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We describe an ab initio phonon Boltzmann transport equation (BTE) approach accounting for phonon-
electron scattering in addition to the well-established phonon-phonon and isotope scatterings. The phonon BTE
is linearized and can be exactly solved beyond the relaxation time approximation (RTA). We use this approach
to study the lattice thermal conductivity (κph) of molybdenum (Mo). κph of Mo is found to possess several
anomalous features: (1) like in another group VI element tungsten (W), κph, with a large value of 37 W m−1 K−1

at room temperature, follows weak temperature dependence due to interplay between phonon-phonon (ph-ph),
phonon-electron (ph-el), and phonon-isotope (isotope) scatterings; and (2) compared with W, though Mo is much
lighter in mass, Mo has a smaller κph. This is attributed to weaker interatomic bonding, larger isotope mixture, and
larger density of states at Fermi level in Mo. In isotopically pure samples, κph increases from 37 to 48 W m−1 K−1

at room temperature. Considering the similarity of the phonon dispersion, our work suggests that chromium
should also have a large κph, which, rather than the complexity of the electronic band structure argued in the
literature, accounts for the significant deviation of measured Lorenz number L from the expected Sommerfeld
value. The electrical conductivity (σ ) and electronic thermal conductivity (κe) of Mo are also calculated by
using an ab initio electron BTE approach. σ and the total thermal conductivity (κ) agree with the experimental
data reasonably. These results demonstrate that the ab initio calculations can quantify the lattice and electronic
contributions to κ . We also look into the cumulative σ and κph with respect to electron and phonon mean free
paths (MFPs), respectively, in order to reveal the size effect in Mo. The MFPs of electrons contributing to
conductivity range from 5 to 22 nm, whereas the MFPs of phonons primarily distribute between 5 and 73 nm
with more than 80% contribution to κph. This suggests that a reduced Lorenz number can be observed in Mo
nanostructures when the relevant size goes below ∼70 nm.

DOI: 10.1103/PhysRevB.102.064303

I. INTRODUCTION

In crystalline materials, the heat is conducted by electrons
and phonons (lattice). Generally, for nonmetallic systems, the
thermal conductivity is mainly contributed by phonons, while
for metallic systems it is dominated by electrons. According to
the Wiedemann-Franz law, the electronic thermal conductivity
divided by the electrical conductivity (σ ) and the temperature
(T ) is a universal constant, known as the Lorenz number
L. Considering that L measured with the total thermal con-
ductivity agrees with the theoretical Sommerfeld value L0 =
π2k2

B/3e2 = 2.44 × 10−8 W � K−2 within a few percentages
in many metals, it was conventionally thought that the lattice
has a negligible contribution in metals. However, recently a
few transition metal carbides [1,2] and elemental tungsten [3]
have been identified to be exceptions. Specifically κph reaches
as much as 46 W m−1 K−1 in tungsten [3], comparable to
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common semiconductors like Ge and accounting for deviation
of L from L0.

Interestingly in some of those metals with large κph

such as group-V and group-VI carbides [1,2], and elemental
W [3], the ph-el coupling also plays an important role in
the phonon scattering. The interplay between temperature-
independent ph-el and the temperature-dependent ph-ph scat-
terings leads to the anomalously weak temperature depen-
dence of κph [1–3], and signifies the increasing importance
of an accurate solution to the Boltzmann transport equation
beyond the relaxation time approximation as the tempera-
ture increases [3]. The key to the interplay is weak ph-el
scattering and strong ph-ph scattering. In the case of group-
V carbides and the group-VI carbide WC, the weak ph-ph
scattering is associated with the large frequency gaps between
acoustic and optic phonons [1,2], which has its origin in
the electronic structure [2]. In the case of W, the overall
weak ph-ph scattering is facilitated with the strong interatomic
bonding [3]. Moreover, the weak ph-ph scattering, particularly
at intermediate frequencies, is attributed to the elemental bcc
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structure [4]. The triple degeneracy at P and H points leads
to vanishing scattering at those points. It was also found that
in other elemental bcc systems like Na, the ph-ph scattering
is strong due to the unusually soft transverse acoustic phonon
along the �-N direction [4].

