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Experimental observation of the acoustic Z2 Weyl semimetallic phase in synthetic dimensions
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Scalar waves such as airborne sound lack an intrinsic spin degree of freedom, making the realization of
sonic Z2 topological phases based on spin degeneracy challenging. Here, we demonstrate the relevance of
synthetic dimensions and higher-dimensional topological physics for exploring topological phases based on
acoustic pseudo-spin with exact Kramers degeneracy. Interestingly, we find that a carefully designed two-band
one-dimensional Hamiltonian with two additional phason degrees of freedom can enter a Z2 semimetallic phase
with nonzero topological invariants carried by pairs of Weyl points in a three-dimensional synthetic momentum
space. Taking advantage of the high localization of sonic quasibound states, embedded in the modal continuum
of a one-dimensional acoustic waveguide, we implement a Z2 topological Weyl system and experimentally
observe its signature in far-field sound scattering experiments. Our findings establish sonic quasibound states in
continuum as a fertile ground for exploring higher dimensional Weyl physics in scattering media, and provide a
viable experimental path to study spin-related topological effects in acoustics.

DOI: 10.1103/PhysRevB.102.064309

I. INTRODUCTION

Electronic quantum spin Hall insulators [1,2], character-
ized by a Z2 topological invariant [3], are phases of matter
with a nonvanishing spin-Hall conductance. In contrast to
ordinary quantum Hall insulators, possessing a nonvanishing
charge-Hall conductance, such phases do not require a bro-
ken time-reversal symmetry. Conversely, they rely on time-
reversal symmetry to guarantee spin-locked electronic prop-
agation [1], a property that has established them as perfect
candidates for magnetic-free data transportation in a large
variety of spintronic applications [4].

Kramers theorem [5] governs the underlying physics of
electronic insulators with Z2-valued topological indices, guar-
anteeing the presence of degenerate independent spin part-
ners, which map to each other by time-reversal symmetry.
This theorem holds true for time-reversal symmetric elec-
tronic systems, associated with half-integer spins [1]. How-
ever, in classical systems, described by spinless particles
(i.e., bosons), Kramers theorem does not apply [6], because
the time-reversal symmetry operator T squares to 1 instead
of −1, making the transposition of spin-related effects to
classical wave systems highly nontrivial [3]. For this reason,
approaches to achieve classical analogs of Z2 topological
insulators have been based on employing additional degrees
of freedom (DOFs) to form a pseudo-time-reversal symmetry
operator Tps, obeying T 2

ps = −1, at the cost of implying a
more stringent symmetry condition on the topological phase.
For instance, electromagnetic Z2 phases have leveraged the
degeneracy between transverse electric (TE) and transverse
magnetic (TM) polarizations occurring in metamaterials with
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ε = μ, enabling the formation of two degenerate pseudospin
states akin to the Kramers pairs for fermions [7]. A similar
strategy has been successfully implemented in the context
of thin-plate elastic systems supporting Lamb waves with
degenerate polarizations [8–10]. For scalar waves such as
sound, however, these tricks do not work due to the lack
of intrinsic polarization [11]. Instead, previously proposed
strategies to realize Z2 topological phases in acoustic systems
attempt to emulate Kramers pairs by exploiting other DOFs.,
such as crystalline symmetry. The C6v point-group symmetry
of hexagonal crystals, for instance, has been widely used over
the last few years to achieve acoustic pseudospin, built using
the high-symmetric corners of the Brillouin zone (K and K ′),
referred to as valleys in the literature [12–16]. By unit-cell
expansion, these valleys can be folded onto the center of the
Brillouin zone to achieve pseudospin states, which resemble
Kramers pairs providing C6v is preserved [17–20]. This ap-
proach, however, fails at inducing a rigorous Z2 topological
invariant since it results in the Kramers degeneracy only at
the center of the valleys, and not over the entire band. As
such, in contrast to electronic quantum spin Hall phases, the
edge modes of these kinds of structures are gapped [21]. In
addition, the difficulties in extending Z2 topological phases
to two-dimensional acoustic systems have largely hampered
their exploration in higher-dimensional systems, for instance
in three-dimensional sonic topological insulators and Weyl
and nodal systems [22,23].

