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The electronic spectrum of the Penrose rhombus quasicrystal exhibits a macroscopic fraction of exactly
degenerate zero-energy states. In contrast to other bipartite quasicrystals, such as the kite-and-dart one, these
zero-energy states cannot be attributed to a global mismatch �n between the number of sites in the two
sublattices that form the quasicrystal. Here, we argue that these zero-energy states are instead related to a local
mismatch �n(r). Although �n(r) averages to 0, its staggered average over self-organized domains gives the
correct number of zero-energy states. Physically, the local mismatch is related to a hidden structure of nested self-
similar domains that support the zero-energy states. This allows us to develop a real-space renormalization-group
scheme, which yields the scaling law for the fraction of zero-energy states, Z , versus the size of their support
domain, N , as Z ∝ N−η with η = 1 − ln 2/2 ln τ ≈ 0.2798 (where τ is the golden ratio). It also reproduces the
known total fraction of zero-energy states, 81 − 50τ ≈ 0.0983. We also show that the exact degeneracy of these
states is protected against a wide variety of local perturbations, such as irregular or random hopping amplitudes,
magnetic field, and random dilution of the lattice. We attribute this robustness to the hidden domain structure.

DOI: 10.1103/PhysRevB.102.064210

I. INTRODUCTION

Quasicrystals were first discovered in 1982 by Shechtman
et al. [1] in Al alloys. Within a short time, many other
quasiperiodic crystals were discovered [2–4] including, even-
tually, a naturally occurring AlCuFe quasicrystal [5]. More
recent work has focused on connecting quasicrystals with
other novel phenomena such as topological states [6–9], non-
Fermi-liquid behavior [10–13], superconductivity [14–17],
and quantum criticality [18,19]. Synthetic quasicrystals were
also recently created by arranging CO molecules on a Cu(111)
surface with the aid of scanning tunneling microscopy [20].

Quasicrystals are known to display unusual properties
in their density of states (DOS). All one-dimensional (1D)
quasicrystals have a DOS that is only nonzero on a set of
measure 0 [21,22]. The simplest 2D quasicrystals, which are
built as Cartesian products of 1D quasicrystals, have densities
of states that are related to those of their 1D counterparts
[23,24]. On the other hand, the DOSs of intrinsic 2D and
3D quasicrystals can be rather different, displaying a sharp
suppression at the Fermi level or a macroscopic number of
zero-energy states [25–28].

In this paper, we focus on the nearest-neighbor tight-
binding model on the Penrose rhombus lattice, which is
known to display a macroscopic number of zero-energy states.
(Although the term lattice is sometimes restricted to periodic
structures, we use it to refer to both periodic and quasiperiodic
structures here.) Several properties of these zero-energy states
are well understood, including their fraction in the thermody-
namic limit, f = 81 − 50τ ≈ 9.8%, where τ = (

√
5 + 1)/2

is the golden ratio [29–31]. However, other properties are
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not as clear, such as their microscopic origin and their sta-
bility against perturbations. Indeed, in nearest-neighbor tight-
binding models on bipartite lattices, such as the Penrose
lattice, zero-energy states can be trivially generated if the
number of sites on the two sublattices, which we refer to as
A and B, are not the same. In other words, there is a global
mismatch �n ≡ nA − nB �= 0, implying the existence of a
number of zero-energy states equal to |�n|. This is precisely
the case in the bipartite quasicrystal known as the Penrose
kite-and-dart lattice, whose sublattice site mismatch gives rise
to ≈10% of zero-energy states. This is of course by no means
limited to quasicrystals; for instance, the dice lattice has one
third of its eigenstates at zero energy, reflecting the sublattice
mismatch in each unit cell.

In the case of the Penrose rhombus lattice, however, there
is no global mismatch in the thermodynamic limit, �n = 0.
This raises an important question about the nature of the
zero-energy states. To address this issue, in this paper we
introduce the concept of a local sublattice mismatch, �n(r).
The key point is that, even though the average 〈�n(r)〉 is 0, the
staggered average 〈(−1)Sr�n(r)〉, in which �n(r) changes
sign across certain regions denoted Sr, can be nonzero. The
situation is analogous to an antiferromagnet: while the average
magnetization vanishes, the average staggered magnetization
is finite.

However, in contrast to an antiferromagnet, where the
magnetization changes sign at the atomic length scale, the
local mismatch �n(r) changes sign at much larger scales
in the Penrose lattice. This is illustrated in Fig. 1, which
shows the spatial variation of �n(r) for a Penrose lattice
with about 4500 sites. In the red (blue) “domains,” the local
sublattice mismatch is such that nA > nB (nA < nB). Defining
a staggered �n(r) by changing its sign in the blue domains
compared to the red domains yields a finite number that
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FIG. 1. A section of approximately 4500 sites of the Penrose
rhombus lattice divided into domains showing the nesting of sub-
domains. In the red (blue) domains, the local sublattice mismatch is
such that the A (B) sublattice has more sites than the B (A) sublattice.
The domain walls connect sites belonging to different sublattices.

coincides with the number of zero-energy states. Interestingly,
a recent investigation of the classical dimer model on the
Penrose lattice found a result that resembles ours, namely, that
the Penrose lattice supports a cluster structure with charge-
alternating monomers, despite the fact that the Penrose lattice
itself is globally charge neutral [32].

