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Mean-field entanglement transitions in random tree tensor networks
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Entanglement phase transitions in quantum chaotic systems subject to projective measurements and in random
tensor networks have emerged as a new class of critical points separating phases with different entanglement
scaling. We propose a mean-field theory of such transitions by studying the entanglement properties of random
tree tensor networks. As a function of bond dimension, we find a phase transition separating area-law from
logarithmic scaling of the entanglement entropy. Using a mapping onto a replica statistical mechanics model
defined on a Cayley tree and the cavity method, we analyze the scaling properties of such transitions. Our
approach provides a tractable, mean-field-like example of an entanglement transition. We verify our predictions
numerically by computing directly the entanglement of random tree tensor network states.
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Quantum entanglement has become an invaluable tool for
studying the equilibrium and nonequilibrium properties of
many-body quantum systems [1,2]. Recently, a new class of
phase transitions separating phases with dramatically differ-
ent entanglement features has been discovered. An example
of such an entanglement transition that has attracted a lot
of attention is the many-body localization transition, where
many-body eigenstates change from volume-law to area-law
entanglement scaling as disorder is increased [3–6]. A fun-
damentally different class of models also exhibiting entan-
glement transitions is realized by chaotic quantum systems
subjected to random local projective measurements [7–20].
As a function of the rate of measurements, the entangle-
ment entropy of individual quantum trajectories goes from
volume-law to area-law entanglement scaling: Enough local
measurements can collapse the many-body wave function
into an area-law entangled state. Numerical studies in 1 + 1
dimensions indicate that this transition is continuous with
emergent conformal invariance at the critical point [11]. A
closely related transition was proposed earlier by tuning the
bond dimension of a state obtained at the boundary of a
two-dimensional (2D) random tensor network [21,22]. In all
such instances the entanglement entropy in the scaling limit
takes the universal form S − Sc = F ((g − gc)L1/ν ), with g the
parameter driving the transition—either the bond dimension
D in the case of random tensor networks, or the measurement
rate p for random quantum circuits—and Sc the entanglement
entropy at criticality.

Theories of such entanglement transitions have been pro-
posed using a replica approach for both random tensor net-
works [22], and (Haar) random quantum circuits [23–31]
combined with generalized measurements [16,17]. The calcu-
lation of the entanglement entropies in such circuits/networks
can then be mapped onto a two-dimensional statistical me-
chanics model: The area- to volume-law entanglement tran-
sition corresponds to an ordering transition in the statistical
mechanics model [16,17,22]. While this approach explains

the general scaling properties of entanglement transitions,
the resulting statistical mechanics models cannot be solved
in the replica limit except in some special cases. Computing
the scaling properties and the critical exponents of entangle-
ment transitions remains a formidable challenge.

In this paper, we propose a mean-field theory of entan-
glement transitions by studying random tree tensor networks.
(We expect that related transitions can also be realized in
certain models of random unitary dynamics with projective
measurements [32]). As a function of bond dimension D,
we show that random tree tensor network wave functions
go from area-law to logarithmic entanglement scaling. The
calculation of the entanglement entropy maps exactly onto a
replica statistical mechanics model defined on a Cayley tree,
which we argue has mean-field-like behavior. This allows us
to study this phase transition in detail using the so-called
cavity method [33]. Remarkably, the absence of loops on the
Cayley tree allows us to analyze analytically the universality
class of this transition in the replica limit. We verify our
predictions numerically by working directly with the quantum
states defined as random tree tensor networks.

Random tree tensor networks. We consider one-
dimensional quantum wave functions |ψ〉 given by tree tensor
networks (Fig. 1)—see Refs. [34–37] and references within.
The physical degrees of freedom are qudits of dimension d ,
which live at the boundary of the tree tensor network. Let
q be the coordination number of the tree, and D the bond
dimension of the tensor network. We choose the tensors to
be random [21], obtained by drawing the tensor for each
node of the tree independently from a featureless Gaussian
distribution characterized by zero mean and unit variance.
Because of the tree geometry, such wave functions can have
logarithmic entanglement scaling, contrary to matrix-product
states, for example.

Our main goal is to study the entanglement properties of
wave functions generated from this random ensemble. This
approach is inspired in spirit by random matrix theory, but it
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FIG. 1. