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Barrier tunneling and loop polarization in Hopf semimetals
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Degrees of freedom like charge, spin, and valley in condensed matter have drawn much attention in the past
decades. Recently, several kinds of nodal line semimetals have been discovered for which the conduction and
valence bands cross along one-dimensional lines, usually forming loops. These distinct loops, similar to valleys,
can be used as a possible carrier of information. Here we investigate the loop polarization during quantum
transports, i.e., barrier tunneling as well as disorder scattering, in Hopf semimetals with two disconnected loops.
We find that in both cases, the loop polarization is mostly dominated by the performance of normal incidence,
due to the mirror symmetry of two loop planes and the finite size effect along one direction. After scattered by
nonmagnetic disordered potentials, the opposite polarizations can intrinsically reveal the topological structure of
two loops, linked or unlinked. The effects from smooth barriers and disorders are also investigated. We find that
a long range smooth barrier leads to an even clearer and purer picture of scattering and loop polarization, due to
the suppression of large momentum transfer. These effects can be used as a controllable loop filter and detector.
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I. INTRODUCTION

Valley degree of freedom widely exists in various materi-
als, such as graphene [1–6], silicon [7], and transition-metal
dichalcogenide (TMD) monolayer [8–12], which has become
an attractive subject known as “valleytronics.” The valley
states residing at the minima of bands are well separated from
each other in momentum space and can be manipulated as
an independent physical quantity similar to electronic charge
and spin. Recently, nodal line semimetals have been proposed
in several models and materials [13,14]. In contrast to nodal
point semimetals (Weyl or Dirac semimetals), the conduction
and valence bands in nodal line semimetals are intersected
along a one-dimensional (1D) line, instead of a point. In
many cases, the line is end-to-end self connected, forming
a closed nodal loop in the momentum space. The loops in
nodal line semimetals possess rich geometric and topological
structures [15–30].

If there are more than one loops present, they can form
rich configurations in the three-dimensional (3D) momen-
tum space. Among them, the typical “two-loop” systems are
dubbed Hopf semimetals or nodal link semimetals [15–21],
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where the two nodal loops are linked but disconnected, as
shown in Fig. 1(a). This provides two distinguishable states
for electrons to stay, one loop or the other. Furthermore, nodal
chain [22–24], nodal net [25,26], nodal knot [27,28], and other
multiloop [19,29] semimetals have also been proposed or even
realized in experiments. These nodal line systems are usually
protected by mirror symmetry [17,30], PT symmetry (the
combination of inversion symmetry and time-reversal sym-
metry) [16,18], or other crystallographic symmetries [22,29].
Candidate materials that host the Hopf links include
Co2MnGa [17], MgSrSi-type crystals [29], Ba3Si4 [22], etc.

For an application of the loop degree of freedom, the
polarization is the primary concern. In previous researches in
valleytronics, the valley polarization can be realized by quan-
tum point contact [1], line defect [4,31], pseudospin-assisted
tunneling [32], nonmagnetic disorder [8], Dirac gap [3], spin-
orbit coupling [10], orbital magnetic moment [2], Berry cur-
vature [6], gate voltage [5] or optical pumping [9,11,12], etc.
In this paper, we numerically investigate the polarization of
loops in Hopf semimetals by simulating quantum transports
through a potential barrier or a disordered region, respectively.
We find that the loop polarization can be well understood from
the performance of normal incidence which respects the pseu-
dospin conservation. Inspired by the research on TMDs [8],
we also propose a disorder induced loop polarization, which
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FIG. 1. The left (right) column corresponds to the linked (un-
linked) case. (a),(b) Two loops in momentum space at zero en-
ergy for m0 = 2.5 (linked) and m0 = 3.3 (unlinked), respectively.
(c),(d) Band structures for ky = 0 and kz = 0 with the same pa-
rameters as (a) and (b), respectively. Solid and dashed bands carry
opposite pseudospins. The horizontal green line presents the Fermi
energy, crossing the bands at states ‘−1, 1, −2, 2, −3, 3, −4, 4’ in
sequence, where red/blue numbers denote the channels on red/blue
loop. (e),(f) Illustration of scattering processes. The red/blue loop
denotes the channels on red/blue loop, and the hollow arrows are for
incident channels. (i) and (ii) in (e) and (f) represent the scattering
of incident electronic states on the red loop and the blue loop,
respectively.

is an intrinsic nature embedded in momentum space and does
not rely on much details of specific materials. The topology
of linked or unlinked can be distinguished from the opposite
directions of disorder-induced polarization.

The paper is organized as follows. In the next section, we
introduce the two-band model of Hopf semimetals. In Sec. III,
barrier tunneling is considered, including the momentum re-
solved scattering in the x direction and the scattering with
finite width Nz. Besides, quantum transport along other axes
is also discussed. In Sec. IV, the disorder induced polarization
is investigated. The effects of smooth potential barrier and
disorder are given in Sec. V. Section VI is a summary. The
computational method and the detailed scattering amplitudes
of barrier tunneling at normal incidence are provided in the
Appendix.

II. THE MODEL

The concrete realization of a Hopf loop model depends
on the symmetry. For example, the Hopf loops protected

by the mirror symmetry require at least four bands and the
coupling between two loops can be artificially tuned from
zero to strong, which is determined by an off-diagonal sub-
matrix [17]. In this paper, we adopt the simplest two-band
Hopf semimetal model [16], where loops are protected by
PT symmetry. This generic model is derived from a general
method based on Hopf maps [33], and the tight-binding model
can be realized on a 3D cubic lattice with two orbitals at each
site as

H (k) = Aτx + Bτz, (1)

where

A = 2 sin kx sin kz + 2 sin ky

⎛
⎝ ∑

i=x,y,z

cos ki − m0

⎞
⎠,

B = sin2 kx + sin2 ky − sin2 kz −
⎛
⎝ ∑

i=x,y,z

cos ki − m0

⎞
⎠

2

,

with τx, τz Pauli matrices acting on the subspace of pseu-
dospins (sublattices). To simplify the model, we have made
m0 the only tunable model parameter, with appropriate fixing
of other parameters. Notice that m0 also appears in the off-
diagonal elements and therefore it determines some hopping
integrals in the real space, after an inverse Fourier transforma-
tion on the 3D cubic lattice.

