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The general concern of this investigation is the extraction of the effective electromagnetic properties of
agglomerates of randomly located particles, which are small compared to the wavelength. The focus is on the
spectral window ranging from the transverse phonon to the longitudinal phonon frequencies, in which resonances
may be excited. In this frequency domain, it is shown that limiting the problem to bare dipole-dipole interactions
leads to inaccurate calculations of the electromagnetic fields, resulting in a doubtful extraction of the effective
properties. We perform the complete electromagnetic calculation by taking into account the higher multipole
orders that are activated when the agglomerates are illuminated. Several results, which are not usually observed
outside the frequency range highlighted here, are revealed by means of extensive numerical simulations. In
particular, we evidence large deviations compared to the predictions provided by the effective medium theories,
while we find that the volume of the microstructures (each one with a different internal geometry) that are used
to average the fields must be unusually large to avoid a bias in the determination of the effective properties.
Furthermore, the evolution of the incoherent component of the fields between the two optical phonon modes is
investigated.
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I. INTRODUCTION

The conceptual and fundamental issue of determining the
effective refractive index of inhomogeneous media has at-
tracted the attention of the scientific community for long;
early quantitative discussions on this topic turn out to date
back to the first part of the 19th century [1]. From a practical
viewpoint, the knowledge of the effective refractive index
neff provides useful information, for example in the realm of
heat transfer or in the propagation of light in random media,
where its imaginary part is directly related to the absorption
coefficient appearing in the radiative transfer equation or in
the Beer-Lambert law. There is a wide range of applications
lying in the determination of neff , e.g., characterization of
industrial nanopowders [2] or colloids [3], thermoradiative
properties of foams for solar absorbers [4], etc.

Several predicting models with different level of sophisti-
cation exist. Let us mention the well-known Maxwell-Garnett
(MG) [5] and Bruggeman [6] models, which are two formulas
expressing the effective permittivity (εeff = n2

eff ) of a mixture
in terms of the relative permittivities and volume fractions of
the bare components. However, these last two quantities are in
general insufficient to correctly describe the effective proper-
ties of a mixture. Accordingly, other approximation methods
that take into account further inputs, such as microstructural
information [7], were developed. Another approach lies in the
computation of the electromagnetic fields and in the obtention
of the effective parameters by means of different techniques:
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e.g., (i) using the formula εeff = 〈D〉/〈E〉 where E and D are
the electric and displacement fields, averaged over a volume
that is representative of the inhomogeneous medium under
study [8], (ii) averaging the electromagnetic field scattered
by many spherical agglomerates (in all the realizations, the
volume fraction is maintained constant while the position of
the particles is varied) and comparing with the response of a
homogeneous sphere for which the scattered field is provided
by Mie’s theory [9], or (iii) calculating the reflection and
transmission coefficients of an inhomogeneous slab consisting
of a distribution of particles and comparing with the analytical
coefficients that hold for a homogeneous slab [10].

The diffraction of an electromagnetic radiation by a single
particle is a classic problem. So long as the size of the particle
remains small compared to the wavelength, the diffracted field
reduces to the first-order component of the expansion in terms
of the vector spherical wave functions. In this case and if the
host media is free space, it should be noted that the formula
giving the oscillation amplitude exhibits a pole when the
permittivity of the particle takes the value εp = −2 [11]. The
particle experiences surface plasmon polariton resonances and
the frequency at which this occurs is called the Fröhlich
frequency ωF [12], accordingly given by εp(ωF ) = −2.

The case where two particles are involved provides an in-
teresting simplified frame to understand the collective effects
that may arise. This problem was largely investigated in the
past, many contributions [13–15] are based on a T -matrix
kind approach, which lies in a multipole expansion of the
field around the scatterers and in the addition theorem that
allows us to express the spherical harmonics about one origin
in terms of those at other origins.
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While the assumption of a dipole-dipole interaction is
often made when the particles are small compared to the
wavelength [16,17], it was shown that higher-order multipoles
are actually required as the clearance decreases, especially
when the particles have a large refractive index [13] or when
surface plasmon polariton resonances are excited [18]. In the
latter case, the Fröhlich’s mode splits into several resonant
modes whose eigenfrequencies depend on the interparticle
distance.

The number of multipolar modes that are activated when
an agglomerate is illuminated is a prominent issue because the
computational burden can become impracticable if the cluster
is made up of many particles and if high-order multipoles are
simultaneously required. Furthermore, the multipolar collec-
tive response of the cluster seems to be incompatible with
some effective medium theories such as MG, which is usually
understood as a single scattering model with no multiple-
scattering interactions between the constitutive dipoles [19].
Therefore, the widely held assumption that MG is accurate
in predicting neff for clusters with a low concentration of
spherical particles runs counterintuitive with the fact that
several multipole orders may be necessary. The deviation of
the effective permittivity in regard to MG in those situations
in which the mixing rule model should at first glance work is
a question that will be, in particular, addressed here.

In this work, we focus on the spectral range bounded by the
transverse frequency ωT O and the longitudinal frequency ωLO

of an optical phonon mode. We will evidence unconventional
effective behaviors in this frequency range.

Section II is a brief summary in which the ωT O-ωLO range
is discussed. In Sec. III, we show that a many-particle ag-
glomerate experiences strong resonances in a large portion of
the ωT O-ωLO domain. We verify, for large clouds of scatterers,
that at the edge of the resonant spectrum the electromagnetic
interactions are contained into the higher-order multipoles
[20]. We investigate the role of the clearance between the
particles, and we show that it is mainly through this parameter
that the bandwidth of the resonant region is driven.