The connection between the staggered �n(r) and the zero-
energy states can be made more transparent by considering
the excluded sites (or forbidden sites, as they were originally
called in Ref. [30]), i.e., sites for which the zero-energy
states wave functions vanish. While inside the red domains
the excluded sites are all in the A sublattice, in the blue
domains they switch to the B sublattice. The domain walls
(called strings in Ref. [30]) therefore connect excluded sites
that belong to opposite sublattices.

We emphasize that this hidden geometric structure of
the zero-energy states was noted in several previous works
[14,30–33]. One of our main points here is to connect this
structure to a staggered local mismatch �n(r) that sponta-
neously forms in the Penrose lattice. This geometric structure
protects the zero-energy states from any perturbation that does
not disrupt the large-scale nearest-neighbor structure. This
includes, as previously found, a perpendicular magnetic field
[33]. More generally, we demonstrate robustness against ran-
dom nearest-neighbor hopping amplitudes and single-site va-
cancies. Even the addition of further hopping terms that break
the bipartite symmetry, like next-nearest-neighbors (NNNs),
only reduces the number of zero energy states linearly in the
number of NNN hopping amplitudes.

The domain structure of the local mismatch �n(r), com-
bined with the inflation properties of the Penrose lattice, also
allows us to derive a recursive equation for the increase in
the staggered mismatch as a function of the Penrose lattice
generation. The structure of such a recursive relation resem-
bles a real-space renormalization-group (RG) flow. Previous

works have applied the real-space RG technique to compute
numerous quantities, such as solutions to the Ising model
[34,35], the local density of states [36–38], and ground-state
wave functions [39,40] for various quasicrystals including
the Penrose lattice. Here, however, our goal is to determine
the staggered local mismatch. We solve the flow equations
to find the staggered mismatch in the infinite lattice limit.
We find that the total number of staggered mismatched sites
corresponds to a fraction f = 81 − 50τ ≈ 0.0983 of sites
[31], showing that all zero-energy states in the Penrose lattice
originate from this local mismatch structure. Using the real-
space RG, we also find a scaling law Z ∝ N−η that relates
the fraction of zero-energy states, Z , to the size of their
support domain, N . Our calculations give an exponent η =
1 − ln 2/ ln(1 + τ ) ≈ 0.2798.

The paper is organized as follows. Section II contrasts the
nature of the zero-energy states and of the global sublattice
mismatch in two different Penrose quasicrystals, the kite-
and-dart lattice and the rhombus lattice, and introduces the
domain structure of the local mismatch in the rhombus lattice.
Section III discusses the robustness of the zero-energy states
against various perturbations as well as the spatial structure of
the zero-energy states. Section IV uses the inflation property
of the Penrose lattice to derive a real-space RG-like approach
to determine the number of zero-energy states by exploiting
its connection to the number of locally mismatched sublattice
sites. Section V concludes the paper by discussing possible
topological aspects of the zero-energy states. Appendices A,
B, C, and D contain details about the derivation of the RG-like
recursive relations.

II. PHENOMENOLOGY OF ZERO-ENERGY STATES
IN QUASICRYSTALS

We consider tight-binding Hamiltonians defined on 2D
quasicrystal lattices with zero on-site energies and nearest-
neighbor hopping. Such Hamiltonians are numerically

FIG. 2. Kite-and-dart lattice. Sites with no amplitude of any of
the zero-energy states are represented by the black dots. Note that all
marked sites belong to one sublattice.
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FIG. 3. Density of states for the kite-and-dart lattice. The DOS is
symmetric about 0 and has a macroscopic number (∼10%) of exactly
zero-energy states.

diagonalized on lattices containing up to 11 000 sites. Below
we summarize our findings for the kite-and-dart and rhombus
lattices. It is important to stress that both these lattices are
bipartite, with all sites belonging to either the A or the
B sublattice and nearest-neighbor hopping operating solely
between them.

A. The kite-and-dart lattice

Figure 2 shows a section of the kite-and-dart lattice. It
is a quasicrystal with a fivefold rotational symmetry. The
corresponding DOS is shown in Fig. 3, where a large peak
of zero-energy states is clearly visible.

For this lattice the number of zero-energy states is entirely
explained by the mismatch in the number of sites of the two
sublattices, as listed in Table I. As expected for these zero-
energy states, the amplitude of their wave functions is nonzero
only on the majority sublattice. If the Hamiltonian is written
in the sublattice basis, it takes the form of a block off-diagonal
matrix:

Ĥ =
(

0 G
GT 0

)
. (1)

If the two sublattices have different numbers of sites, G has
more columns than rows and so must have a null space at
least as large as the difference between the sizes of the two
sublattices. So there must be a vector(s) 
x such that G
x = 0.
Each of these corresponds to an eigenstate, ψ0 = (0, 
x)T , of
Hamiltonian Ĥ with the zero eigenvalue, Ĥψ0 = 0. Thus the

TABLE I. Numbers of zero-energy states and lattice mismatch in
kite-and-dart lattices. The number of zero-energy states is completely
explained by the (global) sublattice mismatch.