When m0 ∈ (1.0, 3.4), the energy spectrum of model (1)
is always gapless and the band-touching manifolds at energy
E = 0 form two distinct 1D loops. An interesting transi-
tion occurs at the critical point with m0 = 3.0: When m0 <

3.0, two loops are linked [Fig. 1(a)], and otherwise they
are unlinked [Fig. 1(b)]. The loop equations can be solved
by setting A = 0 and B = 0 simultaneously. One loop is
ky = kz, sin kx = m0 − ∑

i=x,y,z cos ki, and the other is ky =
−kz, sin kx = ∑

i=x,y,z cos ki − m0, as shown in Figs. 1(a)
and 1(b). Notice that two loops lie in two planes ky = ±kz,
respectively. When the Fermi energy slightly deviates from
zero energy, the Fermi surface evolves from 1D loops to
doughnut surfaces which are closed two-dimensional (2D)
manifolds.

III. BARRIER TUNNELING IN HOPF SEMIMETALS

Barrier tunneling is a typical problem in the quantum
transport. For example, one of the novelties of Dirac fermions
is the Klein tunneling, in which electrons can pass through
the barrier without any back-reflection [34]. This phenomenon
appears not only in high-energy physics but also in condensed
matter, such as graphene [35], Dirac/Weyl semimetals [36],
and Dirac loop semimetals [37]. In this paper, we will illus-
trate that similar physics can be generalized to this two-band
Hopf semimetal model.

Here, we consider the electrons injecting through a pseu-
dospin independent square potential barrier σ0V (x), with

V (x) =
{

V0, 0 < x < d,

0, x < 0, x > d,
(2)

which has finite width d along the x direction and ex-
tends infinitely along other directions. Notice that the line
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connecting the central points of two Hopf loops is also along
the x direction. This setup will be helpful for a fine tuning
and investigation of the scattering between two loops. The
ky and kz are conserved due to the absence of scattering in
these directions from this y and z independent barrier (2).
Because of these conservations, the calculation of scattering
amplitudes can be effectively reduced to a 1D problem with
constant ky and kz. In the following, the simulations are based
on the tight-binding model (1) and the lattice version of mode
matching approach [38,39], by which channel resolved scat-
tering amplitudes can be numerically obtained. This method
relies on a Green’s function formalism and the details are
presented in Appendix.

The focus of this paper is the polarization of two distinct
loops during scattering, in the low energy regime, i.e., Fermi
energies around the band-touching loops. In order to quan-
titatively characterize this problem, we define the net loop
transmission (NLT) as

Tnet = Tred − Tblue, (3)

where Tred (Tblue) denotes the total transmission amplitude of
scattering into the red (blue) loop region. The colors “red” and
“blue” are just names to label two distinct loops as illustrated
in Figs. 1(a) and 1(b). Here, Tnet, as well as Tred and Tblue, can
be defined to a specific incident state (kx, ky, kz ), or to a group
of incident states at the same Fermi surface, which are just
a simple summation over these states. Correspondingly, the
loop polarization rate is defined as

P = Tnet/(Tred + Tblue ), (4)

along with the conductance (in units of e2

h )

G = Tred + Tblue. (5)

A quantum transport from an injecting state is loop polarized
as long as Tnet or P is nonzero. The zero temperature con-
ductance is an integration of transmissions over all injecting
states on the Fermi surface, and the total NLT associated with
the Fermi surface can be defined similarly.

The model system (1) we investigate is a 3D system, which
is infinite in three directions. Since the barrier (2) respects
the translation invariant in y and z directions, mathematically
this system can be treated as an effectively 1D problem with
momenta ky and kz as parameters, but the physics is still three
dimensional.

Firstly, we consider the normal incidence of electronic
tunneling where ky = 0 and kz = 0. In Figs. 1(c) and 1(d), we
illustrate the 1D band structures at ky = kz = 0 for the linked
and unlinked cases, respectively. Four band crossing points
labeled with blue (red) numbers belong to the blue (red) loop,
respectively, with the sign ± indicating the direction of its
group velocity. In this case, A in Hamiltonian (1) equals to
zero and the Hamiltonian is written as

H (k) = Bτz,

whose eigenstates possess well-defined pseudospin eigenval-
ues τz = 1 or τz = −1, which are plotted in Figs. 1(c) and 1(d)
as solid and dashed lines, respectively. In the tunneling pro-
cess through the barrier (2), the pseudospins of electrons
are conserved, resembling the normal incidence of Dirac

electrons in graphene [35]. Electrons with one pseudospin are
forbidden to scatter into states with the opposite pseudospin.
For example, in the linked case [Fig. 1(c)], the incident state
‘1’ of the red loop in the solid line band can only be trans-
mitted into states ‘1’ or ‘3’ on the same loop or be reflected
back to states ‘−2’ and ‘−4’ on the other loop, whereas other
processes are not allowed. Also notice that in the linked case,
states ‘−1, 1,−3, 3’ belong to red loop while ‘−2, 2,−4, 4’
belong to blue loop. Similar discussions can be done in the
unlinked case. The details of scattering amplitudes for each
channel at normal incidence are presented in Appendix.

These scattering processes of normal incidence can be
summarized in Figs. 1(e) and 1(f). Figure 1(e) illustrates the
above mentioned scattering of injecting electronic states on
the red loop (i) or the blue loop (ii), in the case of linked loops.
For example, in Figs. 1(e) and 1(i), an injecting electron on the
red loop can be transmitted to the same state (hollow arrow) or
another state (solid arrow) on the red loop. On the other hand,
it can be reflected back to either of the states on the blue loop
(two solid arrows). Other scattering processes are forbidden.
As for the unlinked case, Fig. 1(f) depicts the scattering of
injecting electrons on the red loop (i) or the blue loop (ii). In
Figs. 1(f) and 1(i), an injecting electron on the red loop can
be transmitted to the same state on the loop (hollow arrow) or
a state on the blue loop (solid arrow). Its reflection can also
be scattered to either of the states on red and blue loops (two
solid arrows).