In this work, we present the derivation of linearized phonon
BTE accounting for ph-el scattering in addition to the well-
established ph-ph and isotope scatterings. We then quantify
the lattice and electronic contribution to the thermal conduc-
tivity in elemental Mo from first-principles calculations. Due
to features in the phonon dispersion similar to W, its κph

also possesses anomalous features including large value and
weak temperature dependence. In addition, we find that the
isotope scattering also plays an important role. In isotopically
pure samples, κph increases from 37 to 48 W m−1 K−1

at room temperature. We also study electrical conductivity
and electronic thermal conductivity from the first principles.
Reasonable agreement with experimental data is found. We
also look into the mean free path (MFP) distributions of
electrons and phonons, closely relevant to the size effects in
nanostructures.

II. METHODOLOGY

A. Boltzmann transport equation

Lattice thermal conductivity can be calculated by solving
the Boltzmann transport equation. At steady state, the changes
of phonon occupation numbers n due to diffusion arising
from the temperature gradient ∇T and the scattering need to
balance out,

∂nλ

∂t
= ∂nλ

∂t

∣∣∣∣
diff

+ ∂nλ

∂t

∣∣∣∣
scatt

≡ 0, (1)

where λ is a composite index comprising both wave vector
q and branch index p. Keeping linear terms with ∇T , the
diffusion term can be expressed as

∂nλ

∂t

∣∣∣∣
diff

= −∂nλ

∂T
∇T · vλ ≈ − h̄ωλ

kBT 2
n0

λ

(
1 + n0

λ

)∇T · vλ,

(2)

where n0
λ and vλ are the equilibrium Bose-Einstein distribution

and velocity for phonon λ, respectively.
It is convenient to write the equation in terms of the

deviation of nλ from n0
λ, defined as χλ = nλ − n0

λ and keeping
only the linear terms with χλ in the scattering term, since the
zeroth-order terms corresponding to the equilibrium state do
not change nλ. The scattering mechanisms depend on the sys-
tem. In metals, the intrinsic mechanisms include anharmonic
ph-ph, isotope, and ph-el scatterings. The scattering rate for
individual process needs to account for the actual occupation
numbers. Hereafter we use � to denote the actual scattering
rate at equilibrium.

Any scattering process annihilating one phonon in the
state λ has a factor nλ involved in the actual transition
rate, while its reverse process creating one phonon in the
state λ involves a factor (1 + nλ). Due to the two reversible
processes, the change of nλ contributes to ∂nλ/∂t a term
proportional to �λ with a prefactor −χλ/n0

λ + χλ/(1 + n0
λ).

If writing χλ = n0
λ(1 + n0

λ)�λ, the prefactor becomes −(1 +

n0
λ)�λ + n0

λ�λ = −�λ, where �λ can be regarded as a small
perturbation.

Ph-el scattering is a process involving only one phonon.
Regarding isotope scattering, an elastic two-phonon process,
annihilating one phonon in the state λ will simultaneously
create one phonon λ′. The reverse process annihilates λ′ and
creates one phonon λ. Apart from the −�λ contribution from
the change of nλ, the change of nλ′ contributes to ∂nλ/∂t a
term proportional to �

isotope
λλ′ with a prefactor �λ′ .

This rule can be easily extended to multiple-phonon scat-
tering processes. For instance, in anharmonic three-phonon
processes, the scattering process annihilating one phonon in
the state λ involves creation of some phonon λ′′ plus anni-
hilation (creation) of another phonon λ′, denoted as + (−)
process. Apart from the contribution from the change of nλ

and nλ′′ , the change of nλ′ contributes to ∂nλ/∂t a prefactor
−�λ′ (�λ′).