No. of sites No. of zero-energy states (Global) mismatch

166 24 24
411 41 41
1046 104 104
2686 286 286
6951 739 739

FIG. 4. The rhombus tiling is bipartite and has fivefold symmetry.

zero-energy eigenstates have amplitudes only on the majority
sublattice and no amplitude on the minority sublattice. In
Fig. 2 the sites that have no amplitude are represented by
black dots, which indeed span the minority sublattice. Here
the mismatch between the two global sublattices, �n, exactly
accounts for the ∼10% of all the states having zero energy.

This situation is to some extent similar to, e.g., the dice
lattice, which is bipartite with three sites per unit cell. Two
sites belong to the majority and one to the minority sublattice.
The mismatch is the third of all the sites and thus one third
of all the states are at exactly zero energy (the so-called flat
band). The difference is, of course, that the quasicrystal is not
translationally invariant and the states are not labeled by the
quasimomentum.

B. The rhombus lattice

The Penrose rhombus lattice is displayed in Fig. 4 and its
DOS is shown in Fig. 5. Similarly to the kite-and-dart lattice,
there is about 10% exactly zero-energy states. However, in
this case this number cannot be explained by the mismatch
between the two sublattices. As shown in Fig. 6 (see global
mismatch line) the global relative sublattice mismatch �n
goes to 0, while the fraction of the zero-energy states saturates
to a constant upon an increase in the lattice size.

To clarify the origin of the zero-energy states, we again
mark all sites for which the wave function of the zero-
energy states vanishes (we call them excluded sites), shown
in Fig. 7. Unlike the kite-and-dart lattice, the excluded sites
do not occupy a single sublattice. They are shown in red if
they belong to the A sublattice and in blue if they belong
to B. One notes that the two colors segregate into domains
with well-defined boundaries, which run between alternating
red and blue excluded sites (bold links in Fig. 7). Specifi-
cally, if all the bold links are cut, the lattice segregates into
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FIG. 5. The DOS of the rhombus lattice shown here is similar to
the DOS of the kite-and-dart lattice in Fig. 3, however, the origin of
the zero-energy peak is completely different.

isolated domains. Within each domain all the excluded sites
are of the same color, i.e., they belong to the same (minority)
sublattice. Note that in the smallest two domains there are
a few accidental excluded sites on the majority sublattice;
two are shown in the bottom-left corner in Fig. 7. While
the zero-energy states coming from bipartite mismatch are
required to have amplitude only on the majority sublattice,
they are not required to have amplitude on all such sites.
However, these accidental excluded sites are not robust in
the way our main findings are. For instance, applying any
magnetic field eliminates them and causes the zero-energy
states to have amplitude on all majority sublattice sites. In
the adjacent domain, all the excluded sites again belong to
one (minority) sublattice only, which is, however, the opposite
sublattice from the previous domain.

One may count the sublattice mismatch locally for each
domain and add up their absolute values for the entire lattice,
i.e., compute 〈(−1)Sr�n(r)〉, where Sr is ±1 for each domain.
The result of that calculation is shown in Fig. 6 as the “local”
mismatch. It is clear that for large lattice sizes the local

FIG. 6. Fractions for the mismatch in the number of sites in the
two sublattices (global and local, as defined in the text) and for the
number of zero-energy states as a function of the total number of
sites in the rhombus lattice.

FIG. 7. Excluded sites for a portion of the rhombus lattice. They
are shown in red or blue based on which of the two global sublattices
they belong to. Bold links, connecting red and blue excluded sites,
constitute the boundaries of the domains.

mismatch, defined this way, indeed asymptotically accounts
for all zero-energy states, with differences at finite lattice size
coming from our choice of open boundary conditions. The
problem, however, is that the lattice is not cut across the bold
links in Fig. 7 and therefore the domains are actually coupled.
One thus might expect that the coupling lifts the macroscopic
degeneracy of the zero-energy states.

To understand why the degeneracy is intact, consider a
Hamiltonian for two neighboring domains, grouping sites by
the domain, (1,2), and the sublattice within a domain (A, B),
letting the A sublattice be the minority one for each domain.
As we see later, this means that sublattices A1 and A2 are not
on the same global sublattice. The corresponding Hamiltonian
is

H ′ =

⎛
⎜⎜⎜⎜⎜⎝

A1 B1 A2 B2

A1 0 G1 C 0

B1 GT
1 0 0 0

A2 CT 0 0 G2

B2 0 0 GT
2 0

⎞
⎟⎟⎟⎟⎟⎠. (2)

Each domain, 1 and 2, is represented by a usual bipartite
lattice Hamiltonian, Eq. (1). The two are coupled by the
C term connecting solely the minority sites in domain 1 to
the minority sites in the domain 2. This is because the bold
links in Fig. 7 connect only the minority lattice sites in both
domains. From this it is clear that if ψ0 = (0, 
x1)T is a zero
eigenstate of the first domain, considered in isolation, then
there is a corresponding localized zero eigenstate of the whole
system, �0 = (0, 
x1, 0, 0)T . A similar analysis holds for the
second domain. An equivalent way to see this is that, since
the domains are only joined along the sites with no amplitude
(excluded sites) for all zero-energy states, the coupling cannot
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FIG. 8. DOS for a Penrose lattice with random nearest-neighbor
hopping amplitudes drawn uniformly from ti j ∈ [−1, 1] (one
realization).

perturb these states. This pattern also requires that the global
sublattices, occupied with the excluded sites, switch between
the adjacent domains.

