
tential at the impurity, and �EX is the strength of the exchange
field. The energy position ε f (= −μ, the chemical potential)
defines the number of f electrons. The last term describes the
Coulomb interaction in the f shell. The actual choice of these
parameters will be discussed later. This model corresponds
to the HIA, and assumes the weakness of the hybridization
between the localized f electrons and the itinerant s, p, and d
states, so that the quantum impurity model is reduced to the
atomic limit.

The Lanczos method [14] is employed to find the lowest-
lying eigenstates of the many-body Hamiltonian Himp and to
calculate the self-energy matrix [�(z)]γ ,γ ′ in the subspace of
the f spin orbitals {φγ = φmσ } at low temperature (kBT =
β−1 = 2 meV). Once the self-energy is found, the local
Green’s function G(z) for the electrons in the 4 f manifold
reads

G(z) = ([G(z)DFT]−1 + �ε − �(z))−1, (2)

where GDFT(z) is the “noninteracting” DFT Green’s func-
tion, and �ε is chosen so as to ensure that n f =
−π−1Im Tr

∫ EF

−∞ dz[G(z)] is equal to the number of 4f elec-
trons derived from Eq. (4). Then, with the aid of the local
Green’s function G(z), we evaluate the occupation matrix
nγ1γ2 = −π−1 Im

∫ EF

−∞ dz [G(z)]γ1γ2 .
The matrix nγ1γ2 is used to construct an effective DFT + U

potential VU , which is inserted into Kohn–Sham-like equa-
tions [11,12]:

[−∇2 + VDFT(r) + (VU − Vdc) + ξ (l · s)]�k(r) = εk�k(r).
(3)

For the spherically symmetric DFT + U double-counting
term we have adopted either the so-called AMF Vdc =
(U/2 n f + 2l

2(2l+1) (U − J ) n f ) [9] form, or the FLL Vdc =
(U − J )/2 (n f − 1) [10]. We also note that the DFT potential
VDFT in Eq. (4) acting on the f states is corrected to exclude
the nonspherical double-counting with VU [15].

The DFT + U + HIA calculations are performed in the
charge self-consistent implementation. Equation (4) is iter-
atively solved until self-consistency over the charge density
is reached. The new DFT Green’s function GDFT and the
new value of the 5 f -shell occupation are obtained from the
solutions of Eq. (4). The next iteration is started by solving
Eq. (1) with the updated values of ε f , ξ , �CF, and �EX.

The new value of ε f = −μ in Eq. (1) is determined by the
condition μ = Vdc. This is an essential condition, and can be

justified as follows. The double-counting term Vdc accounts
approximately for the electron-electron interaction energy
Eee

DFT already included in the DFT. Thus it can be written as a
derivative of this mean energy contribution with respect to the
f -shell occupation n f , Vdc = ∂Eee

DFT/∂n f . Indeed, it represents
a value of the chemical potential μ that controls the number
of f electrons.

The CF matrix �̂CF in Eq. (1) is obtained by projecting the
self-consistent solutions of Eq. (4) into the {φγ } local f -shell
basis,

[H]γ1γ2 =
∫ εt

εb

dε ε[N (ε)]γ1γ2 , (4)

where

[N (ε)]γ1γ2 = −π−1Im[G(z)DFT+U]γ1γ2

is the f-projected density of states (fDOS) matrix, εb is the
bottom of the valence band, and εt is the upper cutof,f which
is naturally defined by the condition

∫ εt

εb
dε Tr[N (ε)] = 14.

The exchange splitting �EX corresponds to the interorbital
exchange energy between the 4 f and mainly 5d states of Dy,
Jf d m5d [16], where Jf d is ∼ 0.1 eV/μB [17], and m5d is the
magnetic moment of the 5d states.

The new occupation matrix is calculated with the aid of
Eq. (2), and Eq. (3) is solved for the updated VDFT and VU . The
loop procedure is repeated until the convergence of the 4 f -
manifold occupation n f was better than 0.01. After the self-
consistent solution of DFT + U + HIA is obtained, the mean-
field total energy Etot = EDFT + �Eee is calculated as a sum
of DFT total energy EDFT, and the energy correction �Eee =
Eee − Edc (the difference between the electron-electron in-
teraction energy Eee and double-counting energy Edc already
included in EDFT).