Next, we extract the effective properties of inhomogeneous
materials through an ensemble average over a great number
of realizations, each one with a different spatial distribution
of the particles. We demonstrate in Sec. IV that, even in the
single-scattering approximation, MG can fail in predicting
the effective properties in the ωT O-ωLO range. In Sec. V,
the collective effects are taken into account by activating the
multipolar interactions. We establish that the power scattered
by the constitutive realizations of the ensemble average dis-
plays strong fluctuations between each other. We show that the
incoherent part of the fields does not only originate from the
random positions of the scatterers in the finite agglomerates
but also from electromagnetic interactions. More specifically,
it is evidenced that the incoherent effects gradually increase
while entering the core of the ωT O-ωLO range, up to a limit
from which strong resonances appear. As a consequence, the
calculated neff can significantly deviate from MG or can even
be impossible to determine. By means of statistical consider-
ations, it will be pointed out that the volume and number of
the realizations in the ensemble average should be carefully
adjusted. Insufficiently large volumes lead to a bias in the
calculated neff and require a great number of realizations; we

find that this effect is dramatically enhanced compared to what
is observed outside the ωT O-ωLO domain and, what is more, it
strongly depends on the refractive index of the particles.

II. TRANSVERSE AND LONGITUDINAL OPTICAL
PHONON MODES

Phonons in crystals are normal modes of vibration that can
cause strong interactions between electromagnetic fields and
matter in the far- and midinfrared ranges. If their symmetry
satisfies the selection rules for infrared activity, there is a
large dielectric dispersion around their resonant frequencies,
which induces the presence of characteristic bands in the
reflectivity spectrum of the material. In the spectral domain
where strong interactions occur, the electric response is fairly
well described by a four-parameter dielectric function model
whose expression is given by [21]:

ε(ω) = εr (ω) + iεi(ω) = ε∞
∏

j

ω2
jLO − ω2 − iγ jLOω

ω2
jT O − ω2 − iγ jT Oω

. (1)

Four parameters are necessary to take into account the con-
tribution of each phonon. The frequencies (ω jT O, ω jLO) and
the dampings (γ jT O, γ jLO) are characteristics of the transverse
(T O) and longitudinal optic (LO) modes associated with the
jth phonon term. The permittivity ε∞ = 1 + χ∞ includes
a high-frequency contribution due to valence electrons. For
a hypothetic dielectric material having only one undamped
phonon (γ jT O = γ jLO = 0) and no high-frequency contribu-
tion (ε∞ = 1), the previous expression reduces to:

εr (ω) = ω2
LO − ω2

ω2
T O − ω2

, (2a)

εi(ω) = π
(
ω2

LO − ω2
T O

)

2ωT O
[δ(ω − ωT O) − δ(ω + ωT O)], (2b)

where δ represents the Dirac function. It is obvious from
these expressions that the real part of the dielectric function
becomes negative between ωT O and ωLO. A specific study of
this range is scientifically relevant since it includes the domain
of frequencies for which sharp resonances are encountered in
the scattering spectrum of dielectric or metallic aggregates.
By taking ωT O = 0, the dielectric function expression reduces
to the Drude model of free electrons with a plasma frequency
ωp equal to ωLO.

III. SPECTRAL STUDY OF MANY-PARTICLE
AGGLOMERATES

We start by generating an inhomogeneous large medium
consisting of nonoverlapping particles that are randomly lo-
cated. The volume fraction is enforced to be 14.8% while the
radius of the particles is set at rp = 0.1 μm. The resulting
texture is displayed on the left side of Fig. 1. Next, a volume
is extracted from the global medium by defining a spherical
surface of radius R and then selecting all the particles whose
center lies in the bound of this sphere. In this paper, several
volumes are considered; in order to give a picture of the
resulting studied agglomerates, all of them are represented on
the right-hand side of Fig. 1.
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FIG. 1. The 40 μm × 40 μm (blue) sample is an inhomoge-
neous media. The constitutive particles are randomly positioned
avoiding intersections, their radius is rp = 0.1 μm, and the volume
fraction is set at 14.8%. The numerical calculations are made on
spherical volumes, extracted from the original sample, having dif-
ferent radii R. All the volumes used throughout this investigation are
depicted here, from the top-left to bottom-right corners the radius is
0.4; 0.7; 0.85; 1.1; 1.3; 1.5; 1.9; 2; 4 μm.

We are interested in the bare electromagnetic response of
a R = 0.85 μm cluster (corresponding to 90 particles) that is
illuminated by a circularly polarized wave whose wavelength
λ is variable and much larger than the heterogeneities. While
the polarization is often chosen in the literature to be of
transverse electric (TE) or magnetic (TM) kind, we ensure a
circular polarization in order to activate a greater number of
modes in the cluster.

The dielectric constant of the particles is assumed to follow
a Drude-type dispersion

ε(ω) = 1 − ω2
p

ω2
, (3)

where the plasma frequency is set at ωp = 3.39 × 10+13s−1.
Let us consider the black curve of Fig. 2, which cor-

responds to the case where there is no restriction on the
minimum interparticle distance (i.e., a fully random medium
disregarding the possibility of overlaps). One can observe the
radiant power in terms of the frequency normalized to that of
Frölich, which follows from Eq. (3). Sharp resonances in the
scattering spectrum of the aggregate are clearly visible. These
resonances originate from cooperative effects and result from
the splitting of the Fröhlich’s mode of a single particle. This
phenomenon was discussed at length for aggregates made up
of very few scatterers (e.g., Refs. [15,18]). It was in particular
shown that as the number of particles increases, so does the
number of resonances. Accordingly, the multiplicity of peaks
in the spectrum of our rather large aggregate comes as no
surprise, nonetheless to the best of our knowledge there are
no studies dealing with the multipolar optical resonances of
many-particle systems in the ωT O-ωLO range.

