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Neural networks for modeling electron transport properties of mesoscopic systems
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In this work, we train neural networks to predict transport properties of a quasi-one-dimensional tight-binding
model with disordered on-site energies. In the case where the on-site energies of all sites in the scattering region
pick up values randomly and independently from a given interval (model I), it is found that the performance of
the neural network depends strongly on the system size. For a small system size, the neural network can predict
accurately the conductance at the Fermi energy. With an increase in the system size, the mean absolute error
(MAE) increases. This tendency persists under an increase in the number of training samples and the number of
neurons in the neural network. The physical mechanism behind this phenomenon can be ascribed to the universal
conductance fluctuation. To reduce the effective dimension of features fed into the neural network, we consider
the case of substitutional doping where the impurities have a fixed on-site energy, random position distribution,
and variable concentration (model II). It is found that even for a relatively large system size, the trained neural
network in model II performs much better in predicting the conductance at the Fermi energy. When the prediction
target is changed to the average conductance under a finite bias (average value of 10 conductances at energies near
the Fermi energy), the MAE can be reduced by almost a half. The small fluctuation of the average conductance
reduces further the prediction difficulty of the neural network. The trained neural network can predict quickly
and accurately the disorder-averaged transport properties for model II.
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I. INTRODUCTION

In recent years, machine learning has achieved great suc-
cess in industrial applications. The application of neural net-
work technology in some fields is more attractive, such as e-
commerce website recommendation, image recognition, and
speech recognition [1–4]. Its application in scientific research
fields such as biology, chemistry, and physics is emergent.
Machine learning methods including neural networks have
been implemented to solve some inverse problems [5] in
material design, i.e., predicting the structures of materials with
a given physical property. Neural networks have been used
to analyze experimental data in high-energy physics [6,7],
identify phases and phase transitions in many-body sys-
tems [8–15], find the atomization energy, ionization potential,
and excitation energy of different organic molecules from
known molecular structure data [16–18], and capture slowly
changing collective variables and long-time-scale kinetic fea-
tures of biomolecular processes [19,20]. For a wide range
of amino acid–based ionic liquids [21], robust and reliable
models have been created by artificial neural networks to
estimate their thermophysical properties. For a glassy system
without any handcrafted feature, the graph neural network
has been used to determine its long-time evolution solely
from the initial particle positions [22]. In these developments,
computational physicists have demonstrated that machine-
learning techniques can be used to speed up the simulation
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of complex systems and circumvent expensive computational
costs [23–26].

It is a challenging and interesting problem to use some
information on transport systems (such as the electronic en-
ergy and molecular structure) as input in machine learning
models to predict the conductance [27–29]. A ridge regression
model with a standard Laplacian kernel has been trained
to predict the transmission coefficient of a transport system
based on some tight-binding parameters [27]. The trained
model performs remarkably in capturing the complexity of
interference phenomena. The support vector machine model
has been trained to establish the connection between molec-
ular structures and corresponding electrical conductances de-
termined from scanning tunneling microscopy of molecular
break junctions [28]. By means of proper input features, a
shallow neural network trained on short DNA nanojunctions
can accurately predict the electrical conductance of millions
of long DNA sequences [29]. These studies show that machine
learning can assist the study of transport properties.

For the transport properties of mesoscopic systems, dis-
order plays an important role, which can lead to the
metal-insulator transition [30,31] and drive the topological
phase transition in quantum spin-Hall systems [32], three-
dimensional strong topological insulators and superconduc-
tors [33,34], fractional quantum Hall systems [35], and weak
AIII topological insulators [36]. By means of controllable dis-
order realization in ultracold atoms, a topological Anderson
insulator has been observed in disordered atomic wires [37].
In a 10-qubit network subject to engineered static disorder, a
crossover from Anderson localization to environment-assisted
quantum transport has been observed [38]. Both the energy
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and the concentration of the impurity have a rich influence
on quantum transport. In some cases, their small changes
can alter significantly the conductance values. Therefore, it
is necessary to do a lot of numerical calculations to study the
effects of the impurity energy and impurity concentration on
transport properties [39–41]. It is desirable to reduce the com-
putational cost of this aspect through the popular machine-
learning technology. In Ref. [27], the number of parameters
affecting transport properties of the disordered system is no
more than five. It is necessary to examine the feasibility of
utilizing machine learning methods to predict the conductance
of transport systems with a large number of impurity points or
with a tunable impurity concentration.