The above simple pictures are only for the low energy
region around the band-touching loops. In a tight-binding
model, they will be changed somehow by the band structure
at higher energies. For instance, in Fig. 1(c), the solid line
band carrying states ‘1,’ ‘−2,’ ‘3,’ and ‘−4’ will terminate at
E ∼ 0.9, and the dashed line band carrying states ‘2’ and ‘−3’
will terminate at E ∼ 0.2. These energy cutoffs will manifest
themselves in the following tunneling processes.

Numerical results of barrier tunneling from a normal in-
cidence as functions of the barrier height V0 are shown in
Fig. 2, where the left column (a), (c), (e) is for the linked
case with m0 = 2.5, and the right column (b), (d), (f) is for
the unlinked case with m0 = 3.3. First let us understand the
results presented in Fig. 2(a), with a comparison to Fig. 1.
Starting from V0 = 0, both injecting channels on both loops,
i.e., channels 1 and 3 in the red loop and channels 2 and 4
in the blue loop, can be almost perfectly transmitted, giving
rise to T ∼ 2 associated with both loops. Increasing V0 will
introduce scattering. Notice that the energy profile in the
barrier is lifted by V0, and therefore what the injecting electron
with E = 0.05 sees in this region is the band structure at
E± − V0. Therefore, when V0 ∼ 0.25, the local minimum
around kx = 0 of the solid line band (where channel 3 of the
red loop resides) will be shifted to the Fermi energy of the
injecting electron. After that, this channel will be evanescent
in the barrier region. This explains the sudden drop of Tred

from ∼2 to ∼1 around V0 ∼ 0.25 in Fig. 2(a). The vanishing
of Tblue at V0 ∼ 0.9 can be similarly understood, where the
dashed line band carrying channels 2 and 4 disappears at
the Fermi energy. This furthermore leads to a 100% loop
polarization shown in Fig. 2(e). Since the backscattering is not
prohibited (here to opposite loops), the transmissions are not
perfect, and sometimes exhibit resonance oscillations from
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FIG. 2. Transmissions as functions of barrier height V0, with
m0 = 2.5 (left column, linked case) and m0 = 3.3 (right column,
unlinked case). (a),(b) Transmission amplitudes of electronic scatter-
ing into red (Tred) and blue (Tblue) loops. (c),(d) NLTs. (e),(f) Loop
polarization rates. For all panels, the Fermi energy E = 0.05 and
barrier width d = 40a (a is the lattice constant).

the barrier boundaries, which are commonly seen in barrier
tunnelings [35,37].

Next, we turn to the non-normal incidence of barrier tun-
neling, i.e., incident states at the Fermi surface with nonzero
ky and/or kz. Since these two components, ky and kz, are con-
served throughout the barrier tunneling, the scattering prob-
lem can still be reduced to the 1D cross section of the band
structure E±(kx ) ≡ E±(kx, ky, kz ) with (ky, kz ) fixed. For most
pairs of fixed and finite (ky, kz ), the band cross section E±(kx )
will open a gap (therefore absence of the band-touching loop
on this cross section) which may contain the Fermi energy
if it is sufficiently large. As a result, these in-gap evanescent
states will not contribute to measurable tunnelings. Since we
are only interested in the low energy regime, only those states
on the gapless cross sections E±(kx ) should be considered.
Here, we concentrate on the ky = kz or ky = −kz plane, where
at least one loop exists. Without loss of generality, we take the
linked case m0 = 2.5 as an example.

In the ky = kz = 0.1 plane, states around the red loop open
a gap but the blue ones remain, as illustrated in Fig. 3(a).
In the ky = −kz = 0.1 plane at the same Fermi surface, the
situation is just the reverse, as shown in Fig. 3(b). In the
non-normal incidence, pseudospins of electrons are no longer
conserved, because the term A in Hamiltonian (1) does not
vanish. Thus, state ‘2’ presented in Fig. 3(a), for example,

)b()a(

)d()c(

)f()e(

FIG. 3. Non-normal incidence of the linked case with m0 = 2.5
and a rather large value of kz(= ±ky ). (a),(b) Band structure cross
sections in two loop planes: ky = kz = 0.1 and ky = −kz = 0.1,
respectively, with Fermi energy E = 0.05 (dashed line). (c),(d) The
corresponding scattering processes of (a) and (b). (e) Total transmis-
sions Tblue and Tred for (a),(b), respectively. (f) The averaged NLT
over (a) and (b).

can reflect back to ‘−2’ and ‘−4,’ shown in Fig. 3(c), while
the corresponding processes are not allowed for the normal
incidence. It is worthwhile to mention that the reflection
from state ‘2’ to state ‘−2’ belongs to the highly unusual
class of reflection called “electron retroreflection” [40,41], in
which the electron’s x directional and otherwise-directional
group velocities simultaneously exhibit a sign reversal. This
phenomenon appears commonly in nodal line semimetals [37]
where velocities of states on the loop always point to or
away from the loop center. By calculating transmissions, we
find that the transmissions in the red and blue loops are
completely identical, which lead to the vanishing of NLTs
and loop polarizations, shown in Figs. 3(e) and 3(f). This
unbiased result is because Tred and Tblue are contributed by two
independent manifolds of states, respectively, along with the
mirror symmetry of two loop planes