Therefore, from the viewpoint of the zero-energy states, the
quasicrystal is partitioned into strictly disconnected domains.
One can thus choose a basis where all zero-energy states are
confined to the majority lattice of one of the domains. As a
result, counting the local sublattice mismatch (i.e., inside each
domain), 〈(−1)Sr�n(r)〉, gives an accurate count of the zero-
energy states, as shown in Fig. 6. It is important to stress that
the “domain walls” are impenetrable only for the zero-energy
states. All other states (90%) are not localized to the domains
and propagate freely between them.

Looking at the large-scale structure of the rhombus lat-
tice one can find domains with sizes at all scales. Figure 1
shows a larger portion of the lattice divided into its domains.
These have been colored red or blue based on which (global)
sublattice the excluded sites occupy in that domain. There
are domains contained in other, larger domains; looking at
increasingly large portions of the lattice, these domains con-
tinue to arbitrarily large length scales. As one can see, these
domains have the same self-similar structure as the Penrose
lattice [14,30–33].

Therefore, a theory that explains the fraction of zero-
energy states must be capable of explaining this self-similarity
structure of the domain shapes and sizes. In Sec. IV, we
will develop a real-space RG treatment of the Penrose lattice
growth, based on its inflation property [41]. The number of
inflation generations serves as the RG “time.” We find that
this treatment is capable of accurately predicting the number
of domains and their size distribution.

III. PERTURBATIONS OF THE ZERO-ENERGY STATES

A. Robustness to perturbations

The existence of the zero-energy states appears to be com-
pletely or partially robust against a number of perturbations
of the initial model. Figure 8 shows the DOS of the Penrose
lattice with random nearest-neighbor hopping, t , drawn from
a box distribution, t ∈ [−1, 1]. The number of zero-energy
states is the same as in the constant-t model. This is not

FIG. 9. DOS for a Penrose lattice in the presence of a perpendic-
ular magnetic field of half-flux quanta per small rhombus.

surprising, since both the domain structure and the mismatch
count rely only on the geometry of the lattice, and not on spe-
cific hopping amplitudes. The same reasoning explains why a
perpendicular magnetic field does not change the number of
zero-energy states (Fig. 9). Indeed, the magnetic field enters
as complex phases of the hopping amplitudes. Note that both
random hopping and the magnetic field do affect the DOS of
nonzero-energy states.

Slightly less obvious is the effect of random dilution of the
lattice by removal of random sites. We found that this leads
to a slow suppression of the number of zero-energy states, but
not to their immediate disappearance. This is also easy to un-
derstand, since the removal of the sites does not affect domain
partitioning, but only removes sites from the interior or the
boundary of a domain. Depending on whether a minority or a
majority sublattice site is removed, the mismatch increases or
decreases by one, adding or removing a zero-energy state to
or from the domain. Since it is ≈10% more likely to remove
a majority site, there is a slight tendency towards a decreasing
number of zero-energy states upon dilution.

The most severe perturbation is the addition of NNN (i.e.,
along diagonals of some rhombuses) hopping amplitudes.
Such a perturbation violates the bipartite nature of the lattice.
If introduced across the domain boundary, it leads to interdo-
main coupling involving the majority sublattices. This could
potentially eliminate all zero-energy states in both domains.
Yet this is not the case, as shown in Fig. 10, where we
add NNN hopping in randomly chosen bonds. Each NNN
link eliminates zero, one, or at most two zero-energy states,
depending on how many local majority sublattice sites it
connects. Within a given domain one may choose a basis in
the null space, where all but one zero-energy state have no
amplitude at a given site of the majority sublattice. Thus, if
this site is involved in an NNN link, only the single state
acquires a matrix element, which shifts it away from zero
energy. As a result, if less than ≈20% of sites participate in
NNN links, a fraction of the zero-energy states persists.

B. Spatial structure of the zero-energy states

Since all zero-energy states are exactly degenerate, one
can choose any orthogonalized linear combination as a basis.
One can always choose it to respect the domain structure,
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FIG. 10. Number of zero-energy states (ZES) removed upon the
addition of random NNN links. A site was randomly chosen, and a
hopping amplitude was added to a random NNN of this site. Twenty
realizations were considered; here, we plot only the maximal and
minimal reductions of zero-energy states. The dashed line has slope
1 and is just a guide for the eyes. The lattice contains 4581 sites and
441 zero-energy states.

i.e., each state in the basis is fully localized within (the
majority sublattice of) one domain and has zero overlap with
states from all other domains. It is less straightforward to
characterize individual states within a domain. To this end it is
convenient to define the basis-independent projection matrix
as

Pi j =
∑

α

〈i|� (α)〉 〈� (α)| j〉 , (3)

where α labels zero-energy states, i and j label lattice sites,
and � (α) is the wave function corresponding to the α zero-
energy state. The projection matrix, Pi j , has block-diagonal
form in the space of the domains, with nonzero elements only
on the majority sublattice of the corresponding domain.