In this work, we use the neural network to study the
conductance of quasi-one-dimensional quantum wires based
on a tight-binding model with random on-site energies. Two
kinds of impurity models are considered: (i) the all-impurity
model (model I), where all sites in the scattering region have
random on-site energies uniformly distributed over an inter-
val; and (ii) the substitution-doping model (model II), where
the impurities have a fixed on-site energy, random position
distribution, and variable concentration. For model I, when
the system size is small, the prediction of the neural network
can approach a high accuracy. With increasing system size,
the prediction accuracy will drop quickly even if the size
of the training data set and neural network increases. The
prediction fails for a moderate system size. For model II, even
for a relatively large system, the mean absolute error (MAE)
between the conductance predicted by the neural network and
the true conductance can reach 0.2G0. Here G0 = 2e2/h is the
conductance quantum, e is the fundamental charge, and h is
the Planck constant. If the prediction is made for the average
conductance (mean of 10 conductances at energies closest
to the Fermi energy), the MAE can decrease to 0.1G0. For
model II, our trained neural network can predict the disorder-
averaged transport properties quickly and accurately.

II. MODEL AND METHODS

A. Model and formula

The system under consideration is depicted in Fig. 1, which
is a quasi-one-dimensional quantum wire of uniform width
W . Its central scattering region has a length L and connects
with the left and right semi-infinite leads. A first-neighbor
tight-binding Hamiltonian is used to describe the motion of
electrons in the system,

H =
∑

i

εiâ
+
i âi +

∑
〈i, j〉

Vi j â
+
i â j, (1)

where εi and âi are the on-site energy and annihilation oper-
ator of an electron at site i, and Vi j is the hopping energy of
electrons from site j to a nearest-neighbor site i. All hopping
energies are fixed at Vi j = −t . We take t as the energy unit
and use the lattice constant of the square lattice as the length
unit. For each site in the left or right leads, the on-site energy
is fixed at 0. In the scattering region with L × W lattice sites,
the on-site energy varies randomly and independently.

At a given Fermi energy EF and a given configuration of
L × W on-site energies, the zero-temperature conductance of
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FIG. 1. (a) Model I: the on-site energy of each site in the scatter-
ing region is randomly selected from the interval [−2, 2]. (b) Model
II: the impurities in the scattering region have a random position
distribution, variable concentration, and fixed on-site energy 5.

the considered system in the linear-response regime can be
calculated from the Landauer-Büttiker formula,

G = G0TRL(EF ). (2)

Here TRL(E ) is the sum of the probability that an electron with
energy E is transmitted from each eigenmode of the left lead
to each eigenmode of the right lead. We use the numerical
package Kwant [42] to calculate the transmission coefficient
TRL(E ). The current under a source-drain bias V is given by
I = GV , where the average conductance G is calculated from

G = G0

∫ 0.5

−0.5
TRL(EF + αeV )dα. (3)

Here we assume that the voltages applied to the source and
drain are V/2 and −V/2 and bring only a change of the
corresponding electrochemical potentials [43].