Thus considering the three intrinsic mechanisms, we have

∂nλ

∂t

∣∣∣∣
scatt

= −�
ph-el
λ �λ −

∑
λ′

�
isotope
λλ′ (�λ − �λ′ )

− 1

Nq

+∑
λ′λ′′

�+
λλ′λ′′ (�λ + �λ′ − �λ′′ )

− 1

2

1

Nq

−∑
λ′λ′′

�−
λλ′λ′′ (�λ − �λ′ − �λ′′ ), (3)

where �
ph-el
λ has already accounted for all possible ph-el

scattering processes for simplicity, Nq is the number of uni-
formly sampled q points, and 1

2 is due to double-counting
in the sum for the − processes. Additionally, the quasimo-
mentum conservation requires q′′ = q ± q + G in the sum
for the + and − processes, respectively, where G is a re-
ciprocal lattice vector, and is zero for momentum-conserving
normal processes and nonzero for resistive Umklapp
processes.

Since ∂nλ

∂t |
diff

contains a common factor − h̄
kBT 2 ∇T , it is

convenient to further write �λ = − h̄
kBT 2 ∇T · Eλ and introduce

�̄λ = �λ/[n0
λ(1 + n0

λ)], then Eq. (1) is linearized in terms
of Eλ:

Eλ = ωλτλvλ + τλ�λ. (4)

�λ = 1

Nq

+∑
λ′λ′′

�̄+
λλ′λ′′ (Eλ′′ − Eλ′ )

+ 1

2Nq

−∑
λ′λ′′

�̄−
λλ′λ′′ (Eλ′′ + Eλ′ ) + 1

Nq

∑
λ′

�̄
isotope
λλ′ Eλ′ .

(5)

The expression for �λ remains the same as the case without
including ph-el scattering, due to the fact that each ph-el scat-
tering process involves one phonon only. The total relaxation
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time τλ needs to account for all scattering:

1

τλ

= 1

τ
ph-ph
λ

+ 1

τ
isotope
λ

+ 1

τ
ph-el
λ

=
[

1

Nq

+∑
λ′λ′′

�̄+
λλ′λ′′ + 1

2Nq

−∑
λ′λ′′

�̄−
λλ′λ′′

]

+ 1

Nq

∑
λ′

�̄
isotope
λλ′ + �̄

ph-el
λ , (6)

Eλ can be accurately solved using an iterative method starting
with the zero-order RTA solution E0

λ ≡ ERTA
λ = ωλτλvλ [5].

Alternatively, Eλ/ωλ can be solved iteratively. We note that
RTA was employed in the literature [6–12]. With calculated
Eλ, the lattice thermal conductivity can be obtained as [5]

κph = 1

NqV kBT 2

∑
λ

n0
λ

(
n0

λ + 1
)
h̄2ωλvλ ⊗ Eλ. (7)

B. Phonon-phonon scattering

For the + and − processes, the energy conservation condi-
tion requires ωλ + ωλ′ = ωλ′′ and ωλ − ωλ′ = ωλ′′ , leading to
n0

λn0
λ′ (1 + n0

λ′′ ) = n0
λ(1 + n0

λ)(n0
λ′ − n0

λ′′ ) and n0
λ(1 + n0

λ′ )(1 +
n0

λ′′ ) = n0
λ(1 + n0

λ)(1 + n0
λ′ + n0

λ′′ ), respectively. Thus it fol-
lows that

�̄+
λλ′λ′′ = h

8
|V +

λλ′λ′′ |2
(
n0

λ′ − n0
λ′′

)δ(ωλ + ωλ′ − ωλ′′ )

ωλ′ωλ′ωλ′′
, (8)

�̄−
λλ′λ′′ = h

8
|V −

λλ′λ′′ |2
(
n0

λ′ + n0
λ′′ + 1

)δ(ωλ − ωλ′ − ωλ′′ )

ωλ′ωλ′ωλ′′
, (9)

where V ±
λλ′λ′′ are [13,14]

V ±
λλ′λ′′ =

∑
i∈u.c.

∑
j,k

∑
αβγ

�
αβγ

i jk

eα
λ (i)eβ

±λ′ ( j)eγ

−λ(k)√
MiMjMk

, (10)

where u.c. is short for unit cell, M stands for the mass of each
atom, �

αβγ

i jk are the third-order force constants, and eλ is the
normalized eigenvector.