Here, we propose and demonstrate a platform to experi-
mentally probe acoustic topological phases in higher dimen-
sions, supporting acoustic spins with exact Kramers degen-
eracy. Our method allows us to explore the rich physics of
sonic Z2 Weyl semimetals [24]. Remarkably, we achieve
three-dimensional (3D) Z2 topological phases in a two-by-
two tight-binding Hamiltonian with a single space dimen-
sion and two additional synthetic dimensions (introduced as
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FIG. 1. Construction of a Z2 Weyl system in a two-band tight-binding system with synthetic dimensions. (a) We consider a one-dimensional
tight-binding chain in which the on-site energies and hoppings depend periodically on two phason degrees of freedom, ϕy and ϕz, allowing
us to define a synthetic three-dimensional momentum space, whose Brillouin zone is shown in the inset. (b) 3D band structure at the plane
kx = π/a, showing the existence of four Weyl points. (c) Berry curvature � of the bottom band of (b), illustrating the chiralitites of the
Weyl points. The figure also represents the two fixed-ϕz planes discussed in the main text, along with their Z2 topological invariants υ2(ϕz ).
(d) Helical surface states in the Z2 topological plane ϕz = π/4.

parametric phason degrees of freedom). We demonstrate the
construction of pairs of Weyl points [25–32] carrying Z2

topological charges in the synthetic momentum space. In
order to observe the associated topological phase transitions
in simple sound scattering tests, we synthesize our system
in a standard acoustic pipe supporting evanescently coupled
quasibound states [33–40] embedded in the continuum of the
single propagating mode. Our experiments with airborne audi-
ble sound open a viable path for the experimental exploration
of Z2 topological phases in dimensions higher than 2. Our
findings also establish the relevance of acoustic bound states
in continuum as a relevant platform for probing a variety of
topological physical effects using far-field scattering tests.

II. DESIGN OF A Z2 WEYL HAMILTONIAN

We start by demonstrating how to effectively construct a
Z2 Weyl system from a tight-binding chain with a single
physical dimension x, and two synthetic dimensions y and z.
Consider the one-dimensional tight-binding chain represented

in Fig. 1(a). The unit cell of the array is composed of two res-
onators with resonance frequencies ω1 and ω2, evanescently
coupled to each other with an (intracell) coupling coefficient
K . The nearest-neighboring cells, on the other hand, are cou-
pled to each other via (extracell) coupling coefficients J . The
basic idea to introduce two additional synthetic dimensions is
to let the physical parameters of the chain (ω1, ω2, K , and J)
depend on two real parameters ϕy and ϕz. The latter, called
phason degrees of freedom, will take the role of the y and
z components of the Bloch wave vector in the 3D synthetic
Brillouin zone, while the kx component is the physical Bloch
wave number of the one-dimensional chain. The real-valued
functions ω1,2(ϕy, ϕz ), K (ϕy, ϕz ) and J (ϕy, ϕz ) therefore need
to be periodic, e.g., with period equal to π , with respect
to both phasons ϕy and ϕz, leading to the Brillouin zone
represented in the inset of Fig. 1(a). Specifying the functions
ω1,2(ϕy, ϕz ), K (ϕy, ϕz ), and J (ϕy, ϕz ) defines a family of one-
dimensional systems, generated by sweeping ϕy and ϕz. The
associated three-dimensional tight-binding Hamiltonian is of
the form

H
(
kx, ϕy, ϕz

) =
(

ω1(ϕy, ϕz ) K (ϕy, ϕz ) + J (ϕy, ϕz )e−ikx

K (ϕy, ϕz ) + J (ϕy, ϕz )eikx ω2(ϕy, ϕz )

)
. (1)

This strategy, which allows us to interpret physical phe-
nomena associated with a family of one-dimensional systems

as consequences of higher-dimensional physics, has already
been exploited in a variety of prior works, for example
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[41–43], although not directly in the specific form of Eq. (1).
Here, we are interested in the realization of a Z2 Weyl
semimetal, which we now describe.