We consider two models for the on-site energy of im-
purity sites. In model I, the on-site energy at each site in
the scattering region is randomly selected from the interval
[−wdis/2,wdis/2] with a uniform distribution. Here wdis is
the disorder strength, which is set at 4 without specification.
A typical configuration of on-site energies for this model is
shown in Fig. 1(a). In model II, the on-site energy at each site
in the scattering region is randomly assigned as 5 or 0 with a
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FIG. 2. Frequency distribution of conductance for the all-
impurity model (model I) with system sizes 3 × 3, 5 × 5, 10 × 10,
and 20 × 20. The on-site energy at each site in the scattering region
takes random values in the interval [−2, 2].

probability n or 1 − n, where n is the impurity concentration.
For this model, Fig. 1(b) presents a typical configuration of
on-site energies.

B. System descriptor and training data set

An effective deep-learning model is closely related to the
neural network architecture and the choice of descriptors. De-
scriptors have the most important impact on the effectiveness
of neural networks. The adopted descriptors must be unique to
each disordered transport system and must be closely related
to the conductance [44]. We choose the on-site energies at all
sites in the scattering region as the descriptor. This descriptor
and the corresponding conductance constitute a sample in the
training or testing data set. As shown in Figs. 1(a) and 1(b),
each descriptor can be thought as a gray image, i.e., a grid of
floating-point numbers.

For model I, we consider the system sizes 3 × 3, 5 × 5,
10 × 10, and 20 × 20, corresponding to 9, 25, 100, and 400
sites in the scattering region, respectively. For a given system
size, the on-site energies of all sites in the scattering region are
taken randomly and independently from the interval [−2, 2].
In this way, NC configurations of on-site energies are gen-
erated independently at random. For each configuration of
on-site energies, we calculate the conductance G at the Fermi
energy EF = 0 for the corresponding scattering problem.
The frequency distribution of conductance is P(G) = NG/NC ,
where NG is the number of configurations with conductance
in the interval [G − �

G, G + �
G] for

�
G = 0.1G0. As

shown in Fig. 2, the frequency distribution of conductance for
each system size is asymmetric around its peak and has a large
peak width.

For model II, the system size is chosen as 40 × 40. The on-
site energy is set at 5 for impurity sites and 0 otherwise. The
1600 sites in the scattering region are occupied by impurity
randomly with a probability n. Here n is the impurity concen-
tration. In Figs. 3(a)–3(c), we plot the configuration of on-site
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FIG. 3. Typical on-site energy configuration of model II with
impurity concentrations (a) 1%, (b) 50%, and (c) 99%. The system
size is 40 × 40 and the impurity sites are shown in blue. (d, e) Plot of
the conductance G at the Fermi energy and the average conductance
G for this system as a function of the impurity concentration n.

energies for the impurity concentrations 1%, 50%, and 99%,
where the impurity sites are shown in blue. We generate NC

configurations of on-site energies by randomly and indepen-
dently changing the impurity concentration and position and
calculate the corresponding conductance spectrum. The label
for each sample is chosen as either the conductance G at the
Fermi energy EF = 0 or the average conductance G at a fixed
source-drain bias V = 0.36 t/e. Here G in Eq. (3) is calculated
as the mean of the 10 conductances at energies closest to the
Fermi energy, G = G0

∑9
k=0 TRL[(−0.5 + k/9)eV + EF ]/10.

In Figs. 3(d) and 3(e), we plot the variation of G and G with
the impurity concentration n. As the impurity concentration
increases, both of them approach 0. Under a given n, G has a
larger extension than G.

C. Architecture of the adopted neural networks

The multilayer neural network architecture under consider-
ation is constructed by Keras [45]. The basic units of a neural
network are neurons. Neuron i receives an input vector X (i) =
(x1, x2, x3, . . . , xd )T , then generates an output vector ai(X (i) ).
Two steps are performed in neuron i. The first step is to make
an affine transformation Z (i) = W (i)X (i) + b(i), where W (i) and
b(i) are the weight and bias. The second step is to feed Z (i)

into the activation function σ (x) to generate the neuron output
ai(X i ) = σ (Z (i) ). Each layer of a neural network is composed
of many such neurons and the output of the previous layer
serves as the input to the next layer [46–49]. For a sample
with label k and the calculated conductance value Gk , the
neural network takes its descriptor as the input signal and
yields the prediction label yk . The latter is a function of the
weight and bias of each neuron. We consider the MAE and
the mean square error (MSE) for the training data set or testing
data set,