MxH (kz = ky)M−1
x = H (kz = −ky) (6)

for a fixed ky, where Mx is mirror operator reversing the sign
of kx. This symmetry even holds on for a small deviation δ

from the loop plane in which the only loop opens a small gap,

MxH (kz = ky + δ)M−1
x = H (kz = −ky − δ) (7)

for fixed ky and δ.
The conclusion that loop polarization is mostly contributed

from the vicinity of normal incidence is independent on the
specific form of Hamiltonian (1) but relies on the mirror
symmetry of two loop planes. The reason is as follows. The
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FIG. 4. Non-normal incidence in the linked case with m0 = 2.5
and a sufficiently small value of kz(= ±ky ). (a) and (b) are the band
structure cross sections along kx in two loop planes respectively:
(a) ky = kz = 0.01 and (b) ky = −kz = 0.01, with Fermi energy
E = 0.05 (dashed line). (c) NLTs for (a) (red solid) and (b) (yellow
dashed) subtracted by T 0

net , the corresponding NLT at normal inci-
dence [Fig. 2(c)]. (d) The average of two curves in (c).

loop states are all around the two loop planes ky = kz and ky =
−kz. As shown in Fig. 3, when the states are far away from the
normal incidence with large value of ky = kz and ky = −kz,
electron states in the red and blue loops are scattered indepen-
dently if the momenta are conserved in y and z directions. The
scattering between two loops cannot happen. Thus, the loop
polarization in this case is contributed by the two independent
scattering processes of loops. If the mirror symmetry of two
loop planes is conserved, the net loop transmission integrated
over those electrons that are away from the normal incidence
(i.e., with large value of ky = kz and ky = −kz) on the Fermi
surface is zero. This conclusion (the loop polarization is
concentrated in the vicinity of normal incidence) is still valid
if the deviation from the mirror symmetry is not large. The
above discussion is about the injecting states with a rather
large value of kz(= ±ky or ±(ky + δ)) (δ is a tiny deviation),
so that the 1D Fermi surface can only pass through either of
the two loops, and the scattering is constrained in each loop.

Except for that, another typical case of non-normal inci-
dence corresponds to injecting states completely on one loop
plane and near the other loop plane, which corresponds to
sufficiently small value of kz(= ± ky), with the band structure
cross sections shown in Figs. 4(a) and 4(b). These band struc-
tures E±(kx ) are very close to that of the normal incidence
shown in Fig. 1(c), but there exists a tiny gap near one loop,
respectively. Here, we still take the linked case m0 = 2.5 as an
example, with ky = ±kz = 0.01 and the same Fermi energy
E = 0.05 (dashed lines). Now the Fermi energy (dashed line)
can pass through two loop regions, so that all four propagating
channels are still active, and still, the conservation of pseu-
dospin breaks.

We calculate the NLT from each loop plane, Tnet (ky = kz )
and Tnet (ky = −kz ). For comparison, we plot their differences
from the normal incidence NLT T 0

net ≡ Tnet (ky = kz = 0) in
Fig. 4(c). It seems that the differences are not ignorable.
However, the average over two loop planes

Tnet = 1
2 [Tnet (ky = kz ) + Tnet (ky = −kz )] (8)

is quite similar to T 0
net, which is manifested by their small

difference represented in Fig. 4(d). In other words, the NLT
from both loop planes at the same Fermi energy contribute
complementarily, so that the total NLT is approximately equal
to twice of that from normal incidence. The remaining small
difference shown in Fig. 4(d) comes from possible mixed-loop
scattering processes which were prohibited in the normal
incidence due to pseudospin conservations.

Besides, the case with sufficiently small value of kz(=
±(ky + δ)) (δ is a small deviation) should also be considered
to complete all possible cases of non-normal incidence. The
physical picture is that injecting states are near both loop
planes, near the normal incidence but on neither loop plane.
Our numerical simulations indicate (but are not shown here)
that the NLT is close to the result of the above case shown in
Fig. 4, i.e., sufficiently small value of kz(= ±(ky)).

Let us make a brief summary here. The normal incidence
of barrier tunneling contributes to nonzero NLT (Fig. 2). For
a non-normal incidence, if the incident state is far away from
both two loop planes, the cross section of band structure along
the x direction opens a full gap without any propagating state,
contributing no transmission and no NLT. If the incident state
is on (or very close to) one loop plane, but far away (large
point-plane distance) from another loop plane, the transmis-
sions of them are nonzero while the NLTs completely vanish
(Fig. 3), due to the symmetric and independent transports of
two loops. If the incident state is on (or close to) one loop
plane and also close to (small point-plane distance) the other
loop plane, the NLTs of them are close to the result of normal
incidence (Fig. 4). In one word, the loop polarized transports
in the Hopf semimetal only concentrate around the normal
incidence. Incidence states far away from the normal one
are either nonpolarized or nontransportable at all. Hence, the
normal incidence contributes most of the NLT.

The above analysis is momentum k resolved. If we inte-
grate over all momenta on the Fermi surface in the entire
Brillouin zone, we can obtain the NLT and the loop polar-
ization of the system. Although most states on the two loop
planes do not contribute to NLT, but to conductance shown
in Fig. 3, the loop polarization of the whole Hopf semimetal
will not be completely submerged in the conductance after the
momentum integration, since the total density of states (DOS)
of a semimetal is very small around the loop energy (E = 0
for the present model), as will be explained in the following.

A more straightforward way for obtaining the full 3D
information of loop polarization, in principle, is to simulate
it in a quasi-1D bar shaped geometry (a quantum wire [39])
with a finite cross section (sufficiently large to make it
“three-dimensional”). In the presence of barriers or disorders
in the central region, the channel resolved scattering am-
plitudes on the Fermi energy can be numerically obtained
directly [38,39]. However, it is now technically hard to

064203-5



GUAN, ZHANG, WANG, YU, XIA, AND LI PHYSICAL REVIEW B 102, 064203 (2020)

(a) (b)

(c) (d)

(e) (f)

FIG. 5. (a),(b) Band structures along the x direction with m0 =
2.5, ky = 0, Nz = 50a (left column), and Nz = 120a (right column).
The periodic boundary conditions is applied in the z direction. The
horizontal dashed line represents the Fermi energy. (c),(d) NLTs as
functions of barrier height V0 corresponding to (a),(b). The insets
show NLTs subtracted by T 0

net which is the corresponding NLT at
normal incidence [Fig. 2(c)]. (e),(f) Conductances as functions of
barrier height V0 corresponding to (a),(b). For (c)–(f), the Fermi en-
ergy E = 0.05 and barrier width d = 40a (a is the lattice constant).

distinguish channels (or subbands) on two different loops,
when they are discretized due to the finite cross section. These
quasi-1D subbands will distribute in an extremely compli-
cated way, and those from two loops intertwine mutually and
can hardly be distinguishable. In fact, this difficulty is rather
fundamental. In graphene, the valleys are characterized by 0D
Dirac points, and therefore they can be well distinguished
even in the case of a quasi-1D ribbon [8]. In a 3D Hopf
semimetal here, loops are closed 1D object embedded in a 2D
or 3D space, and therefore they are barely distinguishable in a
quasi-1D geometry (with other dimensions discretized).