Consider now a small local (i.e., at site k) perturbation
of the on-site energy Vi j = V δikδ jk . In first-order degenerate
perturbation theory, the energies of the zero-energy states are
shifted by the eigenvalues of the matrix

V αβ = 〈� (α)|V |� (β )〉 = V 〈� (α)|k〉 〈k|� (β )〉 . (4)

This is a rank 1 matrix with all eigenvalues, except one, equal
to 0. Its only nonzero eigenvalue, δE , and the corresponding
eigenfunction, 


(k)
i , are given by

δE = V Pkk, 

(k)
i = Pik/

√
Pkk . (5)

This means that the local perturbation (if on the majority
sublattice) shifts the energy of a single zero-energy state.
Both the energy shift and the corresponding eigenfunction



(k)
i , localized around site k, are given in terms of the kth

column of the projection matrix Pik . Note that
∑

k Pkk =
the number of zero-energy states. As a result, the average
energy shift susceptibility is δE/V = 2 f /(1 + f ) ≈ 0.179,
where f = 0.098 is the fraction of zero-energy states and the
averaging is performed over the majority sublattice.

Figure 11 shows the distribution of the diagonal elements
of the projection matrix, Pii, for the lattice with 4581 sites,

FIG. 11. Histogram of the diagonal entries of the projection
matrix, Pi j , which determines the perturbative energy shift due to a
local on-site potential (only the majority sublattice is kept).

colored in Fig. 1, which contains 441 zero-energy states. As
expected, the mean susceptibility is about 0.18, while the
standard deviation is 0.085. Figure 12 shows log-plots of
Pik ∝ 


(k)
i as a function of the distance |ri − rk| in units of the

rhombus side. Four randomly chosen sites k are shown, while
all other sites exhibit the same pattern. It is evident that 
(k)

i ≈√
Pkk exp [−|ri − rk|/ξk], where the localization length ξk =

2.4 ± 0.2. We thus conclude that local perturbations of the
zero-energy manifold lead to a spatially localized response
within the given domain.

IV. REAL-SPACE RENORMALIZATION GROUP

A. Background

We now develop a method to find the local sublattice mis-
match and the number of domains in lattices of progressively
increasing sizes. There are only eight distinct site types in
the Penrose rhombus lattice. We follow the standard notations
given in, e.g., Ref. [42], which are specified in Fig. 13.
Therefore a finite patch of the lattice can be characterized by

FIG. 12. Wave functions of the perturbed states for perturbations
at four sites. The horizontal axis is the distance from the perturbation
site in units of the rhombus edge length. The best-fit localization
lengths, ξk , are shown.
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FIG. 13. The neighborhoods associated with each of the eight
distinct types of sites. Each neighborhood uniquely identifies the
central red site.

an eight-dimensional vector, 
n, whose entries correspond to
the number of sites of a given type:


n = (Q D S3 J K S4 S S5)T . (6)

The key to our approach is the inflation property of the
Penrose lattice [41]. This is a set of partition rules for all
rhombuses that, when followed by a linear rescaling by τ ,
generates another valid patch of the lattice with more sites.
Since the rules are local and specific to a given type of the
vertex, they can be represented as a matrix acting on the vector

n. In the bulk, this matrix is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 3 1 1 4 5 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
2
3

1
3 0 2

3 1 0 0 5
3

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

The fractional numbers reflect the fact that a given site may
be shared by several adjacent neighborhoods. This sharing is
modified at the boundaries of the lattice. Thus the boundaries
require some care and are dealt with in Appendix B. For now
we proceed with the bulk of the lattice.

Given the matrix M, one can compute the site counts after
k inflations with some initial state 
n1,


nk = Mk 
n1. (8)

FIG. 14. A new emergent domain, obtained after two inflations
of the S5 neighborhood. Sites are labeled according to the convention
in Fig. 13. All other domains are results of the repeated inflations
of this patch. It is also used as the initial seed to generate Penrose
rhombus lattices with a larger number of sites via the inflation
process.

The asymptotic growth rate of the number of sites as a
function of the generation number is given by the matrix’s
largest eigenvalue τ 2, where τ is the golden ratio. We can also
find the relative distribution of site types in the infinite lattice
as the corresponding eigenvector,

(
1

τ 2

1

τ 4

1

τ 6

1

τ 3

1

τ 5

1

τ 7

1

τ 6(1+τ 2)

1

τ 4(1+τ 2)

)
,

(9)
which reproduces the known distribution, see Ref. [43].

Looking at Fig. 1, there are a number of domains of
different shapes and sizes. In fact, all are generated from
repeated inflations of a single “seed” domain. For example,
the seed domain may be chosen as depicted in Fig. 14. Upon
repeated inflation steps it generates self-contained domains,
all bounded by a line of excluded sites. Choosing this start-
ing configuration also simplifies properly accounting for the
boundary, the details of which are dealt with in Appendix B.