MAE =
∑
k∈S

|Gk − yk|
|S| , MSE =

∑
k∈S

(Gk − yk )2

|S| , (4)
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FIG. 4. (a) Architecture of a fully connected neural network
with three hidden layers. (b) Architecture of a convolutional neural
network with three convolutional layers and one fully connected
layer. Each convolutional layer has 16 kernels of size 2 × 2 and
stride 2.

where |S| is the number of samples in the data set S. When
training the neural network, we take S as the training set
and update the neuron weights and biases successively un-
til the MSE (also called the loss) reaches the minimum.
The optimization is performed by means of the Adam algo-
rithm [50] at a learning rate 0.001. When using the neural
network for prediction, we take S as the testing set and
evaluate the accuracy by the corresponding MAE. A per-
fect neural network model can accurately predict the tar-
get values of all sample in the testing set, corresponding
to MAE = 0.

For samples with a small number of features, we use
a fully connected deep neural network [48] (DNN), whose
architecture is shown in Fig. 4(a). The leftmost layer of the
DNN is the input layer whose neurons accept feature values
of samples. The rightmost layer of DNN is the output layer
with only one neuron. Each middle layer of the DNN is
called a hidden layer. The three hidden layers in Fig. 4(a)
have the same numbers of neurons. For samples with a large
feature space, the training of the DNN is computationally
expensive. In this case, the convolutional neural network
(CNN) is used; its architecture is shown in Fig. 4(b). The
leftmost layer of the CNN is the input layer, which is a grid
of floating-point numbers. The middle layers of the CNN are
convolutional layers consisting of convolutional kernels. A
proper size and stride of convolutional kernels are helpful
to reduce the effective dimension of the feature space [49].
Each of the three convolutional layers shown in Fig. 4(b)
has 16 convolutional kernels of size 2 × 2 and stride 2. A
fully connected layer of width 1024 is connected to the final
convolutional layer and the output layer with only one neuron.
The activation function of all neurons in the middle layers
and fully connected layers is selected as the rectified linear
unit σ (x) = max(0, x).

FIG. 5. Conductance value predicted by the DNN GNN plotted as
a function of the corresponding theoretical value GTrue for all 20 000
testing samples. (a, b, c, d) The system size is 3 × 3, 5 × 5, 10 ×
10, and 20 × 20, respectively; the number of training samples is
40 000, 80 000, 160 000, and 240 000; and each hidden layer in
the DNN contains 20, 60, 150, and 600 neurons.

III. RESULTS AND DISCUSSION

For the all-impurity model (model I), we present first the
performance of the DNN in a small system, size 3 × 3. The
training data set consists of 40 000 statistically independent
samples and the testing data set contains 20 000 random
samples. Each hidden layer in the DNN contains 20 neurons.
For each sample, the conductance value at the Fermi energy
predicted by the neural network (GNN) is compared with the
corresponding theoretical value (GTrue). The prediction of the
trained DNN on the testing data set has an MAE ≈ 0.1G0. In
Fig. 5(a), every testing sample is represented by a blue point
with a horizontal coordinate (GTrue) and vertical coordinate
(GNN). The performance of the DNN is characterized by the
average distance of all representative points to the straight red
line y = x. It can be seen that the representative points are
located densely around the line y = x. This indicates that the
trained DNN can predict accurately the conductance of a small
disordered system.