III. RESULTS

A. DFT + U + HIA electronic structure

In order to discern the spin and orbital character of the
rare-earth Dy adatom on GR/Cu(111) we make use of the
3 × 3 × 1 supercell model with 27 Cu atoms (three layers)
for the substrate, and the layer of graphene with 18 C atoms
on the top of the Cu(111) surface. The graphene overlayer is
placed in the so-called “HCP” (or “1-3”) position, where one
of the C atoms sits on the top of Cu surface, and another is
over second Cu sub-surface layer. The experimental Cu lattice
constant of 4.839 a.u., and 6.163 a.u. of separation between
the carbon atoms of the graphene sheet and the topmost Cu
layer [18] are used. The rare-earth Dy atom is placed in the
hollow position atop the graphene/Cu(111) surface. The top
view of the supercell is shown in the inset in the Fig. 1.

In the FP-LAPW calculations, 108 special k points in the
two-dimensional Brillouin zone were used, with Gaussian
smearing for k-points weighting. The “muffin-tin” radii of
RMT = 2.75 a.u. for Dy, RMT = 2.3 a.u. for Cu, RMT = 1.25
a.u. for C were used. The LAPW basis cutoff is defined by
the condition RDy

MT × Kmax = 8.25 (where Kmax is the cutoff
for LAPW basis set). The Slater integrals F0 = 7.00 eV, and
F2 = 9.77 eV, F4 = 6.53 eV, and F6 = 4.83 eV were chosen
to parametrize the Coulomb interaction term in Eq. (1), and
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FIG. 1. Total energy vs distance between adatom and the surface
(a.u.). Inset shows schematic supercell model for rare-earth impurity
on graphene.

to construct the DFT + U potential VU in Eq. (4). They corre-
sponds to the values for Coulomb U = 7.00 eV and exchange
J = 0.82 eV (see the Appendix for justification of the U and
J parameters values).

The optimal height hDy for the rare-earth Dy adatom above
the graphene surface layer was obtained from the total energy
DFT + HIA calculations (see Fig. 1), and is equal to 4.225
a.u. In these calculations the Dy adatom was treated in a
paramagnetic state. The calculated value of hDy is close to the
optimal height of 4.235 a.u. that was obtained for the same
placement of the Dy adatom on the top of GR/Ir(111) [19].

Next, we have performed the spin-polarized calculations
assuming the z axis direction of the Dy adatom magnetiza-
tion. In these calculations, we applied the non-spin-polarized
exchange-correlation functional to the f states in Eq. (4) in
order to exclude the contribution of f -intraorbital exchange
field into the double-counting Vdc, while the spin-polarized
functional is used for all other states. The exchange splitting
�EX = Jf d m5d [16] is applied in Eq. (1), and evaluated self-
consistently. Typically, the value of �EX varies in the range
between 5 and 20 meV during the calculations. Both AMF
and FLL types of the double-counting Vdc were used. Further,
we call the calculations with the AMF Vdc form as Model A,
and with the FLL Vdc as Model B.

The calculated ground state f -electron occupation n f =
Tr[n̂], magnetic spin 〈MS〉 = −2〈Sz〉μB/h̄ = −Tr[σ̂zn̂]μB/h̄,
orbital 〈ML〉 = −〈Lz〉μB/h̄, dipole 〈MD〉 = −6〈Tz〉μB/h̄ mo-
ments, and RLS = 〈ML〉

〈MS〉+〈MD〉 value, the ratio of the orbital
to the effective spin moment, are shown in Table I for
both Models A and B, in comparison with the experimental
XMCD data [20]. It is seen that there is only moderate
difference in the ground state occupation, spin, and orbital
magnetic moments between the two models. The total f
occupation, which accounts for both the fully localized and
itinerant contributions, is slightly increased in Model B.
The spin moment 〈MS〉 is slightly enhanced, while the orbital

TABLE I. The f -electron occupation nf , spin 〈MS〉, orbital 〈ML〉,
〈MS〉 plus magnetic dipole 〈MD〉 moments (in μB), and the ratio
RLS = 〈ML 〉

〈MS 〉+〈MD〉 for the Dy adatom on GR/Cu(111) in comparison
with available experimental XMCD [20]. Different AMF (Model A)
and FLL (Model B) types of the double-counting are used.

Dy@GR/Cu nf 〈MS〉 〈ML〉 〈MS〉 + 〈MD〉 RLS XMCD RLS

Model A 9.60 4.03 5.06 4.32 1.17 1.20 ± 0.2
Model B 9.88 3.74 5.97 4.69 1.27

moment 〈ML〉 is somewhat reduced when Model A is used.
As a result, the use of AMF yields smaller RLS-ratio than
FLL, both in agreement with available XMCD data [20].
Thus, the DFT + U + HIA is not as sensitive to the choice
of double-counting Vdc, as one would expect for conventional
DFT + U applied to the f -electron systems [21].