Despite the above numerical difficulty, one can still go one
step further, by calculating the scattering of the Hopf system
with finite width Nz along the z direction while keeping Ny

infinite (a slab geometry). Its loop scattering situations at
ky = 0 are shown in Fig. 5. It can be seen that when the
Fermi energy is not large (i.e., near the loop zero energy), the
total NLT of this slab just behaves like the normal incidence
in the 3D limit [Fig. 2(c)]. For example, in Figs. 5(a), 5(c)
and 5(e), we choose Nz = 50a (a is the lattice constant) and
there are only four right-propagating channels, identical to the
normal incidence angle in Fig. 2. If we increase the width to

(a) (b)

(c) (d)

1 1 22-1 1-2- -2

FIG. 6. (a),(b) Band structures along the y direction with kx = 0,
kz = 0.7227, and kx = 0, kz = −0.7227, respectively. The horizontal
dashed line represents the Fermi energy. (c),(d) Transmission am-
plitudes of electronic scattering into red (Tred) and blue (Tblue) loops
corresponding to (a),(b), respectively, after tunneling into a barrier
width. The Fermi energy E = 0.05 and the barrier width d = 40a (a
is the lattice constant).

Nz = 120a, as shown in Fig. 5(d), the total NLT is still close
to the normal incidence in the 3D limit. Larger Nz may give
rise to larger conductance, leading to a decrease of the loop
polarization rate. However, this decrease is very slow, due to
the small DOS of semimetals around zero energy. Note that if
ky �= 0, most subbands along the x direction are gapped and
therefore do not contribute to the total conductance. This is
again the reminiscence of low DOS around the loop energy.

Therefore, the numerical results achievable so far are also
useful and instructive for the understanding of the realistic
loop transports. Due to the small DOS around zero, the
electronic states at normal incidence play a significant role
in the loop transports. For this reason, in the next section, the
calculation of disorder induced loop polarization will be just
based on the normal incidence.

So far, the transport direction is along the x direction,
which connects the central points of two Hopf loops. In
the case of conserving momentum in other two dimensions,
this direction of transport offers the largest opportunities of
interloop transition and therefore loop polarization, as can be
seen from Fig. 1(a). For a comparison, let us take the transport
direction to be the y direction, and the momenta kx and kz to
be conserved. Similarly, this can be treated as an effectively
1D scattering problem along y, for a definite pair of (kx, kz ),
and scattering can only happen among states (kx, ky, kz ) on
the Fermi surface (two loops). For most (kx, kz ) in the BZ,
the line (kx = const, ky, kz = const) only crosses one loop and
therefore the tunneling along this direction does not contribute
to the loop polarization. Those (kx, kz ) to make the line (kx =
const, ky, kz = const) cross both loops only consist of two
very small windows. In Fig. 6, we plot the band structures and
loop transports at the center of these two small windows, at
Fermi energy E = 0.05. It is interesting to notice that the loop
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(b) (c)

(a)

FIG. 7. (a) A schematic drawing of disorder distribution in real
space, where different random numbers (ε1, ε2, ε3,...) are shown
on the slides with different colors and keep constant in y and z
directions. (b) NLTs as functions of disorder intensity with Fermi en-
ergy E = 0.05. (c) NLTs as functions of Fermi energy with disorder
intensity W = 0.2. In (b) and (c), the calculated values are averaged
over 1000 disorder configurations. The scattering length L = 40a.
The parameter m0 = 2.5 (linked) for orange and m0 = 3.3 (unlinked)
for violet.

polarization through these two windows is perfectly opposite,
which leads to no loop polarization. This is a result of the
mirror symmetry along the z direction, i.e.,

MzH (kx = 0, kz )M−1
z = H (kx = 0,−kz ). (9)

Besides, states (kx, kz ) away from these two windows of which
only one loop or no loop exists also contribute to none of NLT,
due to the product mirror symmetry

(MxMz )H (kx, kz )(MxMz )−1 = H (−kx,−kz ). (10)

The result of transporting along the z direction is similar.
Moreover, the transport along other general axes can also be
considered which is more complex and the loop polarization
contribution from the broken symmetry needs to be intro-
duced.

IV. DISORDER INDUCED LOOP POLARIZATION

To generalize the above results to a broader context, we
relax the potential barrier (2) to a pseudospin independent
random potential along the x direction:

V (x) = V (x) =
{

εx, 0 < x < d,

0, x < 0, x > d,
(11)

where εx are independent random numbers uniformly dis-
tributed in (−W,W ), with W the disorder intensity. Notice
the potential εx is still y and z independent, but different on
different x sheets, as shown in Fig. 7(a). Because εx is y and
z independent, the scattering is still ky and kz conserving. As
stated above, numerically, this setup makes us convenient to

distinguish states in different loops which are still well fined
in the ky − kz plane. Furthermore, it is convenient to have a
closer comparison with the ky and kz independent barrier in
the last section. Here, we adopt 1000 configurations of random
numbers to average the net loop transmission.

Such a disorder potential profile of sheets seems artifi-
cial, but the results will still be useful and representative,
for reasons similar to those in last section. For example,
the normal incidence still dominates the loop polarization,
even if a finite width in one dimension is introduced, as
depicted in Fig. 5. Even if the disorder potential breaks the
translational symmetry in the y and z direction, so that the
scattering between different momenta (ky, kz ) is introduced,
main conclusion in this section will not change.