Generally speaking, Z2 Weyl phases [24] are observed in
time-reversal-invariant Weyl systems described by a tight-
binding Hamiltonian that possesses two symmetries: (i) an
antiunitary symmetry T such that

T H (kx, ϕy, ϕz )T −1 = H (−kx,−ϕy,−ϕz ), (2)

and (ii) a unitary reflection symmetry R (chosen here along z)
with

RH (kx, ϕy, ϕz )R−1 = H (kx, ϕy,−ϕz ). (3)

The combined antiunitary operator T̃ = RT is also as-
sumed to satisfy the Kramers relation T̃ 2 = −1. Due to these
symmetries, if a Weyl point is present at a particular point
(k0

x , ϕ
0
y , ϕ

0
z ) with a given chirality, then another one is present

at (−k0
x ,−ϕ0

y ,−ϕ0
z ) with the same chirality, and two other

Weyl points are found at (k0
x , ϕ

0
y ,−ϕ0

z ) and (−k0
x ,−ϕ0

y , ϕ
0
z )

with opposite chiralities. Due to the defining properties of
R and T , the following symmetry relation is always sat-
isfied: T̃ H (kx, ϕy; ϕz )T̃ −1 = H (−kx,−ϕy; ϕz ). Therefore, the
operator T̃ works as time-reversal symmetry on the fixed-ϕz

Hamiltonians H (kx, ϕy; ϕz ), which belong to the AII class of
the Atland-Zirnbauer classification of free-fermions Hamil-
tonians and are characterized by a Z2 index υ2(ϕz). In such
systems, the fixed-ϕz planes are Z2 topological planes whose
topological charge can only change when crossing a gapless
plane, i.e., containing a pair of Weyl points (as explained
above, the Weyl points always occur in pairs on such fixed-ϕz

planes). Although Z2 Weyl phases were previously reported in
systems with both spin and orbital degrees of freedoms (four
by four Hamiltonians), the natural spin degree of freedom is
not required, and we can observe them in the simple two-by-
two family of Hamiltonians of Eq. (1), providing the functions
ω1,2(ϕy, ϕz ), K (ϕy, ϕz ), and J (ϕy, ϕz ) are properly chosen.

We start by deriving a necessary condition on these
functions so that a Weyl point exists at (k0

x , ϕ
0
y , ϕ

0
z ). Con-

sidering the decomposition of the Hamiltonian of Eq. (1)
on Pauli matrices, H = 1

2 (ω1 + ω2)σ0 + 1
2 (ω1 − ω2)σz +

(K + J cos kx )σx + J sin kxσy, the existence of a Weyl point
at (k0

x , ϕ
0
y , ϕ

0
z ) requires the components of H along σx, σy,

and σz to vanish, namely (i) ω1(k0
x , ϕ

0
y , ϕ

0
z ) = ω2(k0

x , ϕ
0
y , ϕ

0
z );

(ii) J (ϕ0
y , ϕ

0
z ) sin k0

x = 0; and (iii) K (ϕ0
y , ϕ

0
z )+J (ϕ0

y , ϕ
0
z ) cos

k0
x = 0. The solution J (ϕ0

y , ϕ
0
z ) = K (ϕ0

y , ϕ
0
z ) = 0, which leads

to a line node, is discarded, and the three conditions col-
lapse to (i) ω1(k0

x , ϕ
0
y , ϕ

0
z ) = ω2(k0

x , ϕ
0
y , ϕ

0
z ), (ii) k0

x = π, and
(iii) K (ϕ0

y , ϕ
0
z ) = J (ϕ0

y , ϕ
0
z ). Note that another solution is pos-

sible with k0
x = 0 but requires that the hoppings K and J be of

opposite signs, which we avoid here for practical reasons.
As a second design step, we find sufficient conditions on

the functions ω1,2(ϕy, ϕz ), K (ϕy, ϕz ), and J (ϕy, ϕz ) so that
H (kx, ϕy, ϕz ) satisfies the two defining symmetries R and T
of Z2 Weyl systems. We assume the most natural choice for
T , namely T = K (K is complex conjugation). The sym-
metry condition of Eq. (2) then implies that the functions
ω1,2(ϕy, ϕz ), K (ϕy, ϕz ), and J (ϕy, ϕz ) must all be chosen
as even functions of (ϕy, ϕz ). Next, we need to consider

the unitary symmetry operator R. Recalling that T 2 = +1,

while T̃ = RT must square to −1, two solutions are possible.
We can either pick an operator satisfying (i) R2 = −1 and
[R, T ] = 0, or (ii) R2 = +1 and {R, T } = 0. Picking the
second option, involving a reflection that squares to 1, is the
most natural choice. Since σy is the only Pauli matrix that an-
ticommutes with T = K , we take the ansatz R = Uσy, where
U is a unitary reflection operation compatible with the above
constraints (i.e., it squares to 1 and commutes with K ), which
can be found from Eq. (3). The symmetry condition of Eq. (3)
then reduces to H (kx, ϕy, ϕz ) = H (kx,−ϕy,−ϕz ), confirming
that the functions ω1,2(ϕy, ϕz ), K (ϕy, ϕz ), and J (ϕy, ϕz ) can all
be chosen as even functions of ϕz and ϕy.