Computing the local mismatch requires two inputs. The
first is the number of new domains generated at the kth
inflation step, Ak . These newly born domains with the shape
of the initial seed (Fig. 14) may be seen in Figs. 1 and 7.
Inspection shows that all new domains originate from the S5
neighborhoods (see Fig. 13) after two inflation iterations. We
thus find

Ak = (
nk−2)S5. (10)

The second input is the global mismatch, Gk , of A and B
sublattices after k generations. To find it, one needs to double
the counting vector 
n to keep track of which sublattice a given
site belongs to: 
n = (
nA, 
nB)T . Correspondingly, the M matrix
also becomes 16 × 16 and is presented in Appendix A. The
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FIG. 15. Local mismatch fraction, Lk/Nk , as a function of the
total number of sites after k inflations, Nk = ∑

i(
nk )i.

global mismatch is given by

Gk =
∑
i∈A

(
nk )i −
∑
i∈B

(
nk )i, (11)

which may be either positive or negative.
With these two inputs, one can now evaluate the sum of all

domain-specific local mismatches, Lk , after k inflation steps.
This is equivalent to the “order parameter” 〈(−1)Sr�n(r)〉
introduced above and, as explained, is exactly the number
of zero-energy states in the DOS of the rhombus lattice. In
Appendix D, we show that it is given by

Lk = Gk + 2
k−1∑
l=1

Ak−l Gl . (12)

Equations (7)–(12) provide a complete iterative scheme to
evaluate the number of zero-energy states starting from any
seed. It is straightforward to iterate them to calculate the local
mismatch for extremely large systems. Figure 15 shows the
result of such iteration for up to 70 generations with ∼1030

sites. After some initial fluctuations the mismatch as a fraction
of total sites converges to 81 − 50τ ≈ 0.0983.

We now proceed to derive this result analytically. The
largest (nondegenerate) eigenvalue of the M matrix is τ 2,
signaling that the total number of sites, Nk , and the number
of new domains, Ak , both scale as τ 2k . Thus, for k  1, with
exponential accuracy,

Nk = 〈
1|ψ1〉τ 2k〈ψ1|
n1〉,
Ak = 〈
S5|ψ1〉τ 2(k−2)〈ψ1|
n1〉, (13)

where |ψ1〉 is the eigenvector corresponding to the largest
eigenvalue, 〈
1| is the vector whose entries consist of 1, and
〈
S5| is a projection onto the S5 component. On the other hand,
the global mismatch is given by Gk = 〈{
1,−
1}|Mk|
n1〉, where
〈{
1,−
1}| has 1 on entries corresponding to one sublattice and
−1 on the other sublattice. It scales only as the second-largest
eigenvalue, since 〈{
1,−
1}|ψ1〉 = 0. The second-largest eigen-
value is 2 (note that the boundary has to be included to
arrive at this number) and thus Gk ∝ 2k . Therefore, as already
mentioned, Gk � Nk, Ak, Lk for k  1. Moreover, Eq. (12)

FIG. 16. Plot of Gl/τ
2l , the summand in Eq. (15), which is

proportional to the relative contribution of a domain of size/age l
to the number of zero-energy states.

simplifies to

Lk ≈ 2
k−1∑
l=1

Ak−l Gl = 2〈
S5|ψ1〉〈ψ1|
n1〉
k−1∑
l=1

τ 2(k−l−2)Gl

= 2〈
S5|ψ1〉〈ψ1|
n1〉
τ 4

τ 2kG(τ−2), (14)

where

G(τ−2) =
∞∑

l=1

Gl

τ 2l
≡ G, (15)

and we have extended the sum to infinity, since it is exponen-
tially convergent. The fraction of zero-energy states is thus

Lk

Nk
= 〈
S5|ψ1〉

〈
1|ψ1〉
2G

τ 4
. (16)

The ratio 〈
S5|ψ1〉/〈
1|ψ1〉 = 1/τ 4(1 + τ 2) ≈ 0.04 is the
global fraction of S5 sites, given by the last entry in Eq. (9).
We thus obtain

Lk

Nk
= 2G

τ 4(1 + τ 2)τ 4
= 81 − 50τ, (17)

where we have used that 2G = 7 + 6τ , as evaluated in Ap-
pendix C.

While this value agrees with previous reports [29–31],
our approach provides interesting additional information. Fig-
ure 16 shows ln[τ−2l Gl ] as a function of the generation “age”
l . According to Eq. (15), this quantity measures the relative
contributions to the number of zero-energy states of domains
of “age” l , i.e., size Nl . The latter tells over how many lattice
sites the corresponding zero-energy states are extended. One
notes that about half of the zero states are localized within
“young” compact domains with l � 5. The remaining half
falls within an exponential tail of larger “older” domains.
For those we find a scaling law for the relative number of
zero-energy states, Z (N ), extended over N > N5 lattice sites:

Z (N ) ∝ N−η, η = 1 − ln 2

2 ln τ
≈ 0.2798. (18)

Indeed, since τ 2 and 2 are the largest and the second-largest
eigenvalues of the M matrix, for l � 6, one finds ln Z =
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ln[τ−2l Gl ] ≈ −l ln[τ 2/2]. On the other hand, ln N = l ln τ 2,
from which Eq. (18) follows.

V. CONCLUSIONS

We have discussed the nature of the zero-energy states
in Penrose quasicrystals. We have shown that the lattice is
subdivided into a nested structure of self-similar domains.
Upon inflation, the domains are inevitably born from every
S5-neighborhood site and continue to grow indefinitely, while
new domains appear inside older ones. The domain bound-
aries have a property of being impenetrable walls for the
zero-energy states (but not for any other states). As a result,
each domain contributes a number to the total of zero-energy
states given by the mismatch between A and B sublattices
within this domain. The mismatches alternate between suc-
cessive domains, yielding no global mismatch. Yet, ∼10%
of all states are at exactly zero energy, due to the combined
local mismatches in all the domains. The macroscopically
degenerate zero-energy states may be chosen to be localized
within the respective domains.