Note that the pseudospin is still conserved at normal
incidence in the presence of disorder defined in (11). Our
calculations show that the loop polarizations are still centered
around the normal incidence. Those electron states slightly
deviated from normal incidence still behave like the normal
incidence. Thus, in this section, the calculation of disorder-
induced polarization is only focused on electronic states at
normal incidence. Due to the strongly fluctuating potential
from site to site, the NLT cannot have a simple picture of
channel appearing or vanishing associated with the energy
profile, as illustrated in Fig. 2.

In this case, a better way to understand disorder scattering
is in the momentum space. Indeed, transmission or reflection
amplitudes between states from disorder scattering are ulti-
mately determined by the length of momentum transfer [8].
For the linked case shown in Figs. 1(c) and 1(e), the NLT can
be attributed to the interloop reflection, in fact, mainly from
the two shortest-momentum-transfer reflections ‘2’→‘−3’
and ‘3’→‘−2,’ which is confirmed in numerical calculations
(not shown here). Due to the distinct distances of momentum
transfer |kx

2 − kx
−3| and |kx

3 − kx
−2|, the reflection from blue to

red loop ‘2’→‘−3’ is much larger than the reflection from
the red to blue loop ‘3’→‘−2,’ resulting in the polarization
to the red loop. For the unlinked case shown in Figs. 1(d)
and 1(f), on the other hand, the intraloop reflections of the red
and blue loops are always identical, making no contribution to
NLTs since their momentum transfer distances are the same,
e.g., |kx

1 − kx
−2| (‘1’→‘−2’) and |kx

3 − kx
−4| (‘3’→‘−4’). So

does the interloop transmission, e.g., |kx
1 − kx

3| (‘1’→‘3’) and
|kx

2 − kx
4| (‘2’→‘4’). Thus, NLTs for the unlinked case can

still be attributed to interloop reflection. The reflection from
the red to blue loop ‘2’→‘−3’ is greater than the reflection
from the blue to red loop ‘3’→‘−2,’ therefore leading to
the polarization to the blue loop. This disorder induced loop
polarization is similar to the valley polarization in graphene
and other 2D materials [8].

We plot NLTs as functions of disorder intensity and as
functions of Fermi energy in Figs. 7(b) and 7(c), respectively.
In Fig. 7(b), the loop transmissions for the linked and un-
linked cases polarize to opposite directions, since the relative
positions of loop states are exchanged, e.g., ‘±2’ (‘±3’)
are the blue (red) loop states for the linked case, but red
(blue) loop states for the unlinked case, shown in Figs. 1(c)
and 1(d). As the disorder intensity continues to increase, NLTs
reach the maxima, then drop to zero due to the Anderson
localization. In Fig. 7(c), with the increase of the magnitude of

064203-7



GUAN, ZHANG, WANG, YU, XIA, AND LI PHYSICAL REVIEW B 102, 064203 (2020)

Fermi energy, NLTs become more remarkable, which can be
explained by the increased differences of momentum transfer
distance. Beside, as the Fermi energy goes to the negative
value, the direction of polarization changes due to a jumping
of shortest transfer momentum. For example, at a positive
energy in Fig. 1(c), the momentum transfer of ‘2’ → ‘−3’
is shorter than that of ‘3’ → ‘−2,’ while at a negative energy
the situation is reversed. Therefore a jumping between transfer
processes occurs at E = 0.

The disorder-induced loop polarization only relies on
the momentum transfer, which is completely similar to the
disorder-induced valley polarization in two dimensions [8].
For the valley polarization, the intervalley backscattering has
a valley contrasted rate due to momentum transfer difference
between “from” and “to” processes of scattering, leading to
a net transfer of population from one valley to another, after
the transport along a certain direction. The relative positions
between valleys determine the direction of polarization. Here,
similarly, the relative positions of adjacent loop states play a
crucial role in the transport in disordered systems. As a result,
the direction of disorder-induced loop polarization is closely
related to the topology: the linked or unlinked. Therefore, this
loop polarization does not depend on other details of concrete
models.

V. EFFECTS OF SMOOTH POTENTIAL BARRIER
AND DISORDER

The infinitely sharp square potential barrier above might be
difficult to achieve experimentally. A more realistic smooth
potential profile has been considered in graphene [1]. Here,
we adopt a Gaussian barrier frequently used in graphene
models [8], written as

V (x) = V0

[
1

σ
√

2π
exp

(
− (x − x0)2

2σ 2

)]
, (12)

where x0 is the center of barrier profile and σ characterizes the
potential range. With the same reasons offered above, in this
section, we only focus on the normal incidence, which plays
the essential role in loop polarization.

The transmissions of incident loop states at normal inci-
dence are shown in Figs. 8(a) and 8(b) with different σ . One
can first notice that these transmission curves are smoother
than those in the case of infinitely sharp potential barrier in
Fig. 2(a). Comparing transmissions from different potential
ranges in Figs. 8(a) and 8(b), two significant features can
be seen: Larger σ gives rise to nearly perfect transmission
plateaus, as well as larger differences in two loops which leads
to more remarkable loop polarization as shown in Fig. 8(c).
All these features can be well understood from the suppression
of large momentum transfer from long range potential scat-
tering [2,8,42], with the help of band structures illustrated in
Fig. 1(c). In fact, with a larger potential range σ , the scattering
with large �k, e.g., from state ‘1’ to ‘±2,’ ‘±3,’ and ‘±4’
will be more difficult to occur. As a result, the scattering
will be more likely to be a “single valley” Dirac-like, i.e.,
a Klein tunneling without backscattering. This explains the
almost perfect transmission plateaus at larger σ in Fig. 8(b).
Then, similar to what happened in Fig. 2(a), due to different
band structures (e.g., local energy cutoffs) around two loops,

(a)

(d)

(b)

(c)

FIG. 8. (a), (b) Transmission amplitudes of electronic scattering
into red (Tred) and blue (Tblue) loops with σ = 0.5 and σ = 2.5,
respectively, as functions of the relative peak of Gaussian barrier V0

in the case of m0 = 2.5, ky = kz = 0. (c) NLTs as functions of the
peak of Gaussian barrier V0 with σ = 0.5, 1.0, 1.5, 2.0, 2.5. Other
parameters are the same as (a),(b). (d) Disorder-induced loop polar-
izations as functions of the disorder intensity for linked m0 = 2.5
and the unlinked m0 = 3.3, with ky = kz = 0. The disorder profile is
Gaussian with σ = 0.5 and the disorder density is 1%. The calculated
disorder values are averaged over 5000 disorder configurations.

this transmission plateaus will vanish at different V0 for two
loops, leading to significant loop polarized transmission as a
total. The scattering amplitudes for each channel are given in
Appendix.