Combining the periodicity and symmetry conditions
mentioned above, a natural choice is to use sums
of cosine functions: ω1 = γy cos ϕy + γz cos ϕz, ω2 =
−γy cos ϕy − γz cos ϕz, K = t (1 + γxy cos ϕy + γxz cos ϕz ),
and J = t (1 − γxy cos ϕy − γxz cos ϕz ), in which γy, γz,
γxy, and γxz, t are arbitrary positive numbers. With these
choices of parameters, the above-mentioned conditions
for the presence of a Weyl point are satisfied at
W1 : (kx, ϕy, ϕz ) = ( π

a , π
2 , π

2 ). The R and T symmetries
therefore imply the presence of three other Weyl points,
one at W2 : (−π

a ,−π
2 ,−π

2 ) = ( π
a ,−π

2 ,−π
2 ) with the

same chirality, and two others at W3 : ( π
a , π

2 ,−π
2 )

and W4 : (−π
a ,−π

2 , π
2 ) = ( π

a ,−π
2 , π

2 ) with opposite
chirality.

To verify this prediction, we plot in Fig. 1(b) the 3D band
structure of H for kx = π/a, which confirms the presence
of the four linear point degeneracies, symptomatic of the
Weyl nodes. We also plot in Fig. 1(c) the distribution of
the Berry curvature of the bottom band, confirming the op-
posite chiralities of the Weyl points which form sources and
drains of Berry curvature, with the expected central symmetry
with respect to the origin of the cut plane.

One of the most important features of Z2 Weyl phases is
their gapless topological surface states supported at fixed ϕz

for systems made finite along x and/or y. To determine the
topology of fixed-ϕz planes, we compute their invariant υ2(ϕz)
using the standard formula [44,45]:

(−1)υ2(ϕz ) =
∏

(kx,ϕy )∈T RIM2

Pf [ω(kx, ϕy; ϕz )]√
det[ω(kx, ϕy; ϕz )]

, (5)

where the matrix ω is defined as ωi j (kx, ϕy; ϕz ) =
ϕi(−kx,−ϕy; ϕz )|T̃ |ϕ j (kx, ϕy; ϕz )), with |ϕ j (kx, ϕy; ϕz ) the
wave function of the jth band, smoothly defined over (kx, ϕy),
and TRIM2 denotes the ensemble of momenta that are
invariant under the action of T̃ on the 2D cut plane.

Recalling that the invariant υ2(ϕz ) is a topological index
and therefore cannot change unless the band gap of the cut
plane closes, which happens only when the plane crosses
a pair of Weyl points (at ϕz = ±π/2), we calculated the
invariants for two representative cut planes, namely ϕz = 0
and ϕz = π , represented in Fig. 1(c) in red and blue, respec-
tively. Using Eq. (5), we find υ2(0) = 1 and υ2(π ) = 0, which
implies the presence of two helical surface states for constant-
ϕz cut planes with |ϕz | < π/2. In real space, this means that
after fixing the value of ϕz in a topological plane, for example
ϕz = π/4, all one-dimensional chains that are finite in the x
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FIG. 2. Realization of a sonic Z2 Weyl system. (a) We realize a sonic Z2 Weyl system with synthetic dimensions based on the configuration
shown in the inset, emulating the tight-binding toy model discussed in Fig. 1. The structure consists of an acoustic waveguide containing a
one-dimensional array of cylindrical scatterers. Each cylinder of the crystal supports a bound state in the continuum (BIC). By changing the
radii and the distance between the centers of the rods, the resonance frequencies and hopping amplitudes between the BICs are tuned according
to the modulation scheme explained in the text. (b) Band structure of the crystal at the plane ϕz = ±π/4, calculated via direct finite element
simulations. The plane possesses a nonvanishing Z2 topological index. Two gap-closing helical states are observed. (c) Same as (b) but for
ϕz = ±π/2, which are the gapless planes at which the Weyl transition occurs. (d) Same as (b) and (c) but for ϕz = ±3π/4, which are insulating
planes with zero topological charges. (e) Corresponding Fermi arcs. (f) Mode profile of one of the bulk (top) and topological helical states
(bottom) at (ϕy, ϕz ) = (2π/10, π/4).