We then examine the performance of the neural network
in predicting the conductance for a model system of a larger
size. For systems of sizes 5 × 5, 10 × 10, and 20 × 20, the
system parameters affecting transport properties are 25, 100,
and 400. For the three values of system size, the number of
samples in the training data set is chosen as 80 000, 160 000,
and 240 000, while the number of neurons in the DNN is set
at 60,150, and 600. The number of testing samples is fixed
at 20 000. The representative points of testing samples are
plotted in Figs. 5(b)–5(d). It is evident that more and more
representative points are far away from the red line y = x
with increasing system size. The mean absolute error for the
three system sizes are MAE = 0.24G0, 0.31G0, and 0.38G0.
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Although the number of training samples and neurons in the
hidden layers increases almost linearly with the system size,
the performance of the DNN in the conductance prediction
becomes worse as the system size increases.

Such a system-size-dependent performance of the DNN in
conductance prediction can be understood from the universal
conductance fluctuation [51,52]. For an electron traversing
the disordered system, there are many reflection paths. The
probability waves propagating along different reflection paths
interfere with each other, leading to universal conductance
fluctuations. The number of reflection paths increases expo-
nentially with the system size. With an increasing system size,
the number of conductance patterns increases so quickly that
the DNN with a limited number of neurons cannot predict
accurately the conductance with a remarkable fluctuation. It is
the complex interference behaviors of probability waves that
makes the conductance prediction with the DNN extremely
difficult.

We can also understand the performance of neural net-
works in the all-impurity model from the curse of dimen-
sionality. For Ntrain training samples with a uniform random
distribution, its coverage in the feature space of dimension
D = L × W is estimated as C ≈ Ntrain(εS/wdis)D, where εS is
the size of a box in the feature space occupied by a sample,
which is controlled by the tolerance of conductance prediction
and the conductance fluctation �G. In the regime of universal
conductance fluctation [51], �G is a constant. For a fixed
εS/wdis < 1, the coverage C decreases exponentially with the
dimension of feature space. The sparseness of training sam-
ples will make it difficult to modulate the parameters of neural
networks correctly, leading to a poor performance. For the all-
impurity model, the dimension of the feature space increases
rapidly with the system size so that the neural network falls
easily into the curse of dimensionality. In Appendix A, we
demonstrate the influence of the DNN architecture and the
number of training samples on the MAE. With an increase
in the system size, the reduction of the converged MAE needs
a more complicated DNN architecture (with more neurons)
and a much larger training set (with exponentially increasing
scale). We believe that the failure of neural networks in
predicting the conductance for the large-scaled model I is an
intrinsic problem of the method. As pointed out in Refs. [53]
and [54], it is still difficult for neural networks to make a
quantitative analysis or positive prediction in complicated
physical systems.

In comparison with the results in Ref. [27], our model
I with a larger system size has more parameters affecting
the transport properties and thus the conductance prediction
is more difficult. Our trained neural network captures the
complexity of conductance fluctuations in disordered systems.
The ridge regression method used in Ref. [27] assumes that
the condutance curve consists of a series of peaks. Our DNN
method removes this assumption. It performs much better
than the ridge regression method when the number of training
samples is sufficient. The disadvantages of the DNN method
are that (i) the optimized architecture varies with the system
size and (ii) the training set for a converged MAE is huge so
that the training process is relatively time-consuming.

In the following we turn to model II, where the on-site
energy of impurities is fixed at 5 and the system size is fixed

FIG. 6. (a) Scatter plot of representative points with coordinate
(GTrue, GNN ) of all testing samples. The color scale of any point in-
dicates the absolute difference |GTrue − GNN| between the theoretical
value GTrue of conductance at the Fermi energy and the corresponding
predicted value GNN from the CNN. (b) Mean absolute error (MAE)
as a function of the number Ntrain of training samples. (c, d) The same
as (a) and (b), but for predicting the average conductance G. Insets in
(a) and (c): Frequency distribution PTrue and PNN for the theoretical
values and predicted values of conductance over all testing samples.