In this context, the disorder-induced loop polarization can
also be discussed [8]. Gaussian disorders are written as

V (x) =
nI∑

i=1

[
εxi

1

σ
√

2π
exp

(
− (x − xi )2

2σ 2

)]
, (13)

where εxi are random numbers uniformly distributed in
(−W,W ), with W the disorder intensity, representing the
relative peak values of Gaussian impurities. xi is the center
position (also random) of the ith Gaussian impurity. The ratio
ρI = nI

N � 1 is defined to be the impurity density, where N is
the total number of sites in the central region. The disorder-
induced loop polarization is shown in Fig. 8(d), which is
similar to that with infinitely sharp disorders in Fig. 7(b).

The loop dependent transmission plateaus through a
smooth barrier shown in Fig. 8(b) can be used as a loop filter.
We will show that it can also be used as a loop detector.
Suppose a Hopf semimetal sample is connected to a two-
terminal device, and this sample has a very finite cross section,
so that those four groups (in four Dirac-like “valleys”) of
channels as shown in Fig. 1(c) dominate the quantum transport
around the loop energy E = 0. Without loss of generality,
we can suppose there is only one pair of channels in each
group. In the absence of any barrier or disorder, the ballistic
transmission T (which is just the conductance in units of e2

h ) is
just 4, 2 for each loop. We can apply a back gate VG around this
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sample to introduce an effective potential barrier with long
range smooth potential as described in Eq. (12). Increase the
back gate VG gradually until V 1

G so that T drops to a stable
value of 3. As can be seen from Fig. 8(b), this corresponds to
an effective potential V0 ∼ 4, where the red loop has only one
channel left.

Now if we inject a loop polarized current into this device,
then their relative proportions (and therefore the polarization)
can be obtained by using the following steps of measurements.
First measure the conductance G0 (which is proportional to
the transmission T0) without applying the gate voltage. Since
all channels on both loops can ballistically transmit through
the device without backscattering, we can write the total
conductance as

G0 = Gred + Gblue, (14)

where the ratio between two terms reflects the proportions of
two loops in the injecting current. After turning on the gate
voltage to V 1

G , all blue loop channels will remain robust while
half of the red loop channels will vanish [corresponding to
V0 ∼ 4 in Fig. 8(b)], and therefore now the total conductance
(also proportional to the transmission) should be

G1 = Gred/2 + Gblue. (15)

With measurable quantities G0 and G1, Eqs. (14) and (15), one
can obtain the loop portions of the incoming current as

Gred = 2(G0 − G1)

Gblue = 2G1 − G0.
(16)

Such finite-size point contact as a loop filter and detector
is conceptually similar to that proposed for valleytronics in
graphene [1]. Besides, if the spin-loop coupling is present, the
loop current can be measured by detecting the spin current,
similar to what was considered to valleytronics [8].

VI. SUMMARY

In this paper, we numerically study the quantum trans-
port properties of Hopf semimetals based on a tight-binding
model. We find that contributions of polarized transport are
from the vicinity of normal incidence. The reason is as
follows. For an incidence far away from normal, e.g., with
large ky(= ±kz or ±(ky + δ)), the NLT is completely canceled
out after the average over two loop planes due to the mirror
symmetry of two loop planes. For non-normal incidence with
relatively small ky(= ±kz or ±(ky + δ)), most transports of
deviations from the normal incidence are eliminated as well.
Due to the finite size effect along one direction, the electron
states of Hopf semimetals at normal incidence play a domi-
nant role in the quantum transport. Besides, smooth potential
profiles can suppress the interloop scattering at normal inci-
dence, resulting in the preservation of Klein tunneling.

At the normal incidence, restricted by the conversation
of pseudospin, there exist two loop-scattering processes for
linked and unlinked cases, respectively, indicating their differ-
ent topologies. In the quantum transport through disordered
regions, the opposite loop polarizations for the linked and
unlinked cases also intrinsically reveals the topology.

A long range smooth potential barrier leads to strong
suppression of large momentum transfer, and therefore gives

rise to an even clearer picture of loop transports. For different
potential heights, transmissions show almost perfect “on”
(quantized) and “off” (zero) behaviors for different loops.
This can be used as a controllable loop filter and detector.
We expect that our findings can spur more researches on the
realization of nodal line semimetals and the utilization of
loop degree of freedom as a new carrier of information, i.e.,
looptronics.
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APPENDIX

1. Mode matching approach

Our simulation method is mainly based on the algo-
rithm developed by T. Ando, in a Green’s function formal-
ism [38,39]. Due to the Fisher-Lee relation [43–45], it is
mathematically equivalent to the wave function approach,
e.g., Kwant [46].