The magenta and green curves plotted in Fig. 2 represent,
respectively, the real and imaginary parts of np, the refractive
index of the particles, which disperse according to Eq. (3). On
the right-hand side of the figure, the axis has been labeled with
the corresponding np values. From this figure, it is straightfor-

FIG. 2. Radiant flux for a random suspension of 90 particles in
air against the frequency (normalized to the Fröhlich frequency). The
minimum surface-to-surface distance between the particles is 0, 40,
or 70 nm. The real and imaginary parts of the refractive index of the
particles are also plotted.

ward to see the range of refractive indices that leads to strong
resonances. Note that the ωT O-ωLO range is characterized by
a np exhibiting a near zero real part.

The number of terms we retained in the multipole expan-
sion is L = 3. At L = 3, the series is not well converged,
this is here a deliberate choice, which allows us to sample
the frequency interval in a thin manner (there are an amount
of 75000 simulated points in the spectrum). Larger L values
were also tried, we found that L = 20 is not enough to
get convergence. Because of computational limits (the cal-
culations were realized with a 512 GB memory server), we
were unable to go further in increasing L and, at the same
time, maintaining a reasonably large aggregate. However, we
importantly noticed that the chief impact of increasing L is to
make larger the spectral interval exhibiting the resonances. It
is worth emphasizing this result because it means that in the
core of the ωT O-ωLO range, resonant behaviors are likely to
be revealed by high-order multipoles. As a result, the number
of multipoles must be correctly sized up, otherwise resonant
behaviors might be missed at given frequencies.

On the other hand, we simulated a R = 2 μm aggregate
containing not less than 1190 particles; it was found that the
resonant bandwidth is not impacted at all compared to the
smaller aggregate so far investigated. By increasing R, the
coefficient of variation, which we shall refer to as CV (often
denominated as relative standard deviation), of the flux-vs-
frequency data is reduced. However, such a reduction is quite
modest; increasing the number of particles from 90 to 1190
only decreases CV by a factor of 2.

It should be noted that such statistical considerations have
a tight relationship with the concept of representative volume
element (RVE), which is basically defined as the smallest
volume of the realizations that one must choose to ensure a
statistical representativity of the texture under study. It was
shown that the RVE size and the variance of a computed
property of the realizations are related via the concept of range
integral [22]. Therefore, the fact that CV slowly decreases
poses the question of whether there exists a threshold for
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the cluster volume above which it can be homogenized in
the resonant regime, or even near resonance. Our attempt to
apply the theory of range integral in the ωT O-ωLO range was
unsuccessful; the modest reduction of CV with the number
of particles is incompatible with Kanit’s power law in most
of the spectral range we are interested in. This point is in
agreement with studies asserting that homogenization can
never be reached unless nonradiative losses are introduced
into the particles [9].

Thus far, there is no constraint on the distance between
the particles. Inasmuch as in many real disordered materials
the inhomogeneities are not arbitrarily close from each other
[23,24], it is interesting to investigate the impact on the
electromagnetic behavior of the agglomerate if a minimum
clearance is enforced. Note that outside the case δm = 0, the
medium cannot be considered as strictly random; for there
is a forbidden volume of space where a given particle is not
allowed to be located. In Fig. 2, we have plotted the spectrum
of the scattered power for δm = 40 μm and δm = 70 μm.
We observe a clear enlargement of the resonant window as
δm is decreased. This result is a generalization of what is
observed for a simple dimer in the dipolar and quadrupolar
approximations [18] to a many-particle system where multiple
modes are activated.

Another conclusion can be made regarding the single-
scattering regime. We know that the scattering of the particles
turns independent if δm is high enough, resulting in a single
and sharp peak located at the Fröhlich frequency. However,
the assertion high enough is quite vague. In opposition to
what is often stated, we show here that interparticle distances
comparable to the particle size may be outright insufficient
to avoid collective effects, at least in a certain range of
frequencies.

IV. EFFECTIVE PROPERTIES OF CLUSTERS OF
NONINTERACTING PARTICLES

Since it provides considerable simplification, single scat-
tering is often assumed in the study of particle agglomerates
[12]. In this case, the field scattered by the cluster is just
obtained by summing over the field scattered by the individual
particles. The single scattering regime plays a role in the
context of the effective medium theories if one recognizes
that the MG mixing rule can be derived by substituting the
scatterers by dipoles with no interaction between each other
[19]. Note in passing that the consensus is not entire on the
physics behind MG; contradictorily, it is sometimes claimed
that it is a first-order approximation accounting for dipole-
dipole interactions [8].

The object of this section is to show that in a significant
portion of the ωT O-ωLO range, MG is unable to predict the
effective properties of a suspension of noninteracting small
particles. But let us start by presenting the technique that
will be used along the whole paper to obtain the effective
permittivities of the spherical agglomerates.