at 40 × 40. The CNN is trained to predict the conductance
at the Fermi energy by means of 80 000 training samples.
The performance of the CNN is demonstrated by 20 000
testing samples. In Fig. 6, we plot the conductance GNN

predicted by the CNN for each testing sample as a function of
its corresponding theoretical value GTrue. The color scale of
representative points indicates the absolute difference |GNN −
GTrue|. It can be seen that for the 40 × 40 system of model
II, the neural network performs much better in predicting the
conductance at the Fermi energy than for that of model I.
The reason is that the feature vector of samples in model II
has much lower effective dimensions than that in model I,
which reduces the difficulty of predicting the conductance
by the neural network. As shown in Fig. 6(a), there are still
many points where the predicted value has a relatively large
absolute deviation from the theoretical value. The inset in
Fig. 6(a) shows the frequency distribution PTrue and PNN of
the theoretical conductance values and the predicted values for
all testing samples. There is only a minor difference between
PTrue and PNN except near the conductance region [38, 40] G0.
The prediction accuracy of the CNN can be improved by
increasing the number of training samples Ntrain. For the given
testing data set, Fig. 6(b) shows the MAE as a function of
Ntrain. It can be seen that MAE/G0 decreases gradually from
0.195 to 0.18 as Ntrain varies from 30 000 to 80 000.

We then change the target for prediction to the average
conductance G. The CNN architecture and the configurations
of on-site energies in both the training and the testing data set
are the same as in Fig. 6(a). The performance of the retrained
CNN is shown in Fig. 6(c). In comparison with Fig. 6(a),
the representative points of testing samples are concentrated
more densely around the line y = x. Furthermore, the number
of points with a large deviation |GNN − GTrue| is obviously
reduced. The improvement of the CNN performance is also
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reflected in the frequency distribution PNN of predicted values
of the average conductance G, which is shown in the inset
in Fig. 6(c). The frequency distribution PTrue of theoretical
G values almost coincides with PNN over the whole consid-
ered conductance region. As shown in Fig. 6(d), the MAE
decreases almost exponentially with the number of training
samples and converges more quickly than that in Fig. 6(b).
For Ntrain = 80 000, the MAE/G0 ≈ 0.095 for the prediction
target G is almost half that for the target G. The improvement
of the prediction accuracy is due to the small fluctuation of the
mean conductance G, which further reduces the difficulty of
conductance prediction for the neural network.

Finally, we examine the prediction ability and speed of
the trained neural network in Fig. 6(c). For model II with a
system size 40 × 40 and at a given impurity concentration n,
we generate randomly NC = 1000 on-site energy configura-
tions and calculate the average conductance Gk for each con-
figuration k. We define the ensemble-averaged conductance
Gensemble and variance Gvariance of the system at this impurity
concentration as

Gensemble =
NC∑

k=1

Gk/NC,

Gvariance =
√√√√ NC∑

k=1

(Gk − Gensemble )2/NC . (5)

We use an Intel Core i5-7500 CPU with an eight-core proces-
sor working at 3.40 GHz to calculate Gensemble and Gvariance

at a given concentration. The numerical calculation made
directly by the Kwant package takes approximately 8885 s,
while the time required to make a prediction by the trained
neural network is approximately 32 s. The theoretical and
predicted values of Gensemble and Gvariance are plotted in Fig. 7
as a function of the impurity concentration n. When the im-
purity concentration changes from 0% to 100%, the predicted
value of Gensemble agrees well with the theoretical values. The
predicted variance of the average conductance differs slightly
from the corresponding theoretical values. This comparison
demonstrates that the trained neural network can predict
the disorder-averaged transport properties for the considered
mesoscopic system quickly and accurately.