In addition to the 4 f -magnetic moment, Dy adatom 5d
states create the m5d = 0.17 μB (Model A), 0.08 μB (Model
B) magnetic moment. Note that the calculation of the m5d

moment is associated with some uncertainty, since this value
will depend slightly on the choice of the Dy adatom muffin-
tin radius. This value of m5d yields the �EX = 16 meV
(Model A), 7 meV (Model B) in Eq. (1).

The spin-resolved fDOS for Dy@GR/Cu is shown in
Figs. 2(a) and 2(b). They are manifestly different for different
choice of Vdc. In Model A, the occupied part of the spectrum,
the spin-↑ manifold lies at around 6 to 12 eV below EF ,
and spin-↓ states are at 5 to 6 eV. The unoccupied part sits
right on the top of EF . In Model B, both occupied and empty
parts of the spectrum are shifted upwards by 3–4 eV. The
graphene-layer-projected DOS are shown in Figs. 2(c) and
2(d). It is seen that the graphene zero band gap is located ≈
1 eV below the Fermi level (EF ), indicating the n doping of
graphene. They are very similar for both models.

The calculated total energy difference between two models
A and B, Etot(Model A) − Etot(Model B) = −0.5369 Ry does
not mean that the Model A solution is lower in the total energy
than the Model B. Since the use of different double-counting
Vdc, the total energies correspond to different total energy
functionals, and can not be compared.

B. Calculation of XAS and XMCD spectra

We used the ionic Hamiltonian, Eq. (1), with the self-
consistently determined parameters as an input for the Quanty
code [22] to estimate the M-edge XAS and XMCD spectra.
In these calculations, the exchange field �EX is replaced
with the external magnetic field Bz = 6.8 T typical in the ex-
perimental XMCD measurements [8]. The 3d−4 f Coulomb
interaction is parametrized with Slater integrals computed
with the Cowan’s Hartree-Fock code [23] and then reduced
to 80% to approximately account for screening (Table II). The
3d spin-orbit coupling ξ3d = 14.4 eV is taken from the same
Hartree-Fock calculations.

Comparison of the computed spectra (Fig. 3) with available
experimental data [24] points out Model B as more realistic.
In particular, the very shallow XMCD spectrum found in
Model A clearly disagrees with the experimental findings. The
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FIG. 2. The spin projected fDOS for the spin-polarized Dy@GR/Cu(111) (A Model A and (B) Model B; the graphene-layer-projected
DOS for Dy@GR/Cu(111) (C) Model A and (D) Model B.

difference in XMCD spectra between models A and B can be
traced to the difference in the ground state solutions of Eq. (1).

For Model A, the lowest energy state of Eq. (1) is a
double-degenerate |J = 7.5, Jz = ±0.48〉 state. The f -shell
quantum numbers are Nf = 9, J = 7.5, with Lande factor g =
1.32. They correspond to the f 9 ion configuration, and define
the Dy adatom valence as Dy3+. The scheme of quantum
many-body levels of the lowest J = 7.5 multiplet is shown in
Fig. 4(a). It is seen that the |J = 7.5, Jz = ±0.48〉 ground state
corresponds to the “in-plane” magnetic moment orientation,
and produces a weak and shallow XMCD signal shown in
Fig. 3(a).

For Model B, the ground state of Eq. (1) is a doublet
|J = 8.0, Jz = ±8〉. The f -shell quantum numbers are Nf =
10, J = 8.0, with Lande factor g = 1.24. They correspond to
the f 10 ion configuration, and define the Dy adatom valence

TABLE II. Slater integrals defining the 3d–4f Coulomb inter-
action as computed with Cowan’s code [23] for the XAS final
states 3d94 f 10 (Model A) and 3d94 f 11 (Model B). The Hartree-Fock
values are reduced to 80% to account for screening. All values are
shown in eV.

F2 F4 G1 G3 G5

3d 94f 10 7.79 3.66 5.64 3.31 2.29

3d 94f 11 7.36 3.44 5.28 3.10 2.14

as Dy2+. Also, the Nf = 10 obtained from Eq. (1) is consis-
tent with the f -electron occupation n f = 9.88 (see Table I)
calculated with the aid of Eq. (2). The corresponding scheme
of quantum many-body levels of the lowest J = 8 multiplet is
shown in Fig. 4(b). The |J = 8, Jz = ±8〉 ground state signals

TABLE III. The nonzero CF parameters [Aq
k〈rk〉] (meV) for

Dy adatom on GR/Cu(111), and ZFS in comparison with
Dy@GR/Ir(111) from Ref. [19]; the magnetic anisotropy constants
K , and the corresponding magnetic anisotropy energy (MAE, meV).