C. Isotope scattering

The isotope scattering is an elastic process, thus the isotope
scattering rate �̄

isotope
λλ′ is independent of the phonon occupa-

tion numbers, and given by [15]

�̄
isotope
λλ′ = πω2

2

∑
i∈u.c.

g(i)|e∗
λ · eλ′ (i)|2δ(ωλ − ωλ′ ), (11)

in which g(i) = ∑
s fs[1 − Ms(i)/M(i)]2 is the Pearson de-

viation coefficient. Ms(i) is the sth isotopes of the ith atom
with a probability distribution fs. M(i) is the expectation
of Ms(i). For Mo with natural abundance, g = 5.98 × 10−4.
In comparison, g = 6.97 × 10−5 for W, about one order of
magnitude smaller due to a smaller isotope mixture.

D. Phonon-electron scattering

In ph-el scattering, an electron in state |nk〉 scatter into one
state |mk + q〉 by annihilating one phonon λ. The energy con-
servation condition requires Enk + h̄ωλ = Emk+q, leading to

f 0
nkn0

λ(1 − f 0
mk+q) = n0

λ(1 + n0
λ)( f 0

nk − f 0
mk+q). It follows that

�̄
ph-el
λ = 2π

h̄

2

Nk

∑
mnk

∣∣gmk+q
nk,λ

∣∣2(
f 0
nk − f 0

mk+q

)
× δ(Emk+q + h̄ωλ − Enk )

≈ 2πωqp
2

Nk

∑
mnk

∣∣gmk+q
nk,qp

∣∣2
δ(Emk+q − E f )δ(Enk − E f ),

(12)

where Nk is the number of uniformly sampled k points, the
factor 2 in 2/Nk accounts for the spin degeneracy in spin-
unpolarized calculations, and E f is the Fermi level. |gmk+q

nk,λ
|

here is the corresponding electron-phonon coupling matrix,
which can be calculated from the first-principle calcula-
tion [3]. As is manifested in Eq. (12), the ph-el scattering can
be regarded as temperature-independent.

E. Electrical conductivity and electronic thermal conductivity

We can also employ electron BTE to calculate the electrical
conductivity σ as [16]

σαβ = 2e2

NkV kBT

∑
nk

f 0
nk

(
1 − f 0

nk

)
vα

nkFβ

nk, (13)

where Fnk can be regarded as the mean free displacement of
electron in state nk. Meanwhile, BTE can be applied to obtain
the electronic thermal conductivity κe as [17]

κe = 2

NkV kBT 2

∑
nk

f 0
nk

(
1 − f 0

nk

)
(Enk − E f )2vnk

⊗Fnk − T σS2, (14)

where

σS = 2e

NkV kBT 2

∑
nk

f 0
nk

(
1 − f 0

nk

)
(Enk − E f )vnk ⊗ Fnk.

(15)

BTE can also be approximately solved with RTA [16,18–
21], momentum RTA (MRTA) [16], and Allen’s formula [22].
An efficiency factor αtr weighing the contribution of scattering
with the relative change of velocity:

αtr = 1 − vmk+q · vnk

|vnk|2 , (16)

is considered in the latter two cases. The transport spectral
function α2Ftr in Allen’s approximation can be found from
Eliashberg ph-el spectral function α2F [16,22]:

α2F (ω) = 1

4πNqNF

∑
λ

�̄
ph-el
λ

ωλ

δ(ω − ωλ), (17)

by multiplying the term in the sum of Eq. (12) by αtr. It can
be used to obtain electrical resistivity ρ:

ρ(T ) = 2πV kBT

e2 h̄NF
〈
v2

z

〉 ∫ ∞

0

α2Ftr(ω)dω

ω

x2

sinh2x
, (18)

where NF is the electron density of states per unit cell and
spin at Fermi level E f . 〈v2

z 〉 is the expectation square of the
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Fermi velocity in the transport direction. Thus a total coupling
constant λ can be defined as

λ = 1

Nq

∑
λ

�̄
ph-el
λ

2πNF ω2
λ

= 2
∫

α2F (ω)

ω
dω. (19)

There also exists a variant λtr corresponding to α2Ftr.