direction will support two 0D edge modes (located at each
extremity of the 1D chain) regardless of the chosen value of
ϕy. To confirm this, we plot in Fig. 1(d) the band structure
corresponding to a finite 1D system of 24 unit cells at ϕz =
π/4, showing the existence of two Z2 topological edge states,
which must cross the band gap, and therefore cross each other
at two specific values of ϕy. These crossing points connect the
Weyl points of the Z2 system along its symmetry direction
ϕz, forming the so-called Fermi arcs reported in Fig. 1(b). We
note that the existence of these edge modes is protected by the
pseudo-time-reversal symmetry operator T̃ . As a result, any
perturbation that does not break this symmetry cannot affect
the insulating phase, unless its level is extremely high such
that it closes the band gap (which happens at the onset of
Anderson localization).

III. EXPERIMENT

We now describe the implementation of the proposed Z2

semimetal in a series of experiments that leverage the concept
of synthetic dimensions. We aim at measuring both bulk
and topological edge mode resonances in a noninvasive way.
However, at the same time, our formulation requires a one-
dimensional system of evanescently coupled acoustic reso-
nances with easily tunable resonance frequencies and hopping
rates. In particular, one must work with resonant modes that,
while remaining highly localized and evanescently coupled,
coexist within a radiation continuum, so that they may be
externally probed. The so-called bound states in continuum
(BICs) [33–40] appear to judiciously meet these requirements.
In acoustics, an elegant way to exploit such bound states for
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FIG. 3. Numerical demonstration of the Z2 sonic system. (a),(b) Numerically calculated transmission spectrum of the BIC chains at
ϕz = ±π/2, for fixed values of ϕy = ±9π/10 (a) and ϕy = ±7π/10 (b). The spectrum (shown in log scale) possesses no in-gap resonance
in these cases, consistent with the dispersion diagram shown in Fig. 2(c). (c),(d) Transmission spectra at ϕz = ±π/2, for ϕy = ±3π/10 (c)
and ϕy = ±π/10 (d). Two in-gap Fano resonances now appear in the spectrum, corresponding to the two helical surface states. (e) Continuous
map of the measured transmission spectrum versus ϕy at the plane ϕz = ±π/2, at which the Weyl transition occurs. (f) Same as (e) but
for ϕz = ±π/4, which are Z2 topological planes between the two Weyl pairs. The two gap-closing topological surface states are resolved.
(g) Same as (e) and (f) but for ϕz = ±3π/4, corresponding to insulating planes with a topologically trivial band gap.

our purpose is to consider a rectangular hard-wall waveguide,
which at low frequencies supports only a single propagating
mode. This single-mode behavior, involving a standard acous-
tic plane wave, is guaranteed below the cut-off frequency ωc

of the next propagating mode, which possesses a dipolar pro-
file in the transverse direction of the longest waveguide width.
Now, consider adding a single hard-wall scatterer, in the form
of a cylindrical rod, with its axis placed perpendicularly to
both the propagation direction and the transverse direction
of longest waveguide width, exactly in the middle of the
waveguide. Notably, a discrete dipolar resonant acoustic mode
exists around such symmetric obstacles, and occurs below ωc

(similar modes were discussed previously; see [46,47]). While
this mode coexists in the continuum of the monopolar (plane
wave) modes, it remains perfectly uncoupled from it due to the
symmetry protection originating from its dipolar profile (see
the Supplemental Material [48] for details). By placing next to
each other several of these cylindrical obstacles, one therefore
creates a chain of evanescently coupled BICs. The BIC chain
has two degrees of freedom: (i) the radii of the scatterers (Rn)
and (ii) the distance between them (dn). These two parameters

map, respectively, to the resonance frequencies (ωn) and cou-
pling coefficients (kn) of the two-level tight-binding model.
In particular, by changing the radii of the scatterers (Rn), the
resonance frequencies of the BIC modes (ωn) can be tuned.
Likewise, the distance between the resonators (dn) determines
the coupling between the nearest-neighboring sites (kn). As a
result, there is a one-to-one mapping between the sonic crystal
shown in Fig. 2(a) and the tight-binding Hamiltonian of the
two-level system [Eq. (1)].