Dy@GR/Cu A0
2〈r2〉 A0

4〈r4〉 A0
6〈r6〉 A6

6〈r6〉 ZFS

Model A −16.5 5.7 2.2 19.8 −20.4

Model B −4.1 8.3 4.1 1.0 16.6

K1 K2 K3 K4 MAE

Model A −10.7 24.5 −29.6 1.2 −15.8

Model B 108.8 −207.1 110.4 −0.1 12.2

Dy@GR/Ir A0
2〈r2〉 A0

4〈r4〉 A0
6〈r6〉 A6

6〈r6〉 ZFS

Model A [19] −10.9 6.8 2.8 −7.5 8.1

Model B −11.7 7.0 2.4 −5.8 6.2

K1 K2 K3 K4 MAE

Model A 75.1 −144.6 75.1 0.9 5.6

Model B 67.8 −128.1 64.6 0.7 4.4
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FIG. 3. XAS and XMCD (normal incidence) for Dy@GR/

Cu(111): (A) for the case of �CF and ε f = −Vdc from Model A
(AMF); (B) for the case of �CF and ε f = −Vdc from Model B (FLL).

the “out-of-plane” magnetic moment orientation, and yields a
very different XMCD spectrum shown in Fig. 3(b).

C. Crystal-field model parameters

In previous work [19] we demonstrated that the CF Hamil-
tonian can be build from the results of the charge den-
sity self-consistent DFT + HIA calculations. The calculated
�CF matrix is used to build the CF Hamiltonian for the
Dy@GR/Cu(111),

ĤCF =
∑

kq

Aq
k〈rk〉k (J )Ôq

k , (5)

where Ôq
k are the Stevens operator equivalents, k (J ) are

the Stevens factors for a given ground state multiplet J , and
Aq

k〈rk〉, the CF parameters (in standard notations) for given k

FIG. 4. Scheme of quantum many-body levels of the lowest J =
7.5 multiplet obtained from the nonmagnetic solutions (�ex = 0)
of Eq. (1) with the �CF parameters taken from spin-polarized cal-
culations (squares); energy diagram of the CF Hamiltonian with the
CF parameters from Table III (circles), and the uniaxial CEF only
(diamonds).

and q. Note that k (J ) for k = 2, 4, and 6 are often designated
by αJ , βJ , and γJ , respectively.

The calculated nonzero CF parameters Aq
k〈rk〉 for Dy

adatom on Cu(111) are shown in Table III for both models A
and B. The corresponding energy diagram of the CF Hamil-
tonian Eq. (5) with the CF parameters given in Table III are
show in Fig. 4(a) for Model A, and in Fig. 4(b) for Model
B. It is seen that the CF solutions approximate very well the
many-body solutions of the Eq. (1) for both models A and B.

The first three CF parameters yield the uniaxial splitting of
different Jz eigenstates in Eq. (5). They determine the energy
difference between the lowest and highest Jz levels, the so-
called ZFS. The ZFS is shown in Table III. It is negative for
Model A, and positive for Model B. Obviously, negative ZFS
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corresponds to the “in-plane”, and positive ZFS to the “out-
of-plane” orientation of the magnetic moment. Thus, ZFS is
related to the uniaxial MAE defined as the total energy gain
due to the magnetization rotation from “out-of-plane” to the
“in-plane” direction, and negative value of MAE means the
“in-plane” orientation of the magnetic moment.

Following the recipe of the CF theory [25], the mag-
netic anisotropy EMA(θ, φ) can be identified as a diagonal
element 〈J, Jz = J| ĤCF |J, Jz = J〉, where the polar (θ, φ)
angles specify the magnetization direction. For Dy adatom on
Cu(111), the magnetic anisotropy is then written as

EMA = K1 sin2 θ + K2 sin4 θ+ K3 sin6 θ + K4 sin6 θ cos(6φ).
(6)

The magnetic anisotropy constants K1,2,3,4 in Eq. (6) can be
expressed as linear combinations of the coefficients Bq

k =
Aq

k〈rk〉k (J ) [25].
The magnetic anisotropy constants calculated for

Dy@GR/Cu(111) are shown in Table III. The first three
parameters K1,2,3 describe the uniaxial anisotropy, and K4 is
responsible for the “in-plane” anisotropy. Then the uniaxial
MAE can be expressed in terms of EMA Eq. (6), MAE =
EMA(θ = π/2) − EMA(θ = 0). For both models A and B, the
uniaxial MAE is in good semiquantitative agreement with
ZFS.