F. Computational method

The electron energy, phonon frequency, ph-el cou-
pling matrix were calculated with the QUANTUM ESPRESSO

package [24], using density functional theory (DFT)
and density functional perturbation theory. The Trouiller-
Martins type norm-conserving pseudopotentials [25] un-
der generalized-gradient approximation with Perdew-Burke-
Ernzerhof parametrization [26] and the local density approx-
imation with Perdew-Wang parametrization [27] were used.
The EPW package [28] was used to perform Wannier interpola-
tion for electron-phonon coupling matrix. Initial k and q grids
are 8 × 8 × 8 while final k and q grids are 100 × 100 × 100
for electron-phonon and 32 × 32 × 32 for ph-el scatterings.
VASP [29,30] and thirdorder.py in the SHENGBTE [31–33]
package were used to perform third-order interatomic force
constants (IFCs) with a cutoff of the sixth nearest neighbor.
SHENGBTE package [31–33] was further used to calculate
κph with and without considering ph-el scattering. We did a
convergence test to show that a large q and k grid is necessary
for electric conductivity σ and electronic thermal conductivity
κe.

The energy-resolved visualization of chemical bonding
was executed by calculating the crystal orbital Hamiltonian
population (COHP) [34] as implemented in the LOBSTER

package [35].

III. RESULT

A. Phonon dispersions

Figure 1 shows the calculated phonon dispersions of Mo
along high symmetry directions in the Brillouin zone. In
order to see the effect of exchange-correlation functionals, the
phonon dispersions are calculated using both LDA and PBE.
The PBE results show better agreement with the experiment.
The LDA results are slightly higher due to its well-known
overbinding. The phonon frequencies are triply degenerate
at P and H points, which is attributed to the space group
symmetry of elemental bcc structure [4]. Compared with
another group VI element W, the atomic mass of Mo is
nearly half of W, but the phonon frequencies of Mo are
only slightly higher [3]. This suggests that Mo has a weaker
bonding than W. To understand the bonding, we show the
DOS along with COHP and Integrated-COHP (ICOHP) for
the nearest-neighbor atom in Fig. 2. COHP is a quantitative
way to analyze bonding. A negative COHP corresponds to
bonding interaction and lowers the system energy, whereas
a positive COHP corresponds to antibonding interaction and
enhances the system energy [34]. From COHP, it can be seen
that for both Mo and W the bonding and antibonding states
are separated at the Fermi energy, around which the DOS is
locally minimized. The larger ICOHP at the Fermi energy

FIG. 1. Calculated phonon dispersion along high-symmetry di-
rections for Mo. Solid circles represent experimental results taken
from Ref. [23]. A comparison of phonon dispersion between Mo
(PBE) and W is shown in the inset.

for W reveals the relatively stronger covalency than that of
Mo [36]. Actually, the 5d orbitals for W are more extended
and can overlap more effectively than 4d orbitals for Mo, thus
leading to stronger covalency.

B. Lattice thermal conductivity

The calculated κph using PBE and LDA is shown in
Fig. 3(a) for Mo. The LDA κph is 26% higher than the PBE
value when ph-el interaction is not considered. However, the
difference reduces to about 7% when ph-el interaction is
considered. This difference in κph between LDA and PBE can
be understood from the higher LDA phonon frequencies than
PBE, leading to smaller ph-ph scattering rates in addition to
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FIG. 2. Calculated density of states (DOS), and COHP and
ICOHP vs energy with respect to the Fermi energy (E f ) for W
and Mo.
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FIG. 3. Calculated lattice thermal conductivity (κph) for Mo
limited by different combination of ph-ph, ph-el, and isotope in-
teractions. (a) comparison of κph calculated using PBE and LDA.
(b) Comparison of κph obtained from iterative solution (solid lines)
and RTA (dashed lines) of BTE using PBE.

larger group velocities in LDA [37]. Despite the difference in
κph, we will concentrate on the results obtained by using PBE
hereafter as the calculated phonon dispersion matches better
with the experimental values.