IV. CONCLUSIONS AND REMARKS

In summary, we have trained neural networks to predict
the electron transport properties of a disordered system which
is described by a tight-binding model. For all sites in the
scattering region of size L × W , two types of disorders in
the on-site energies are considered: (i) the on-site energies
take values randomly and independently from a given inter-
val (model I), and (ii) the on-site energies take one of two
given values randomly (model II). For model I with a small
system size (3 × 3), the trained neural network performs well
in conductance prediction (MAE ≈ 0.1G0). With increasing
system size, the MAE increases even under the enlargement
of the training data set and the number of neurons in the neural
network. It is the universal conductance fluctuation that results
in the prediction failure of the neural network for model I with
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FIG. 7. (a) Ensemble-averaged conductance Gensemble and
(b) variance Gvariance as a function of the impurity concentration n.
The solid red line represents the results calculated directly from the
Kwant package. The dashed blue line shows the results predicted by
the same trained neural network as in Fig. 6(c).

a large system size. For model II, the trained neural network
performs much better even for a relatively large system size,
40 × 40, where MAE ≈ 0.2G0. If the conductance at a fixed
bias (average of 10 conductances at energies closest to the
Fermi energy) is selected as the prediction target, the MAE
drops rapidly to ≈0.1G0. The trained neural network can
predict the disorder-averaged transport properties for model
II quickly and accurately.

The disordered system under consideration can be viewed
qualitatively as a site percolation model [55] where each site
belongs to one of Nc categories. All sites with an on-site
energy in a given narrow region are in the same category.
Model II is transformed into a site percolation with two
categories (Nc = 2). The number of categories Nc in the site
percolation corresponding to model I is large and depends
on the disorder strength and system size. In Appendix B, we
examine the effect of the number of categories (which is the
number of impurity species plus 1) on the prediction accuracy
of the neural network for a system of size 40 × 40. It is found
that the MAE increases with Nc and has a weak dependence
on the architecture of the neural network. This tendency partly
reflects the difficulty of using the neural network to predict the
conductance in model I.

Our work has revaled the bottleneck of neural networks
in predicting the quantum conductance of a disordered
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FIG. 8. Variation of the MAE with the system size of model I for a DNN under several values of Nneuron. (a) Nhidden = 1, (b) Nhidden = 2,
(c) Nhidden = 3, and (d) Nhidden = 4.

mesoscopic system. For quasi-one-dimensional tight-binding
systems of a relatively large size D, the performance of neural
networks depends on the number (Nc) of different values of
on-site energies (and the disorder strength). When Nc � D,
the trained neural network shows a satisfactory accuracy and
thus has great potential for conductance prediction. In the case
of Nc ∼ D, the performance of neural networks is poor for
relatively large system sizes (and strong disorder) due to the
presence of universal conductance fluctuation and the curse of
dimensionality.
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APPENDIX A: PERFORMANCE OF NEURAL NETWORKS
IN THE ALL-IMPURITY MODEL

We take the DNN with Nneuron × Nhidden neurons as an
example to demonstrate the curse of dimensionality. Here
Nhidden and Nneuron are the number of hidden layers and the
number of neurons in each hidden layer. For each considered
system size, we randomly select 2000 samples as the testing
set and set wdis = 2.

First, the number of training samples is fixed at Ntrain =
10 000. Variation of the MAE with the system size is plotted
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FIG. 9. Variation of the MAE with the number of training samples Ntrain for system sizes 3 × 3, 4 × 4, and 5 × 5. (a) Nhidden = 1 and
Nneuron ∈ {30, 60}. (b) Nneuron = 30 and Nhidden ∈ {1, 3}.
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FIG. 10. Variation of the conductance G of models II, III, and
IV with impurity concentration n. Inset: Enlarged section where n
ranges from 60% to 100%.

in Fig. 8 under several values of Nneuron and Nhidden. Usually,
the MAE decreases with Nneuron. Under Nhidden = 4 [Fig. 8(d)],
one can observe the convergence tendency of the MAE with
an increase in Nneuron. Obviously, the value of the MAE
increases quickly with the system size. This fact tells us that
under a fixed Ntrain and various architectures of the DNN, the
performance of the DNN becomes worse and worse as the
system size increases. For a given system size and fixed Ntrain,
we also observe that the MAE increases with the disorder
strength (not shown here).