A large number of spherical clusters is illuminated by a
circularly polarized plane wave. The clusters solely differ
about the distribution of their constitutive particles, but all
of them have the same volume fraction and the center of
the particles belong to the same spherical volume of radius

R. What is more, the wavelength is fixed at λ = 100 μm,
i.e., 1000 times larger than the radius of the constitutive
particles. The scattering power is numerically calculated and
collected for many directions around each one of the clusters
(we sampled the three-dimensional space at more than 25000
solid angles), leading to 1000 different three-dimensional
directional scattering patterns. We average them all together in
order to extract a unique angular diagram. Once this is done,
it only remains to use Mie’s solution [11] to obtain the three-
dimensional directional scattering pattern of a homogeneous
sphere of radius R, which is then fitted to the numerically
calculated data by the method of least squares. The refractive
index of the homogeneous sphere that displays the same an-
gular scattering pattern as the heterogeneous cluster is finally
taken as the effective refractive index. It is worth pointing
out that there can be several solutions to the problem, the
existence of several branches is a classical issue in the theories
of homogenization [25].

The MG model turns out to display a pole when the
permittivity of the host medium εh, the permittivity of the
inclusions εp, and the volume fraction 	 are such that εh(2 +
	) + εp(1 − 	) = 0 [26]. If εh = 1, the pole εp is less than
0, and thus np is purely imaginary. The resulting peak can be
observed in Fig. 3, where the black full line represents the
MG refractive index (real and imaginary parts), which we
will refer to as nMG, in terms of the imaginary part of the
refractive index of particles forming a 	 = 14.8% suspension.
The np real part has been set to zero. In the same figure,
and almost overlapping with the MG predictions, are plotted
blue markers; they correspond to the effective refractive index
extracted by using the above-described procedure when no
interaction between the particles is assumed. We denominate
as branch #1 the curve formed by the blue markers. Since
the volume fraction is quite low, it comes as no surprise that
MG constitutes a good approximation, even though 10–15 %
is usually considered as the upper limit for MG to be valid
[27]. For those who would be interested in reproducing our
calculations, we provide the following information: the size
of the agglomerates is fixed at R = 1.9 μm, the mean value
of the number of particles contained into the 1000 realiza-
tions amounts to 1024, while the relative standard deviation
between the realizations is 1.24%.

Nonetheless, the insets in the two figures evidence that MG
is not in agreement with branch #1 in the vicinity of the peak.
Figure 4 offers a comparison between the ensemble-averaged
scattering pattern and that of a homogenous sphere whose
refractive index is given by MG formula, which here gives
nMG = 16.27. Obviously, the MG model is far from correctly
reproducing the effective electromagnetic response of the
inhomogeneous medium. We show below that the predictions
given by branch #1 are also incorrect near the peak; another
branch must be actually chosen in a certain segment of the
ωT O-ωLO range.

Let us enter the details of this last statement. The value
R = 1.9 μm was chosen so that the relative standard deviation
is less than 2% while ensuring a manageable computing load.
It must be stressed, however, that another choice for R must let
branch #1 unchanged, otherwise the extracted neff would not
be consistent. We checked this point, such a condition turns
out to be not fulfilled. We found that there exists a range of
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FIG. 3. Real and imaginary parts of the effective refractive index
of an averaged system of agglomerates in terms of the imaginary part
of the particles’ refractive index. There is no interaction between the
constitutive particles. The figure offers a comparison between MG’s
predictions and a numerical extraction, the latter leading to two set
of solutions (branch #1 and branch #2). The radius of the realized
spherical samples is R = 1.9 μm.

refractive index values for the constitutive particles in which
(i) making the calculation with different R modifies branch #1,
and (ii) there exists another branch, which will be referred to
as branch #2, that better describes the agglomerate as a ho-
mogeneous media and does not suffer from size dependance
when the value of R is varied. This latter branch is displayed
with red dots in Fig. 3.

Qualitatively, we observe the following behavior. When the
imaginary part of np is below 1.18, only branch #1 provides
correct predictions. For Im(np) ranging from 1.18–1.4, the
two branches coincide. At Im(np) ∼ 1.4 they separate from
each other; branch #2 keeps giving correct predictions while
the predictions provided by branch #1 are significantly eroded
until Im(np) ∼ 1.8. The prevalence of branch #2 over branch
#1 is slight at the endpoints of the [1.4, 1.8] interval but
becomes important at its center. In order to illustrate this
effect, let us consider again particles with Im(np) = 1.59
but forming a larger than previously considered agglomerate.
Now R = 4 μm, this means a substantial system made up of
more than 10000 particles. Its scattering pattern is displayed
in Fig. 5(a). With this new R value, if one seeks an effective
refractive index in the continuity of branch #1, the best fit
yields a neff value that is completely different from the one

FIG. 4. Comparison of the scattering patterns of the
(a) ensemble-averaged agglomerates of particles (rp = 100 nm,
np = 1.59i, 	 = 14.8%) and (b) homogeneous sphere with
refractive index nMG = 16.27. The radius of the agglomerates is
R = 1.9 μm and the embedding medium is free space. There is no
agreement between them. The scattering pattern is constructed by
projecting the Poynting vector on the three spatial directions. The
incident plane wave travels upward.

obtained in Fig. 3 (where the radius was 1.9 μm). Concretely,
R = 4 μm leads to neff = 16.924 while R = 1.9 μm gives
neff = 8.255.