The value of κph limited by ph-ph, ph-el and isotope
scatterings combined, reaches 37 W m−1 K−1 at 300 K
(Fig. 3). For systems consisting of atoms of the same group
of the periodic table, usually those with heavier elements
have lower κph. However it is smaller than that for W
(46 W m−1 K−1) [3]. Nevertheless, it is still much larger than
those of other elemental metals such as Al (6 W m−1 K−1), Ag
(4 W m−1 K−1), and Au (2 W m−1 K−1) [7]. Like in group-
V and group-VI carbides [1,2], and elemental W [3], κph

displays anomalously weak temperature dependence. Specif-
ically, κph decreases from 38 W m−1 K−1 at 200 K to
31 W m−1 K−1 at 700 K, by only 18%. In contrast, κph typ-
ically follows 1/T dependence around and above the Debye
temperature.

To analyze the underlying mechanism for the large κph and
the weak temperature dependence, we plot the ph-ph, ph-el,
and isotope scattering rates in Fig. 4. The ph-ph scattering
rates are the smallest at intermediate frequencies. It is the
weak ph-ph scattering that leads to the large κph. The ph-ph
scattering rates of Mo are similar to W [3]. The weaker
bonding in Mo leads to larger thermal displacement, sug-
gesting stronger ph-ph scattering. However, it is canceled
out by the weaker anharmonicity in the interatomic potential,
characterized by the third-order IFCs. We look into the third-
order IFCs, and find that the third-order IFCs in Mo are
smaller than those in W by about 30%. The weak nature of
the scattering rates at intermediate frequencies are closely
related to triple degeneracy at P and H points and thus the
elemental bcc structure [4]. Due to the triple degeneracy
and the nearly isotropic feature of the phonon dispersions
at long wavelengths, the three-phonon scattering channels
are completely closed, and therefore the ph-ph scattering
rates vanish at those points. Though ph-el scatterings in Mo
are weaker than many other metals [3,7], the much weaker

FIG. 4. Calculated ph-ph, ph-el and isotope scattering rates for
Mo at 300 K.

ph-ph scatterings, particularly those at intermediate frequen-
cies, lead to a predominance of ph-el scatterings. Correspond-
ingly, κph is tripled to 111 W m−1 K−1 at 300 K when the ph-
el scattering is excluded. The temperature-independent ph-el
scattering explains the weak temperature dependence of κph.
As compared to W, the ph-el scatterings of Mo are slightly
larger. If replacing the ph-el scattering rates of Mo with those
of W for phonons with the same wavevectors, the calculated
κph can be slightly increased from 37 W m−1 K−1 by 10%.
The larger ph-el scatterings in Mo is related to larger DOS
at the Fermi level (Fig. 2), which allows for more scattering
channels.

Interestingly, in contrast to W, where the isotope scattering
is almost negligible, the isotope scattering in Mo also plays
an important role. Due to large isotope mixture, as reflected
by the g factor in Eq. (11), the isotope scatterings are almost
one order of magnitude larger than those for W. In isotopically
pure Mo samples, where the isotope scatterings are absent, κph

increases by almost 30% as shown in Fig. 3. For instance, at
room temperature, κph becomes 48 W m−1 K−1. The isotope
enhancement effect of κph is comparable to diamond [38].

To look further into the scattering, we show the comparison
with RTA results of κph in Fig. 3(b). In the case of only ph-ph
and isotope scatterings included, RTA apparently underesti-
mates the results, and the relative underestimate increases
from 10% at 200K to 26% at 700 K. Normal three-phonon
processes conserve phonon momentum, and thus do not resist
heat flow directly. In contrast, Umklapp processes do not
conserve momentum, and therefore pose direct resistance to
phonon transport [39]. However, in RTA, both Umklapp and
normal three-phonon processes are considered equally resis-
tive, and thus RTA underestimates κph. This large underesti-
mate also suggests the normal processes account for a large
portion of three-phonon scattering processes. The completely
resistive isotope scattering is temperature-independent, and
the ph-ph scattering increases with temperature. As a re-
sult, the relative importance of normal processes increases
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FIG. 5. The variation of electrical conductivity (σ ) with tem-
perature for several different grids of k and q samplings. k and q
grids are kept the same for a given calculation. Symbols represent
experimental results taken from Refs. [43,44].

with temperature, leading to increasing underestimation of
RTA. The ph-el scattering is also completely resistive and
stronger than the isotope scattering. When ph-el scattering is
considered, the underestimate by RTA becomes weaker. In
the case where all the three types of phonon scatterings are
included, RTA underestimates by 3% at 200K and by 12%
at 700 K.