Next we examine the variation of the MAE with Ntrain =
2i (11 � i � 18) under different DNN architecture parame-
ters, which is shown in Fig. 9. Under Nhidden = 1 and Nneuron =
30, MAE/G0 for the 3 × 3 system approaches a constant
0.04 under Ntrain = 216 [see Fig. 9(a)]. For the 4 × 4 system,
MAE/G0 tends to the value 0.09 under Ntrain = 218. It is
difficult to lower the MAE for the 4 × 4 system to that for the
3 × 3 system only by means of increasing Ntrain. A remarkable
reduction in the MAE can be realized by increasing Nneuron

[see Fig. 9(a)] or Nhidden [see Fig. 9(b)]. For a DNN with a
larger number of neurons, one usually needs more training
samples to ensure convergence of the MAE. With the opti-
mized architecture of the DNN for each system size, the MAE
still increases quickly with the system size, as shown in Fig. 5.
As the dimension of the feature space increases, the number of
required training samples with coverage near 1 will increase
exponentially. For the simplest 1 × 1 system, one can reduce
MAE/G0 to 0.006 by means of the DNN with 1 × 5 neurons
and Ntrain = 27 training samples. For the 1 × 2 system, to
reduce MAE/G0 to the same value, 0.006, one needs a DNN
with 1 × 12 neurons and Ntrain = 216 training samples.

APPENDIX B: MODELS WITH SEVERAL
IMPURITY SPECIES

The neural network trained for model II has a satisfactory
prediction accuracy. In model II, only one kind of impurity
is considered. One may wonder how the number of impurity
species affects the performance of the neural network. To this
end, we design model III with two impurity species and model
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Number of hidden layers
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 (G
  )

0.6
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FIG. 11. Variation of the MAE with the number of hidden layers
Nhidden of a DNN for models II, III, and IV. The number of neurons
in each hidden layer is set at Nneuron = 2000, 2500, and 3000.

IV with three impurity species. In model III, the on-site energy
of impurities is set at either 5/2 or 5 with probability 1/2. In
model IV, the on-site energy of impurities picks up a value
from {5/3, 10/3, 5} with probability 1/3. The system size is
fixed at 40 × 40.

In Fig. 10 the linear-response conductance G is plotted as
a function of the impurity concentration n for models II–IV.
It can be seen that at most values of n the fluctation of G
increases with the number of impurity species. As n varies
from 60% to 100%, the fluctation of G for model III is much
larger than that for model II and is comparable to that for
model IV. It is evident that the model complexity depends on
the number of impurity species.

The DNN with Nhidden hidden layers is trained to predict the
conductance of models II–IV. All hidden layers have the same
number of neurons Nneuron. For each model, there are 80 000
training samples and 20 000 testing samples. For each model,
the MAE of conductance prediction is plotted in Fig. 11 as
a function of Nhidden under Nneuron = 2000, 2500, and 3000.
One can observe that the MAE depends on both Nhidden and
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FIG. 12. Variation of the MAE with the number of impurity
species for a DNN and a CNN.
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Nneuron. For Nneuron = 3000, the neural network with three
hidden layers provides a nearly optimal performance. The
converged MAE for models II, III, and IV are, respectively,
0.2G0, 0.26G0, and 0.32G0. This indicates that the prediction
accuracy of the DNN decreases with the number of impurity
species.

As shown in Fig. 12, the tendency of the MAE to increase
with the number of impurity species persists when the con-

volutional neural network is adopted instead to predict the
conductance of the three models. Here the CNN has three
convolutional layers and 16 convolutional kernels of size
2 × 2 and stride 2. Its performance is compared with that of
the DNN with Nhidden = 3 and Nneuron = 3000. Both neural
networks have almost the same prediction accuracy for the
three models. The training cost of the CNN is much lower
than that of the DNN.
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