Exploiting these resonances to implement the Hamiltonian
of Eq. (1) for fixed values of ϕy and ϕz, we now form
the corresponding family of 1D finite chains. One of these
systems is schematically represented in Fig. 2(a) (this is a
particular illustration with four unit cells). Each unit cell
consists of two rods with different radii drawn with different
colors, leading to two BIC modes with different resonance
frequencies. These radii as well as the distances between
the cylinders are adjusted in order to control the frequencies
ω1(ϕy, ϕz ) and ω2(ϕy, ϕz ), as well as the intracell K (ϕy, ϕz )
and extracell J (ϕy, ϕz ) coupling coefficients according to
the cosine laws derived previously, thereby spanning the
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FIG. 4. Experimental demonstration of the Z2 sonic system. We construct a prototype of the proposed BIC chain. The sample consists of
an acrylic square pipe, taking the role of the acoustic waveguide, and nylon cylinders with different radii, arranged inside the waveguide at
specific locations. (a),(b) Measured transmission spectrum of the array at ϕz = ±π/2, when ϕy is fixed at ϕy = ±9π/10 (a) and ϕy = ±7π/10
(b). Consistent with our numerical findings, no in-gap resonance exists in the recorded spectra. (c),(d) Same as (a) and (b) except that the
parameter ϕy is fixed at ϕy = ±3π/10 (c), and ϕy = ±π/10 (d). (e) Measured transmission spectrum of the waveguide as a function of ϕy,
when ϕz is fixed at ϕz = ±π/2. (f) Same as (e) but for ϕz = ±π/4, corresponding to insulating planes with nonvanishing Z2 topological
charges. (g) Same as (e) and (f) except that ϕz is set to be ϕz = ±3π/4. Our experimental results, being in perfect agreement with simulation,
demonstrate the relevance of bound states in the continuum for exploring the rich physics of Z2 sonic system in scattering media.

synthetic momentum space. To validate the design, we per-
formed three-dimensional full-wave simulations of the band
structure, based on finite systems with six unit cells, and
employing the eigenfrequency solver of Comsol Multiphysics
(acoustics module).

The evolution of the numerically extracted energy spec-
trum versus ϕy, for different ϕz, namely ϕz = ±π/4, ϕz =
±π/2, and ϕz = ±3π/4, is represented in Figs. 2(b)–2(d),
respectively. The lattice constant is 22.1 cm, and the trans-
verse waveguide cross section with size 7 cm. In Figs. 2(b)
and 2(d), the radius of one cylinder varies between 2 and
3.25 cm, the one of the other between 3.75 and 4.9 cm, while
their separating distance changes between 4.8 and 10.9 cm.
In Fig. 2(c), both radii vary between 2.9 and 4.8 cm and the
separating distance in the range 7.9–14.15 cm.

At ϕz = π/4 [Fig. 2(b)], which is a nontrivial Z2 topo-
logical insulating plane, we confirm the presence of two
helical surface states (in green). At ϕz = π/2, corresponding
to the phase transition plane, the Weyl nodes close the band
gap [Fig. 2(c)]. Finally, at the trivial plane ϕz = 3π/4, we

observe the expected gapped spectrum with no edge states.
The behavior at all fixed ϕz is summarized in Fig. 2(e), which
reports the numerically extracted Fermi arcs, consistent with
the analytic results of Fig. 1(c). As a visual illustration, the
profiles of the two edge modes at (ϕy, ϕz ) = (2π/10, π/4) is
provided in Fig. 2(f), together with one of the corresponding
bulk modes.