What is more, the scattering pattern of a homogeneous
sphere whose refractive index is 16.924 takes the form de-
picted in Fig. 5(b). It is plain from the comparison of the
two scattering patterns that branch #1 provides outright wrong
results at Im(np) = 1.59. We tried several R values: they all
lead to different neff values, and the scattering pattern of the
corresponding homogeneous spheres shares no similarity with
that of the suspensions of particles. Because of computation
limits, we were unable to further increase R in order to check
if larger agglomerates would be representative of the medium
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FIG. 5. Here R = 4 μm. Scattering patterns of the (a) ensemble-
averaged agglomerates of particles and (b) homogeneous sphere with
the refractive index provided by least-squares fitting: neff = 16.924.
Obviously such an effective value does not correctly describe the
inhomogeneous media.

under study and, accordingly, if one would be able to extract a
stabilized and accurate neff value in the continuation of branch
#1. We believe that the answer is no for several reasons.
First, we noticed a continuous and sensible degradation of
the neff predictions while R was incrementally brought from
1.9 μm to 4 μm. Second, the relative standard deviation of
the flux radiated by all the realizations is less than 0.5%
for R = 4 μm, which is in agreement with Kanit’s criterium
for the representative volume element of an inhomogeneous
medium [22].

On the other hand, looking for a solution that belongs to
branch #2 provides Im(neff ) = 0.733. The scattering patterns
(not shown here) of a homogeneous sphere of radius 4 μm
with this last value as refractive index is identical to that
depicted in Fig. 5(a) with a precision of 0.2%. This is con-
trasting with the significant disparities that were found in the
previous paragraph. Furthermore, the correctness of this result
is strengthened by the fact that we systematically obtained the
same neff value when R is varied.

V. EFFECTIVE PROPERTIES OF CLUSTERS OF
INTERACTING PARTICLES

In the previous section, the collective effects were ne-
glected in the determination of the effective refractive index.
The particle interactions are now taken into account by acti-
vating the higher multipolar orders.

The first concern is to determine how many multipoles are
required for convergence. The contribution of higher multi-
poles in the ωT O-ωLO range for some small particles was,
for instance, pointed out by Gérardy [18]. However, it was
sometimes claimed that a mere dipole approximation is valid
in the resonant region [28]. We checked this point: higher mul-
tipoles must be definitely included to correctly model random
media in the resonant region depicted in Fig. 2. By computing
the power scattered by a specified agglomerate in terms of
the multipolar degree, we observed strong fluctuations of the
results, no convergence was achieved even at L = 20. This
statement is verified for few particles, as in Gérardy’s work,
but also for large aggregates made up of several hundreds of
particles. Because of the great number of required multipoles
in the spectral region under study, we are facing computational
complexity that prevents us from going further in the study
of the effective properties. But in any case, it should be noted
that the presence of resonances endows the scattered field with
a strong incoherent component [29], which puts forward the
question of the validity of the mean-field homogenization in
the resonant region [9].

In contrast to that, the fluctuations are of less significance
in those parts of the ωT O-ωLO domain where there is no
resonance. As a result, the scattering intensity plateaus by
an accessible L value, which typically ranges from L = 7,
at the edges of the ωT O-ωLO band, to L = 12, when getting
closer to resonances. Since the simulations converge in a fairly
rapid manner, the extraction of the corresponding effective
properties can be achieved with the computing resources
available at our laboratory. But given the large bandwidth
of the resonant region, neff can only be determined over a
rather limited region. It appears more interesting to widen the
bounds, this can be done by imposing a minimum distance
between the particles.

In this context, we have already introduced a parameter,
δm, which constrains the spatial distribution of the particles
with a minimum distance between them. It was plain from
Fig. 2 that the extent of the resonant region depends on δm in
such a way that the greater δm the narrower the resonant band.
Here, we choose δm = 40 nm, that is a distance small enough
to presumptively maintain multiple scattering (we recall that
rp = 100 nm), while providing a larger nonresonant band in
which the extraction of the effective properties is manageable.
As it was done previously, neff is obtained by averaging the
angular diagrams of a large number of random realizations.
The maximum number of realizations is now 2744. In order
to understand how the effective refractive index evolves to-
wards a given value when the agglomerates are growing, we
calculate neff with a number of realizations that iteratively
increases from 
 = 1 to 2744. What is more, we make the
simulations with several aggregate volumes by giving to R the
values 400, 700, 1000, and 1300 nm. If the volume element
is representative of the material, the extracted neff should not
vary when the volume is further increased.
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FIG. 6. Evolution of the computed effective refractive index in
terms of the number of realizations in the ensemble average. Three
particles’ refractive indices are considered: (a) np = 9.950i, (b) np =
2.845i, and (c) np = 1.883i. For each composition, the calculation is
performed with different volume sizes.

In Fig. 6, the effective refractive index, or more precisely
its evolution, is shown for three values of np belonging to the
ωT O-ωLO band. Note that the plot has a logarithmic scale for
the x axis and a linear scale for the y axis. First, let us consider

Fig. 6(a), which corresponds to np = 9.950i, i.e., far away
from the resonances but still in the ωT O-ωLO range. For either
R = 1000 nm and R = 1300 nm, it can be observed that neff

tends to values that are, to a large extent, indistinguishable
from each other. This indicates that we have converged to-
wards the materials representative effective refractive index,
which here turns out to be neff = 1.247. For R = 700 nm, the
convergence is less rapid and the converged value, 1.248, is
slightly different. In this context, it was evidenced by Kanit
that the microstructures’ volume can be reduced if counter-
balanced by a greater number of realizations [22]. However,
there is a lower bound below which a bias in the extraction of
the effective properties is observed. Here, we clearly observed
this bias when R = 400 nm. But depending on the required
precision, the result is actually not so bad if one takes account
of the reduced number of the constitutive particles, no more
than 10 in this case (see Fig. 1).