Consider a wire infinitely extending along the x direction
with N degrees of freedom in a primitive cell or a “slide.” The
equation of motion can be written as

−H†
01ci−1 + (EI − H00)ci − H01ci+1 = 0, (A1)

where H00 is the Hamiltonian inside a slide and H01 is
the hopping term between the nearest neighbor slides. ci is
the wave-function coefficient describing the amplitude at the
position i. Then, we have the transfer matrix

T =
(

H−1
01 (EI − H00) −H−1

01 H†
01

I 0

)
, (A2)

which satisfies (
ci+1

ci

)
= T

(
ci

ci−1

)
. (A3)

Solve the equation below

T

(
ci

ci−1

)
= λ

(
ci

ci−1

)
, (A4)

and the 2N eigenvalues and 2N eigenvectors for ci are ob-
tained, which can be classified into N right- and N left-going
channels. Let U (±) = (U1(±), ...,UN (±)) be c0 of right and
left-going solution corresponding to (λ1(±), ..., λN (±)). The
Fermi velocity corresponding to channel n is given by

vn = −2

h̄
Im(λnU†

nH01Un), (A5)

where Un is normalized here.
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Let us define

�(±) =

⎛
⎜⎜⎝

λ1(±)

. . .

λN (±)

⎞
⎟⎟⎠, (A6)

and

F(±) = U (±)
(±)U−1(±), (A7)

which satisfies

ci(±) = F(±)i−i′ci′ (±). (A8)

For the scattering problem, the infinite wire can be divided
into three regions: left lead, scattering region, and right lead.
After taking the effects of leads into account as self energies,
the scattering matrix elements are found. For the incident
channel ν with velocity vν and outgoing channel μ with
velocity vμ, the transmission coefficient is

tμν =
√

vμ

vν

{U−1(+)GN+1,0H†
01[F−1(+) − F−1(−)]U (+)}μν,

(A9)
and the reflection coefficient is

rμν =
√

vμ

vν

{U−1(−)G0,0H†
01[F−1(+) − F−1(−)−1]U (+)}μν,

(A10)
where GN+1,0 and G0,0 are Green functions, which can be
efficiently calculated by a slide-to-slide recursive method
based on Dyson equation of Green’s functions [47].

2. Scattering amplitudes of barrier tunneling
at normal incidence

Here we show some details of channel resolved scattering
amplitudes associated with the square barrier [Eq. (2)] and the
smooth barrier [Eq. (12)]. The numeric label of each channel
is defined in Figs. 1(c) and 1(d) for the linked and unlinked
cases, respectively.

a. Square barrier

The scattering amplitudes through square barrier [Eq. (2)]
tunneling at normal incidence for the linked case m0 = 2.5
and the unlinked case m0 = 3.3 are shown in Fig. 9 and
Fig. 10, respectively. After a careful observation, it can be
found that for both linked and unlinked cases, (1) state ‘1’
can be transmitted into states ‘1,3’ and reflected back to
states ‘−2,−4;’ (2) state ‘2’ can be transmitted into states
‘2,4’ and reflected back to states ‘−1,−3;’ (3) state ‘3’ can
be transmitted into states ‘1,3’ and reflected back to states
‘−2,−4;’ (4) state ‘4’ can be transmitted into states ‘2,4’ and
reflected back to states ‘−1,−3.’ These phenomena are due
to the pseudospin conservation, represented by the solid and
dashed bands in Figs. 1(c) and 1(d). Also notice that for the
linked case in Fig. 1(c), states ‘−1, 1,−3, 3’ belong to the red
loop while states ‘−2, 2,−4, 4’ belong to the blue loop, while
for the unlinked case in Fig. 1(d), states ‘−1, 1,−2, 2’ belong
to the red loop while states ‘−3, 3,−4, 4’ belong to the blue
loop. Hence, the conclusions in Figs. 1(e) and 1(f) and the
numerical results in Fig. 2 can be obtained straightforwardly
after a classification of “red” and “blue” loop states.

(a)

(d)

(b)

(c)

FIG. 9. Scattering amplitudes of barrier tunneling at normal inci-
dence for the linked case m0 = 2.5, corresponding to Figs. 2(a), 2(c)
and 2(e). (a)–(d) are the scattering of the incident states ‘1,2,3,4,’
respectively. The numeric labels ‘1,2,3,4’ and ‘−1,−2, −3, −4’
for channels are shown in Fig. 1(c). The solid lines represent the
transmission results and the dashed lines represent the reflection
results. All the subfigures share the same legend.

b. Smooth barrier

The scattering amplitudes of smooth barrier [Eq. (12)]
tunneling at normal incidence for the linked case m0 = 2.5
with the potential range σ = 0.5 and σ = 2.5 are shown in
Figs. 11 and 12, respectively. The pseudospin conservation
still influences the scattering processes here. For example,

(a)

(d)

(b)

(c)

FIG. 10. Scattering amplitudes of barrier tunneling at nor-
mal incidence for the unlinked case m0 = 3.3, corresponding to
Figs. 2(b), 2(d) and 2(f). (a)–(d) are the scattering of the inci-
dent states ‘1,2,3,4,’ respectively. The numeric labels ‘1,2,3,4’ and
‘−1, −2, −3, −4’ for channels are shown in Fig. 1(d). Other nota-
tions are the same as Fig. 9.
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(a)

(d)

(b)

(c)

FIG. 11. Similar to Fig. 9 but for a smooth barrier σ = 0.5,
corresponding to Fig. 8(a).

state ‘1’ can only be transmitted into states ‘1,3’ and reflected
back to states ‘−2,−4.’ We can find that the curves of the
scattering amplitudes in Fig. 11 and Fig. 12 are smoother
than those for infinitely sharp potential barrier in Fig. 9.
For a larger σ , i.e., σ = 2.5 in Fig. 12, the Klein tunneling
with perfect transmission maintains even for enough large
V0, because of the suppression of large momentum transfer

(a)

(d)

(b)

(c)

FIG. 12. Similar to Fig. 9 but for a smooth barrier with a larger
σ = 2.5, corresponding to Fig. 8(b).

(i.e., effective prohibition of inter-“valley” scattering which is
far in the momentum space). Note that for the linked case,
states in channels ‘1,3’ belong to the red loop and states
in channels ‘2,4’ belong to the blue loop. Due to the band
structures in Fig. 1(c), the transmission plateaus of red and
blue loops drop down at different V0, leading to the loop
polarized transmissions, shown in Figs. 8(a)–8(c).
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