We now explain how to detect the signature of the
semimetallic phases by performing a set of far-field scattering
tests. As already explained, BICs are symmetry-protected and
cannot radiate. As such, they cannot be excited from the far
field. Yet, by slightly breaking the symmetry protecting them
from radiation, the BICs can leak into the radiation contin-
uum, allowing one to excite them from the far field using a
plane-wave incident field. In order to break the underlying
symmetry of our BICs (the mirror reflection symmetry of the
structure), we marginally shift the cylinders away from the
centerline of the waveguide, so that the BICs can couple a
little bit to the waveguide mode, becoming quasi-BICs. We
excite the waveguide on the left side of the system with a
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plane wave, and record the transmission to the other side.
We first do this numerically using finite-element simulations,
including a realistic level of viscothermal losses (1.15 dB/m;
see the Supplemental Material [48] for details on numerical
simulations). For practical reasons linked to experimental
constraints, we limit the finite system to four unit cells.
We first investigate the planes ϕz = ±π/2, which are the
Weyl point planes. Figures 3(a)–3(e) display the numerically
extracted transmission spectra recorded for different ϕy on
this plane. When ϕy < −π/2 or (ϕy > π/2) [Figs. 3(a) and
3(b)], the transmission spectrum exhibits no in-gap resonance
(see shaded green area), consistent with the band structure
shown earlier in Fig. 2(c). When −π/2 < ϕy < π/2, on
the contrary, two successive Fano resonances appear in the
spectrum [Figs. 3(c) and 3(d)] within the frequency range that
was a band gap in Figs. 3(a) and 3(b). These two resonances
are consistent with the presence of the two edge states. This
is confirmed by the color plot of Fig. 3(e), representing the
continuous evolution of the transmission spectrum versus ϕy.
The results of this figure clearly indicate the presence of
two topological in-gap states, when −π/2 < ϕy < π/2 (we
highlight the location of spectral features corresponding to the
edges of the bulk bands and the edge states with white stars).
Figures 3(f) and 3(g) reproduce the results of Fig. 3(e) for
the cut planes ϕz = ±π/4 and ϕz = ±3π/4, corresponding to
the planes with nontrivial and trivial topologies, respectively.
The results of these figures are in perfect agreement with the
predictions of Fig. 2.

We built samples in order to experimentally validate the
topological transitions associated with the Z2 semimetallic
phase (see the insets of Fig. 4). The prototypes consist of an
acrylic square pipe, taking the role of the acoustic waveguide,
and a set of cylindrical nylon rods with proper radii and loca-
tions. We follow the same procedure as in Fig. 3. We excite the
waveguide with a loudspeaker from one side and measure the
corresponding transmission coefficients at different ϕy, when
ϕz is fixed at ϕz = ±π/2 (see the Appendix for experimental
methods). Figures 4(a)–4(d) indicate the measured transmis-
sion coefficients of the two-port system for ϕy = ±9π/10,
ϕy = ±7π/10, ϕy = ±3π/10, and ϕy = ±π/10. Consistent
with simulations, no in-gap resonance exists in the spectrum
for the first two cases [Figs. 4(a) and 4(b)]. On the other
hand, when −π/2 < ϕy < π/2, the spectrum includes two
in-gap Fano resonances, revealing the presence of the topo-
logical states. Figures 4(e)–4(g) represent the evolution of the
transmission spectra as a function of ϕy, for the fixed values
of ϕz = ±π/2, ϕz = ±π/4, and ϕz = ±3π/4, respectively.
The results of this series of 63 independent measurements
are in very good agreement with our previous numerical
findings, consistent with the topology of the synthetic 3D
Hamiltonian.

IV. CONCLUSION

In summary, we demonstrated, both numerically and ex-
perimentally, the realization of a Z2 acoustic Weyl system,
a class of three-dimensional topological systems character-
ized by topological phase boundaries in momentum space,
separating insulating layers with different Z2 indices. Such
semimetallic phases were achieved in a 3D synthetic momen-

tum space, constructed by judiciously arranging BICs in a
one-dimensional phononic crystal.

Our proposal provides a fruitful platform for the exact ex-
tension of topological insulators with a Z2-valued topological
index to various applicative fields of classical wave physics,
including acoustics, optics, plasmonics, mechanics, and elas-
tic waves. An example of such an extension to microwave
systems is provided in the Supplemental Material [48]. Be-
sides, our strategy to employ bound states in continuum for
accessing the complex physics of Weyl phases opens exciting
venues for further exploration of other types of topological
phases of matter, simply by performing far-field scattering
tests. In the Appendix, for instance, we briefly discuss the
possibility of observing quantum Hall states by properly
arranging sonic BICs in one dimension. In the Supplemental
Material [48], the possibility of observing nodal semimetals
[49,50] in our system is explained. Finally, this method also
holds great promise for the realization of Z2 topological
phases in dimensions higher than what is physically available.
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APPENDIX