The value predicted by the Maxwell-Garnett’s model—
here nMG = 1.241—is also plotted in Fig. 6(a) using a black
dotted line. It displays a good agreement with the calculated
neff .

In order to put the ωT O-ωLO range through further scrutiny,
we realized another series of simulations (not shown here)
assuming the same geometrical microstructures but the re-
fractive index of the particles takes now purely real values, as
it is typically done in the literature [8,16]. We tested np = 2
and np = 6, for both cases the extracted neff and nMG deviate
from each other by a slight magnitude, comparable to what we
obtained when np = 9.950i. Nevertheless we found a notice-
able difference regarding the volume bias: with conventional
refractive indices, such as np = 2 or np = 6, the converged
effective refractive index is reached for smaller volumes in
comparison to the ωT O-ωLO band.

At np = 9.950i, we were at the edge of the ωT O-ωLO

domain. Let us next examine Figs. 6(b) and 6(c) for which the
refractive index of the particles are np = 2.845i and 1.883i,
respectively. The main observation when approaching, this
way, resonances is the accentuated discordance between the
simulated neff and nMG, with more than 10% difference for
the latter value of np. This deviation evidences a failure of the
MG model in the ωT O-ωLO band, although the subwavelength
particles are nonresonant at this stage. Furthermore, it can be
noticed that the bias in the neff calculation is quite reluctant to
the enlargement of the agglomerates at np = 1.883i; we had to
realize an additional ensemble average using R = 1500 nm to
get a converged effective value. This effect becomes stronger
as we approach the resonant region.

For the sake of completion, the question of self-averaging
is verified on the volume fraction of the ensembles, that is an
additive property of the system [22]. To do so, we plot in Fig. 7
the deviation of the cumulative volume fraction from the
targeted 	 = 14.8% exhibited by the composite medium. The
calculation is performed for several sizes of agglomerates.
We can observe a convergence of the volume fraction after a
certain number of realizations. As expected, the larger the ag-
glomerates, the faster the convergence, while the precision is
better by employing larger agglomerates. Furthermore, it can
be verified in Fig. 7 that after 2744 realizations, self-averaging
is satisfied inside a 1% precision for all the sizes that have
been considered. Therefore, the fluctuations observed in Fig. 6
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FIG. 7. Cumulative deviation of the volume fraction from the
targeted one in terms of the number of realizations in the ensemble.

are not due to self-averaging issues. They are due to collective
effects that are analyzed below.

In the previous section, we characterized the statistical
representativity of the numerical calculations by means of
the relative standard deviation, CV , of the flux diffracted
by all the spatial distributions. Since we were dealing with
single scattering particles, the standard deviation was entirely
conveyed by the fluctuations of the number of particles in
each agglomerates. This is no longer true if the interactions
between the scatterers are taken into account. The first three
lines of Table I provide the relative standard deviation for the
configurations that have been considered in this section. The
observed general behavior is that a better representativeness
is obtained when the volume is increased. In addition, we
observe that CV increases while getting closer to the reso-
nances, which is a signature of stronger interactions between
the particles.

The last line of the table corresponds to particles whose
refractive index is np = 1.780i. It evidences massive fluctu-
ations in the total power scattered by the 2744 realizations.
Such fluctuations are represented in Fig. 8 where the scat-
tered power for all the realizations is displayed. Note that
we normalized the scattered power by that scattered by the
same textures assuming no interactions between the particles.
Some realizations strongly resonate, with a diffracted flux that
can surpass their single scattering counterparts by six orders

TABLE I. Relative standard deviation of the realizations of the
averaged system [%].

400 nm 700 nm 1100 nm 1300 nm

np = 9.950i 32.0 12.4 6.6 4.1
np = 2.845i 32.4 12.6 6.7 4.2
np = 1.883i 36.7 15.0 8.5 5.6
np = 1.780i 876.0 765.6 1616.9 1477.9

FIG. 8. Individual scattered power by 2744 different realizations.
R = 700 nm, np = 1.780i. The result is normalized by the power
scattered by the same systems of particles but under the single
scattering assumption.

of magnitude. This explains the unusual standard deviation
at np = 1.780i. What is more, for such resonant multipolar
interactions, a slight modification of parameters such as np

or λ leads to a strong modification of the electromagnetic
behavior. A minor modification of textural parameters yields
the same observation: we found that a resonant agglomerate
made up of more than 1000 particles can stop resonating if
only one particle is removed or shifted.

Such a strong standard deviation prevents us from ex-
tracting the effective properties of the inhomogeneous media
at np = 1.780i. Even if this statement is intuitive (strong
fluctuations seeming incompatible with homogenization), it
is however worth analyzing it at the light of the separation
of the scattered field into mean and fluctuating components.
Since the electromagnetic response is sensitive to the spatial
distributions of the particles, the field is expected to be highly
incoherent when resonances are likely to happen. Therefore,
the effective properties should be derived from the mean scat-
tered field 〈Esc〉, whose propagation inside the equivalent ho-
mogeneous medium is governed by Helmholtz equation [30]

∇ × ∇ × 〈Esc〉 − k2
eff〈Esc〉 = 0, (4)

where keff = ω
c neff . Despite that, the extraction of neff has, so

far, relied on the average

〈Stot〉 = 〈Esc × H∗
sc〉 (5)

over many realizations (2744 here) of the total Poynting
vector Stot. In Eq. (5), Esc and Hsc are the whole scattered
electric and magnetic fields, respectively, while the symbol
∗ stands for complex conjugate. In agreement with Eq. (4),
the quantity at stake in the comparison of the inhomogeneous
and homogeneous volumes should be an averaged Poynting
vector constructed from the coherent electromagnetic fields

〈Scoh〉 = 〈Esc〉 × 〈H∗
sc〉. (6)
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TABLE II. Incoherent to coherent ratio [%].