The choice of the appropriate double-counting model is
made by comparison with XMCD experiments. This com-
parison suggests the Model B (FLL Vdc), with divalent Dy2+

adatom, and positive magnetic anisotropy being consistent
with currently available experimental data [20,24], and we
will use this model in the following discussion.

Now we compare the calculated properties of
Dy@GR/Cu(111) and Dy@GR/Ir(111) described in
Ref. [19]. Both models A and B give similar results for
Dy@GR/Ir(111) (see Table III), and we focus on the
comparison between the results of the model B calculations.
For Dy@GR/Ir(111) both the spin MS = 3.57 μB and the
orbital ML = 5.71 μB are slightly reduced in a comparison
with Dy@GR/Cu(111) (see Table I). This similarity is not
surprising taking into account similarity in optimal height
hDy in the two systems. The CF parameters are changing
more substantially, and corresponding ZFS differs by almost
a factor of 3. The MAE of Dy@GR/Ir(111) is positive but
smaller than the MAE of Dy@GR/Cu(111).

IV. DISCUSSION

The magnetic stability of SAM requires the ground
state doublet |J = 8.0, Jz = ±8〉 not to be mixed in the
CF symmetry. The transverse CF parameter A6

6〈r6〉 in
Table III couples different Jz states, since the matrix element
〈Jz = m| Ô6

6 |Jz = n〉 �= 0 for |m − n| = 6, 12. The ground-
state doublet Jz = ±8 remains unchanged by this transver-
sal term [see Fig. 4(b)]. The quantum tunneling of the
magnetization (QTM) occurs for |J = 8.0, Jz = ±6〉 and
|J = 8.0, Jz = ±3〉 states. The energy barrier for the mag-
netization reversal defined by the uniaxial MAE of 12 meV
(Table III) is then substantially reduced to 5 meV.

The magnetic moment reversal can be triggered by scatter-
ing with itinerant electrons. The coupling between 4 f mag-

netization, and the substrate itinerant electrons is mediated by
the exchange interaction, which we consider for simplicity in
the form JK (gJ − 1)

∑
k,σ,σ ′ ( �J �σσ,σ ′/2)c†

kσ
ckσ ′ [26], where JK

is the so-called Kondo exchange, gJ is the Lande factor, the c†,
c are creation and annihilation operators for the itinerant |k, σ 〉
state. The coupling strength [27] can be obtained from the hy-
bridization function �(EF ) = 1

π
Im Tr[G−1

HIA(EF + i0)]) [28],

JK N (EF ) = 2
�(EF )

Nf

[
1

(εf + U − J )
− 1

εf

]
(7)

where N (EF ) is the DOS of the itinerant electrons coupled to
the localized 4 f moment, Nf = 14 is the f -states degeneracy,
and ε f is a location of the 4 f energy level. We obtain
�(EF ) = 0.16 eV, and JK N (EF ) = 0.23 for
Dy@GR/Cu(111). This value of coupling strength is smaller
than JK N (EF ) = 0.57 estimated for Dy@GR/Ir(111) [19]. We
interpret it as a reduction of the exchange coupling between
the f shell and conduction electrons in Dy@GR/Cu(111).

We can make an estimate for the spin-flip energy Es f ,
making use of the N (EF ) = 0.34 1/eV and m = 0.08 μB

for the non-fDOS and the magnetic moment of the Dy-atom
muffin-tin sphere, and obtain Es f ≈ 104 meV. This energy
exceeds substantially the 16.6 meV ZFS energy barrier
(Table III). Further, considering the selection rules
for the spin-flip transitions Jz → Jz, Jz ± 1, we find
[see Fig. 4(b)] that the system can transit from
|J = 8, Jz = 8〉 to |J = 8, Jz = 7〉, which is 27 meV
higher. The next allowed transition would be to the
|J = 8, Jz = 6〉, but the transverse CF parameter A6

6〈r6〉
couples |J = 8.0, Jz = ±6〉 states, transforming them into
the doublet with Jz ≈ 0 at the energy of 23 meV. Thus the
scattering due to itinerant electrons can, at least in princi-
ple, activate the QTM induced magnetic reversal. Moreover,
the CF symmetry distortions owing to the nonequivalence of
the two carbon sublattices in graphene can provide additional
paths for the magnetic relaxation.