As aforementioned, in W and Mo, the triple degeneracy
and the nearly isotropic feature of the phonon dispersions
lead to the small ph-ph scattering at intermediate frequencies,
which is crucial for the large value of κph and the interplay
with the ph-el scattering. We note that for another group VI
element chromium, the measured phonon dispersions also
display these features [40]. The mass difference between Cr
and Mo is inadequate to account for the difference in the
magnitude of corresponding phonon dispersions, and suggests
that the interatomic bonding of Cr is only a bit weaker than
Mo. Further, the g factor for the isotope mixture of Cr is
smaller than that for Mo by a factor of about 5. These factors
suggest that Cr could also have a large κph. We do not manage
to study Cr to confirm this, due to the fact that the DFT
calculations for the antiferromagnetic systems such as Cr are
much more involved. Actually, the measured L is larger than
the Sommerfeld value by 50% at room temperature, which
was argued to be due to the complexity of the electronic band
structure [41,42]. We believe that the deviation of L should
be attributed to the large lattice component of the measure
thermal conductivity.

C. Electrical conductivity and electronic thermal conductivity

We have also studied the electrical transport properties of
Mo. Figure 5 shows the convergence test of electrical conduc-
tivity (σ ) with respect to k and q grids. The experimental data
are also shown in Fig. 5 for comparison. At high temperatures
(above 400 K), the calculated σ is well converged with respect
to k and q grids and overestimated by 16% as compared
to the experimental results. The discrepancy between cal-
culated and experimental results at high temperatures might
be due to the unconsidered temperature effects on phonon
dispersion and electronic band structure. The overestimation

FIG. 6. The variation of calculated phonon thermal conductivity
(κph), electronic thermal conductivity (κel) and the total thermal con-
ductivity (κ = κph + κel). The symbols show experimental thermal
conductivity taken from Ref. [45].

in the calculated σ at high temperatures also observed for
W and Al [3,46]. On the other hand, the calculated σ at
low temperatures is not well converged, as it needs denser
k and q grids, which are however beyond our computational
capacities.

The electronic contribution to the thermal conductivity (κe)
calculated with 100 × 100 × 100 grids and the resulting total
κ is plotted in Fig. 6, in comparison with the experiments.
κe is almost temperature-independent, between 124 and
129 W m−1 K−1. According to calculated σ and κe, within
the whole temperature range, the electronic Lorenz number
Le is almost constantly 2.275 × 10−8 � K−2, smaller than the
Sommerfeld value L0 by 7%. After adding the lattice contribu-
tion, the total κ is apparently higher than the experiments. Our
calculated results overestimate the experimental values in the
whole temperature range by 12-23%. At high temperatures,
the overestimate of κ is mainly due to overestimated σ . The
16% overestimation in σ at 700 K causes κe to be overesti-
mated by around 17 W m−1 K−1 if assuming Le unaffected.
Thus κe is not adequate to fully account for the measured total
thermal conductivity, and there is a significant contribution

FIG. 7. The Eliashberg (α2F ) and transport (α2Ftr) spectral func-
tion for Mo.
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FIG. 8. Electrical resistivity as a function of temperature for Mo.
The resistivity is calculated from Allen’s Model as well as from
the exact solution of BTE. The experimental results are taken from
Ref. [43] (plus symbols) and Ref. [44] (the other symbols).

from κph. Considering the insufficient convergence at lower
temperatures, the theoretical κ could be even higher. Actually,
any defects in the samples can reduce κ below the theoretical
value corresponding to the intrinsic upper limit, especially at
low temperatures.

The calculated Eliashberg electron-phonon spectral func-
tion α2F and its transport variant α2Ftr are shown in Fig. 7
for Mo. The corresponding values of electron-phonon cou-
pling constant λ and its transport analog λtr are 0.33 and
0.31, respectively. The resistivity obtained from Eq. (18) is
shown in Fig. 8. Allen’s approximation slightly overestimates
(underestimates) the experiment results below (above) 300 K.
At high temperatures, it seems that Allen’s approximation
agrees better with experiments than the exact solution of BTE
does. However, it is a coincidence, since the exact solution
is well converged at high temperatures. As compared to the
exact solution, RTA slightly overestimates. MRTA agrees
excellently with the exact solution. It should be noted that

FIG. 9. Electron scattering rates and mean free paths vs energy
with respect to the Fermi energy for Mo.