400 nm 700 nm 1100 nm 1300 nm

Sing. Scatt. 2.48 0.34 0.11 0.05
np = 9.950i 2.63 0.37 0.12 0.05
np = 2.845i 2.81 0.40 0.13 0.06
np = 1.883i 4.76 0.86 0.29 0.14
np = 1.780i 214.31 542.03 3878.82 17105.81

Naturally, if the incoherent field

δEsc = Esc − 〈Esc〉 (7)

is negligible, the quantities given by Eq. (5) and Eq. (6)
are equivalent. But since the standard deviation is strong at
np = 1.780i, δEsc is expected to be important.

In order to evaluate the radiative weight of the incoherent
fields, we calculate the total and coherent radiant flux across a
closed surface A located in the far-field region,

Ptot =
‹

〈Stot〉dA (8)

and

Pcoh =
‹

〈Scoh〉dA, (9)

which allow us to define the ratio that evaluates the prepon-
derance of one of the coherent/incoherent components over
the other:

Pincoh

Pcoh
= Ptot − Pcoh

Pcoh
. (10)

Table II displays the evaluation of such a ratio for np =
9.950i, 2.845i, 1.883i, and 1.780i in terms of the ensemble’s
radius. It reports as well, in the first line of the table, the
evolution of the ratio in the single scattering regime. The aim
of giving information related to single scattering regime is to
distinguish the incoherency resulting from the bare random
position of the particles in the agglomerates and that generated
by the electromagnetic interactions. The former is observed in
any suspension and tends to vanish as the volume is increased,
while the latter is an additional component that, we will see
just after, dramatically intensifies near and at resonance.

For the first three values, the incoherent component of the
field is negligible compared to its coherent counterpart, in
particular when the volume of the agglomerates increases.
As a result, it was safe to extract the effective properties
from Eq. (5), as it was done so far. Furthermore, since the
independent scattering assumption and the case np = 9.950i
and 2.845i furnish almost the same result, we can assert
that the incoherency is merely the outcome of the textural
constitution of the agglomerates. It is no longer true for np =
1.883i, meaning that the interactions become significant.

Radically different is the last line of the table, which
shows that resonances cause a striking enhancement of the
incoherent fields at np = 1.780i. It is thus impossible to find
a homogeneous sphere that behaves as the inhomogeneous
sphere for np = 1.780i, and more generally for a certain
range of np values. Referring to Fig. 2, the large incoherent

TABLE III. Comparison with other effective models and
approximation.

np = 9.950i np = 2.845i np = 1.883i

Multipoles 1.247 1.377 2.080
Dipoles 1.170 1.254 1.950
MG 1.241 1.360 1.820
Brugg. 1.369 1.328+0.499i 1.052+0.474i
Lichn. 1.186+0.982i 0.976+0.387i 0.933+0.288i
Felderh. 1.257 1.432 1.674+0.556i

scattering phenomenon encompasses partially the ωT O-ωLO

domain. For δm = 40 nm this corresponds to Im(np) ranging
approximately from 1–1.8, values for which the considered
ensembles are not homogenizable, as long as Re(np) � 1.

VI. COMPARISON WITH EFFECTIVE MEDIUM
THEORIES; PHYSICAL APPLICATIONS;

EFFECT OF LOSSES

The effective properties of the configurations depicted in
Fig. 1 were obtained by numerically solving Maxwell’s equa-
tions. We have evidenced that a certain number of multipoles
are required in the expansion of the electromagnetic fields.
Furthermore, we have shown that MG’s predictions become
unreliable in the ωT O-ωLO range. Table III offers further
comparisons; first with the predictions given by the models
of Bruggeman [6], Lichtenecker (assuming α = 1/3) [31],
and Felderhof [32], and second with a numerical calculation
where the higher multipole orders are neglected, i.e., in the
approximation of the dipole-dipole interactions. As expected
for the considered textures, the exact values (multipoles) fall
between MG and Felderhof’s predictions, at least for np =
9.95i and 2.845i. The Bruggeman and Lichtenecker’s models
lead to very different values, which is actually not surprising
because the textures of the underlying materials are very
different from those that are studied here. Finally, what is
more interesting is that the dipole-dipole approximation offers
a quite poor agreement with the actual values, making clear
that higher-order multipoles carry a significant part of the
electromagnetic energy.

The findings presented in this paper are relevant to several
physical applications of current interest. There are many
materials that are characterized by frequency ranges where
the real part of the complex refractive index almost van-
ishes. Let us mention aluminium oxide, which is used, for
instance, in paint and coatings industry or as the constituent
of inhomogeneous materials employed as heat barriers. Or
silica nanopowder, widely used as a polymer filler in many
industrial applications due its excellent optical and electrical
properties [2]. Within the ωT O-ωLO range, the radiative prop-
erties of such kind of composite materials are highly impacted
by the shape and the spatial distribution of the particles that
are located near the surface of the sample. An accurate eval-
uation of their effect needs an exact evaluation of Maxwell’s
equations.