Another source of the magnetic reversal is the interaction
of the magnetic moment with the surface vibrations. Due to
a weak coupling of graphene to the Cu substrate [29], it is
reasonable to assume that graphene phonon modes play a
role in the Dy adatom magnetic reversal. From six phonon
branches of pristine graphene [30], the acoustic out-of-plane
ZA mode is shifted by ω0 ∼ 6 meV near the � point [31]
due to interaction with Cu(111) substrate. This energy is
comparable with the 5 meV energy barrier due to quantum
tunneling between |J = 8.0, Jz = ±3〉 states. Thus perpendic-
ular vibrations of graphene in a combination with QTM can
contribute to the magnetic reversal.

Finally, we consider an effect of the Dy adatom vibrations
on the magnetic reversal. From the total energy dependence
on the distance hDy between the adatom and the surface,
shown in Fig. 1 for Dy@GR/Cu(111) and in Fig. 1(b) of
Ref. [19] for Dy@GR/Ir(111), the second derivative d2E/d2h
can be calculated. Then the quantum of vibrational energy
h̄ω of 30.05 meV for Dy@GR/Cu(111), and 38.3 meV for
Dy@GR/Ir(111) is estimated.

For Dy@GR/Cu(111), the energy difference �⇑→⇓ be-
tween the ground state |J = 8.0, Jz = 8〉 and the excited
state |J = 8.0, Jz = 7〉 is equal to 27.2 meV [see Fig. 4(b)].
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FIG. 5. f -orbital DOS for the bulk hcp-Dy calculated with
DFT + HIA.

Thus, �⇑→⇓ ≈ h̄ω, and the transition between these two
states can be triggered by a quantum of vibration. Without
QTM, the |J = 8.0, Jz = 7〉 can transit to the lower energy
|J = 8.0, Jz = 6〉 state. However, quantum tunneling between
|J = 8.0, Jz = ±6〉 states transforms them to the doublet |J =
8.0, Jz = 0〉 at the energy of 23 meV [see Fig. 4(b)]. Thus,
the z-axis projection of the magnetization goes to zero, and
Dy@GR/Cu(111) becomes demagnetized.

No such scenario is possible for Dy@GR/Ir(111) since
h̄ω = 38.3 meV is substantially larger that �⇑→⇓ = 17.0 meV
[19]. Thus, the ground state |J = 8.0, Jz = 8〉 remains
protected against the Dy atom vibration. Experimentally,
the magnetic remanence was found for Dy@GR/Ir(111)
[6,24], and no clear remanence was observed for Dy
adatoms deposited on graphene grown on polycrystalline
Cu foil [24]. The crossover �⇑→⇓ ≈ h̄ω, which is found
in Dy@GR/Cu(111), can explain this different magnetic
behavior.

V. SUMMARY

The electronic structure and magnetism of individual Dy
atoms adsorbed on the graphene/Cu(111) surface is investi-
gated using the combination of the density functional theory

with the Hubbard-I approximation to the Anderson impurity
model (DFT + U + HIA). We find that the electronic struc-
ture, spin and orbital magnetic moments and the MAE of the
Dy adatom depend on the choice of the double-counting term
in DFT + U + HIA. For FLL Vdc, the divalent Dy2+ adatom
is found, with the magnetic moment of 9.71 μB. The spin and
orbital magnetic moments are evaluated and compared with
the XMCD data. The positive magnetic anisotropy energy
determines the out-of-plane orientation of the Dy adatom
magnetic moment, in qualitative agreement with available
experimental data.
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APPENDIX: CHOICE OF COULOMB U AND EXCHANGE J

In order to justify our choice of the Coulomb U and
exchange J parameters, we have performed the DFT + HIA
calculations for the bulk Dy in the paramagnetic state for
the experimental lattice parameters (a and c/a ratio). The
resulting fDOS is shown in Fig. 5. The DFT + HIA results
are in agreement with the experimental data [32] for both the
occupied and empty 4 f states. Comparison with experimen-
tal valence-band photoelectron spectroscopy is often taken
as important criterion of truthfulness of electronic structure
calculations.

We assume the transferability of the Coulomb U = 7 eV
and exchange J = 0.82 eV values, and use them in the
Dy@GR/Cu(111) calculations. Note that these values of U
and J are in the ballpark of commonly accepted values for
rare earths [33].
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