Utilizing the self-similar structure of the domains, we
developed a real-space RG evolution procedure, where the
generation number, k, plays the same role as the RG “time.”
Note that the lattice size Nk grows exponentially with “time”
as Nk ∼ τ 2k . In other words, k ∼ ln Nk , as is common for
the real-space RG. This procedure is capable of accurately
counting domains, their sizes, and the sublattice mismatch. It
reproduces the 81 − 50τ ≈ 0.0983 fraction of the zero-energy
states, derived before from different perspectives [29–31].

The zero-energy states and the domains supporting them
are robust against a number of perturbations. Random hopping
and magnetic field do not alter their number at all. Random
dilution of the lattice leads to a very slow decrease in their
number. Finally, the inclusion of NNN links, which violate
the bipartite property of the original lattice, kills them at the
average rate of a single state per NNN link.

The robustness of the domain structure and the zero-energy
states inside the domains raises the question whether they
are of a topological origin, connecting to previous work on
topological states in this system [44–46]. We have not been
able to find convincing arguments for or against this premise.
One tantalizing observation is that the Penrose lattice is a cross
section of a five-dimensional cubic crystal. The latter has a
bipartite structure, which is directly inherited by the Penrose
tiling. The bipartite hopping Hamiltonian belongs to the BD1
Altland-Zirnbauer symmetry class [47], which is topological
in five dimensions with the Z homotopy group. One may thus
wonder whether the domains and zero-energy states may be a
legacy of their 5D topological parent.
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APPENDIX A: INFLATION PROCEDURE WITH
SUBLATTICES

To calculate the global mismatch we need to track the
sublattice that each site belongs to. We double the length of
the 
n vector that counts sites, now tracking A sites and B sites
separately:


n = (
nA 
nB)T

= (QA DA S3A . . . QB DB S3B . . .).

Now we can write the inflation matrix in block form, in
terms of whether the new sites are on the same sublattice (AA
subscript) or opposite sublattices (AB subscript) as the original
site:

M ′ =
(

MAA MAB

MAB MAA

)
. (A1)

That the diagonal blocks and off-diagonal blocks are the same
comes from our freedom to choose which sublattice we label
A. To keep the total number of sites the same as in the original
matrix we must have MAA + MAB = M. So it is sufficient to
give only one block explicitly:

MAA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1

3 0 0 1 0 0 5
3

0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

APPENDIX B: BOUNDARY CONTRIBUTIONS

To account for boundary contributions, we separately track
the number of sites on the boundary and in the bulk. Then
we can use different rules to evolve the boundary and add
boundary effects on interior sites near the boundary. For the
starting geometry considered here, the boundary is composed
of only four kinds of sites: J , K , S4, and S3. We can add
the counts of these sites by appending them to the end of our
vector 
n, leaving it with 12 entries:


n1 =(10 5 0 5 0 0 1 0 15 5 5 0).︸ ︷︷ ︸
previous vector

︸ ︷︷ ︸
boundaryentries

(B1)

The transition matrix will have the general structure

M1 =
(

M B′
0 B

)
. (B2)

Here M is the same bulk matrix as above, B is the matrix
describing the evolution of the boundary, and B′ gives the
contribution of the boundary sites to the bulk counts. We note
that the details of B and B′ depend on the geometry. Here the
boundary is not exactly the geometrical boundary but, rather,
is defined by the rings of excluded sites.

The main complication from adding the boundary is that
the B′ matrix is not the same across inflations. Specifically,
it alternates between two versions. This is reflected in the
structure of the boundary, since it alternates between two sites
bordering the interior, S3 and J (see Fig. 17). The type of
inward-facing site changes the boundary effect on the interior.
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FIG. 17. Boundaries for successive inflations. Note the S3 sites
and J sites on the inward-facing boundary on the left and right,
respectively.

The matrices are explicitly given by

B =

⎛
⎜⎝

1 1 1 1
1 0 0 0
0 1 0 0
1 −1 0 0

⎞
⎟⎠, (B3)

B′
even =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
0 0 0 0
0 0 −2 0
0 0 − 2

3 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B′
odd =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 4 3
0 0 0 0
0 0 0 0
0 − 4

3 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B4)

The negative entries come from sites moving between the
boundary and the bulk. In B′

even and B′
odd, they come from sites

being included on the inward-facing “spikes” of the boundary.
These can also be extended to track the sublattice to which

the sites belong, as in Appendix A. All matrices have the
structure of Eq. (A1) and obey the same constraint MAA +
MAB = M, so we just give the AA components, as in Eq. (A2):

BAA =

⎛
⎜⎝

0 1 1 1
1 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠, (B5)

B′
even,AA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2
2 0 0

0 0 0 0
0 0 0 0
0 0 − 2

3 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B′
odd,AA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 − 4

3 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B6)

TABLE II. Parameters for the calculation of G.

i wi λi 〈{
1, 
−1}|i〉 〈{
1, 
−1}|Modd|i〉
2 10

3 4 18
5

36
5

4 − τ

2 τ 2 4 + 6τ 6 + 10τ

13 − 1
2 + τ

2 2 − τ 10 − 6τ 16 − 10τ

APPENDIX C: CALCULATION OF G

As just discussed, when accounting for the boundary, infla-
tion behaves differently for even and odd generations. Thus,
we must treat even and odd terms separately. Starting from our
initial vector |
n1〉, Eq. (8), for an even number of inflations we
can write

|
n2k+1〉 = (MevenModd )k |
n1〉 . (C1)

We can expand in eigenvectors and eigenvalues, {|i〉}, λi, of
(MevenModd),

|
n2k+1〉 =
∑

i

λk
i wi |i〉 , (C2)

where wi are the weights connecting |
n1〉 to |i〉. These are not
〈i|
n1〉 because (MevenModd ) is not symmetric and hence the |i〉
are not orthogonal. But nevertheless, the weights exist and are
unique.