In addition, our investigation paves the way for funda-
mental progresses in the realm of Bergman’s theory of the
dielectric constant [33]. The spectral density introduced by
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Bergman contains all the microstructural information of an
inhomogeneous media. This means, for instance, that the
effective properties of a composite can be readily predicted at
any frequency, provided its spectral density is known. At our
laboratory, we use the general framework of Bergman’s effec-
tive medium theory and the solution of Maxwell’s equations to
retrieve the spectral density function and optical properties of
numerical replicas of composites. This enables the extraction
of the volume fraction, complex effective refractive index,
and composition of phase-separated droplets in glass ceramic
materials, such as those presented in Ref. [23]. However, it
turns out that the spectral density strongly depends on the
electromagnetic interactions in the ωT O-ωLO range [34,35].
We have shown here that these interactions are complex and
involve resonances, it is therefore crucial to better understand
this regime.

In the previous paragraph, it was pointed out that assuming
no loss for the particles is relevant to understand the impact of
the spatial structuration of matter on its optical and electrical
properties. However, since no realistic systems satisfy such
assumption, it is worth analyzing the effect of losses. Let
us consider an ensemble of agglomerates whose radius is
R = 700 nm. The constitutive particles can now be lossy, we
choose their refractive indices to be np = x + 1.5i. The imag-
inary part is a value that typically leads to strong resonances
(see Fig. 2). The real part x allows us to introduce nonradiative
losses in the systems, in opposition to the systematic zero
value that was assumed so far in the paper. In Fig. 9(a), we plot
the relative standard deviation (RSD) of the flux scattered by
all the realizations of the ensemble in terms of x ranging from
0–1. As expected, losses eventually dissipate the resonances
while the RSD is very important at x = 0, which is a signature
of strongly resonant agglomerates, akin to the configuration
depicted in Fig. 8. When the particles become lossy, the
RSD is substantially decreased. However, the RSD remains
significant for x values that encompass realistic systems. For
instance, there are frequencies for which the real part of the
refractive index of silica is as low as x = 0.05. For this value,
RSD = 17%, indicating that the incoherent power remains
significant.

The fact that RSD can be important even in the presence of
small (but not negligible) losses should have some connection
with the required multipoles. We have seen that the multipolar
degree must be high if x ∼ 0. But what if x is increased? In
Fig. 9(b), we have plotted the RSD in terms of the multipolar
degree for several values of x. We can observe that at x =
0.002, at least four degrees are necessary to reach a proper
convergence. Interestingly, realistic configurations (such as
x = 0.05) do not satisfy the dipolar approximation (degree =
0) despite the size-to-wavelength ratio. Higher orders are also
activated.

VII. CONCLUSIONS

The object of this investigation was a study of the effective
properties of random inhomogeneous materials near and at
resonance under the influence of the incoherent scattering that
happens in the ωT O-ωLO range. The considered materials were
suspensions of spherical particles that are small compared to

FIG. 9. (a) Relative standard deviation of the flux scattered by an
ensemble of agglomerates with radius R = 700 nm in terms of x, the
real part of the refractive index of the particles. (b) Relative deviation
from the converged scattered flux for three values of x in terms of the
multipolar degree.

the wavelength; the radius to wavelength ratio being 1/1000
in most of the paper.

First, the extensive numerical calculations that were per-
formed allowed us to examine several assertions often taken
for granted, for instance the assumption of dipole-dipole
interactions for small particles. The numerical technique that
was employed is based on the multipolar expansion of the
electromagnetic fields and, contrarily to other studies, the
higher multipolar orders were not disregarded. By doing so,
it was demonstrated that the system of particles exhibits
resonances that can be captured only by higher multipoles,
meaning that there exist configurations incorrectly modeled
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if the collective effects of the particles are limited to dipole-
dipole interactions. Taking these multipoles into consideration
broadens the portion of the ωT O-ωLO range where strong
incoherent scattering is observed.

We proved that the bandwidth of the resonant region is di-
rectly controlled by the minimum surface-to-surface distance
between the particles. It was observed that the whole ωT O-
ωLO range is susceptible to resonate if there is no restriction
on the interparticle clearance, i.e., if the distribution of the
particles is fully random. Nonetheless, we found that the
resonant bandwidth is notably reduced if a minimum distance
is imposed.

These features have a direct impact on the problem of
homogenization. Since intense scattering of incoherent light is
incompatible with homogenization, an ensemble of randomly
distributed particles exhibits no effective properties in the
spectral region bounded by ωT O and ωLO. Between these two
frequencies, homogenization is only possible if a clearance
between all the particles is ensured. We showed that gradually
increasing the minimum distance shrinks the resonant region,
making possible the extraction of an effective refractive in-
dex in an expanding spectral domain. However, we pointed
out that the incoherent component of the field keeps being
quite important, which results in large deviations compared
to Maxwell-Garnett’s predictions.

Furthermore, we established that the number of realiza-
tions and the volume of the microstructures employed in the
ensemble average are particularly sensitive in the ωT O-ωLO

range. Depending on the refractive index of the particles,
the representative element volume might be substantially in-
creased in order to ensure an accurate estimation of the effec-
tive properties. Otherwise a significant bias in the extraction
is observed.

At the limit of the independent scattering regime, where
there are no collective resonances anymore, the incoherent
field only originates from the spatial distributions of the
different averaged realizations. While it is believed that the
effective properties are in plain agreement with Maxwell-
Garnett in this case, it is demonstrated in this paper that such
effective medium theory fails to represent agglomerates over
a significant range of the particles’ permittivities. We found
that the effective refractive index is given by another branch.
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