FIG. 10. Cumulative (a) electrical conductivity (σ ) and
(b) phonon thermal conductivity (κph) as a function of electron MFP
and phonon MFP respectively, at 300 K.

MRTA loses its accuracy in the strongly anisotropic scattering
cases like GaAs [20].

D. Electron and phonon MFPs

Figure 9 shows the scattering rates and mean free paths
for electron. According to Allen’s approximation, the average
electron scattering rate above Debye temperature can be ex-
pressed as [22]

τ−1 = 2π

h̄
kBT λtr. (20)

The value for Mo is 76 ps−1 at 300 K, in consistent with
the middle of the actual scattering rates at the Fermi energy,
as shown in Fig. 9. This corresponds to an average lifetime
of 13 fs, which is in good agreement with the value 12 fs
estimated from experiment metal resistivity and calculated
band structure [47].

Considering the size effect is relevant in applications of
metal wires such as interconnect, we also show the electron’s
MFPs in Fig. 9. The MFP ranges from 5 to 19 nm at the
Fermi energy. This supports the previous estimate of 11 nm
in Ref. [47] for the average MFP. According to Fig. 10(a),
electrons with MFPs from 5 to 21 nm contributes to the σ

while 50% of σ is contributed by electrons with MFPs shorter
than 14 nm.

Unlike electrons, phonons have much larger MFPs. κph are
dominated by phonons with MFPs below 100 nm. Half of the
κph are contributed from phonons with MFPs below 47 nm.
These characteristic MFPs of electrons and phonons in Mo
are similar to those in W [4]. However, Mo has much larger
phonon MFPs but smaller electron MFPs than Al, Au and
Ag [7]. The transport properties are reduced in nanostructures
when the system size is comparable to the characteristic
MFPs. In that regard, Mo nanostructures can be expected to
show reduced Lorenz number.

IV. CONCLUSION

In this work, we derive the linearized phonon
BTE accounting for ph-el scattering in addition to the
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well-established ph-ph and isotope scatterings, and quantify
the lattice thermal conductivity in elemental molybdenum.
Mo has the same bcc structure as tungsten and similar
phonon features including the triple degeneracy at high
symmetry P and H points and the nearly isotropic phonon
dispersion at long wavelengths. These features lead to
weak ph-ph scattering at intermediate frequencies. As a
consequence, κph in Mo also possesses anomalous features
including the large value, weak temperature dependence
and increasing importance of exact solution of BTE with
increasing temperature. Besides, Mo has a large isotope
mixture and thus much stronger isotope scattering than
W, consequently playing an important role in the thermal
resistance. Furthermore, Mo has a weaker interatomic
bonding than W, as revealed by the COHP analysis. Larger
DOS at the Fermi level in Mo allows for more scattering
channels, leading to slightly larger ph-el scattering. These
three factors explain the smaller κph of Mo despite of a
lighter atomic mass. Considering the similarity of the phonon
dispersion, our work suggests that another group-VI element
chromium should also have a large κph, which accounts for
the significant deviation of measured Lorenz number from
the Sommerfeld value.

In addition, the calculated electrical conductivity of Mo
agrees reasonably with the experimental data, especially

around the room temperature. At high temperatures, the dis-
crepancy between calculated and experimental results might
be due to the unconsidered temperature effects in the DFT
calculations. The calculated Lorenz number agrees with the
Sommerfeld value L0 within 7% for a wide temperature range.
κe is not adequate to fully account for the measured total
thermal conductivity, supporting the large calculated value of
κph.

Mean free paths of electrons are also provided, determining
the size effect of resistivity in nanostructures for applica-
tions such as interconnect. Furthermore, mean free paths of
electrons are a few times smaller than those of phonons,
suggesting that Lorenz numbers including the κph contribution
can be reduced in nanostructures.
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