1. Experimental methods

As a waveguide, we used an acrylic extruded clear tube
with a cross section of approximately 50 cm2 and a wall thick-
ness of about 3 mm. Nylon 6 plastic cylindrical rods were
radially cut at desired diameters (according to the modulation
schemes prescribed in the main text), and arranged inside
the waveguide. The prototype was tested in the experimental
setup shown in Fig. 6 of the Supplemental Material. The
setup includes a loudspeaker, a Data Physics Quattro analyzer
controlled by a computer, three microphones recording sound
pressure level, and an acoustic anechoic termination (not
shown in the figure) preventing unwanted reflection. The loud
speaker was excited with a burst noise signal. By recording the
sound pressure levels measured by the microphones and em-
ploying the standing-wave pattern analysis, the transmission
spectrum of the structure was extracted.

2. Observation of quantum Hall effect in sonic bound states
in the continuum

In this section, we investigate the possibility of observing
integer quantum Hall effect by arranging, in one dimension,
sonic bound states in the continuum. We start with remarking
that, in general, 2D quantum Hall phases are hard to achieve
in acoustics, due to the lack of strong magnetization effects.
Here, on the contrary, we show how the unique character of
BICs enables probing the signature of these phases in a 1D
scattering phononic crystal. We start with considering a tight-
binding Hamiltonian of the form

H =
∑

n

ωna†
nan +

∑
n

kna†
n+1an + H.c., (A1)
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FIG. 5. Observing integer quantum Hall effect in sonic bound states in continuum. (a) A one-dimensional array of sonic BICs is
implemented. (b) By varying the diameters of the rods, the resonance frequencies of the BIC states are modulated according to the relation
ωn = A cos(2πbn + ϕy ). (c) The hopping rate (kn) between the nearest-neighbor BICs is kept constant. (d) Band structure of the crystal versus
the modulation phase ϕy. The band structure includes gapless topological edge modes. (e)–(h) Same as (a)–(d) except that, this time, the on-site
energies of the BICs are fixed, whereas the hopping amplitudes are modulated according to the relation kn = B cos(2πbn + ϕy ).

in which ωn and the kn are the on-site potentials and the
hopping rates, respectively. We map this tight-binding Hamil-
tonian into the one-dimensional sonic BIC chain shown in
Fig. 5(a), in which the resonance frequencies and hopping
amplitudes are adjusted by changing the radii and the distance
between the centers of the cylinders, respectively. Our aim is
to realize quantum Hall phases based on the 1D tight-binding
Hamiltonian given in Eq. (A1). The quantum Hall effect is
a two-dimensional phenomenon. Hence, in order to observe
it in one dimension, one has to introduce extra degrees of
freedom. We do this by varying the on-site potentials of the
BIC chain according to the algorithm ωn = A cos(2πbn + ϕy)
[see Fig. 5(a)], in which A is the amplitude of the modulation,
b sets the periodicity of oscillation, and ϕy is an arbitrary phase
between −π and π . Note that, in this case, we assume the
tunneling rates kn to be fixed, i.e., kn = k0. With these choices
of parameters, the tight-binding Hamiltonian H in Eq. (A1)
will be the same as the so-called Hofstadter Hamiltonian,
describing the interaction of electrons with a uniform out-
of-plane magnetic flux. Figure 5(d) shows the band structure
of the chain as a function of the modulation parameter ϕy. It

is seen that the band structure of the crystal exhibits gapless
topological edge modes, which are akin to the states emerging
on the boundaries of quantum Hall systems. In the insets of
Fig. 5(a), we have reported the profiles of one of the bulk
and edge modes. Notice that, while the edge mode of the
array is confined in zero dimensions, it flows unidirection-
ally along the synthetic dimension with the wave number
of ϕy.

An alternative route to achieve quantum Hall phases is to
embed the additional degree of freedom in the other avail-
able parameter of the tight-binding Hamiltonian, namely the
hopping amplitude kn. More specifically, instead of varying
the on-site potentials of the BIC chain and keeping its hop-
ping rates constant, we consider the dual case: we modu-
late the hopping amplitudes according to the relation kn =
k0[1 + B cos(2πbn + y)], and fix the values of the on-site po-
tentials [see Figs. 5(f) and 5(g)]. Similar to the previous case,
topological edge modes can be observed when continuously
sweeping the parameter ϕy in the 2D synthetic Brillouin zone
[Fig. 5(h)]. Figure 5(e) shows the mode profiles of one of the
corresponding bulk and edge states.
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