The mismatch after an even number of inflations is

G2k+1 = 〈{
1, 
−1}|
n2k+1〉 =
∑

i

λk
i wi 〈{
1, 
−1}|i〉 . (C3)

From the product of the weights and the inner product, only
three terms are nonzero, as listed in Table II.

For odd numbers of inflations we can define a similar
expansion:

G2k+2 = 〈{
1, 
−1}|n2k+2〉 =
∑

i

λk
i wi 〈{
1, 
−1}|Modd|i〉 .

(C4)
Plugging in the summation for G, Eq. (15), we obtain

∞∑
k=1

Gk

τ 2k
=

∞∑
k=0

G2k+1

τ 4k+2
+

∞∑
k=0

G2k+2

τ 4k+4
(C5)

=
(

75

44
+ 63

44
τ

)
+

(
91

44
+ 57

44
τ

)
(C6)

= 7

2
+ 3τ ≈ 8.3541. (C7)

APPENDIX D: DERIVATION OF THE EQUATION FOR Lk

To derive Eq. (12), we start by noting that the smaller
domains in Fig. 1 look like the full lattice at an earlier stage
of its evolution. We define the exterior region as the single
domain that borders the boundary of the lattice. In Fig. 1 this
is the large blue region. Next we define the top-level domains
as domains that border this exterior region and hence are not
contained inside anything except the exterior region. All red
domains in Fig. 1 are top level, while only the small blue
domain contained inside the central red domain is not top
level. The number of new top-level domains created within
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FIG. 18. Domain D1 contains another domain, D2.

the exterior (outer blue region in Fig. 1) in the kth generation
is denoted Tk . We only count new top-level domains because
we can trivially find the number of older top-level domains
from this. A top-level domain never stops being top level, so
the number of top-level domains of age l at a step k is merely
the number of domains that were newly created exactly l
generations ago, Tk−l .

Recall that the total number of new domains created at step
k is Ak . Since domains of a given age are identical, we know
that a domain of age l creates Al new domains inside of it. As
just mentioned, the number of top-level domains of age l at
step k is Tk−l . Thus the number of new domains created inside
domains of age l is AlTk−l . We can sum this over l to count all
non-top-level domains created and subtract it from the total to
find Tk ,

Tk = Ak −
k−1∑
l=1

AlTk−l . (D1)

Finally, we combine these relationships to find the total
local mismatch, Lk , after k generations. We can use a sum-
mation similar to Eq. (D1) to recursively count the local
mismatches from enclosed domains. At generation k there are
Tk−l top-level domains of age l and each contributes Ll to the
local mismatch. All that is left is then to count the mismatch
of the exterior region (outer blue area in Fig. 1). We start with
a simple example.

Consider a domain D1 with a single domain D2 inside
of it, as shown in Fig. 18. Let the combined domain have a

mismatch �N (i.e., greater number of A sites than B sites)
and the interior domain D2 have a mismatch −�ND2 (i.e.,
a greater number of B sites than A sites). It is negative
because the majority sublattice switches when moving across
the domain boundary. Then we have �N = �ND1 − �ND2,
or �ND1 = �N + �ND2. Moreover, we have Tk−l domains
of age l , each of which has a mismatch of Gl . Summing
these contributions gives the mismatch in the exterior domain,
Gk + ∑k−1

l GlTk−l . Combining this with the local mismatches
from the enclosed domains, we obtain an equation for the total
local mismatch of the lattice after k inflations,

Lk = Gk +
k−1∑
l=1

GlTk−l +
k−1∑
l=1

LlTk−l . (D2)

Note that both equations, (D1) and (D2), are crucially based
on the self-similarity property: domains of age l are identical
to the entire lattice at the lth generation.

The next goal is to eliminate Tk from Eqs. (D1) and (D2).
To this end, we encode the discrete sequences into generating
functions, e.g.,

L(x) =
∞∑

k=1

Lkxk.

Since Lk increases exponentially as ∼τ 2k , the series has a
finite radius of convergence, |x| < τ−2. This allows us to
rewrite the summations as algebraic multiplications:

A(x)T (x) =
∞∑
k

[
k−1∑
l=1

AlTk−l

]
xk .

Equations (D1) and (D2) then become algebraic, T = A − AT
and L = G + GT + LT , where we have omitted the argument
x for brevity. From the first, one finds T = A/(1 + A), and the
second yields L = G(1 + T )/(1 − T ) = G(1 + 2A). Match-
ing powers of x on either side of the equation gives Eq. (12).
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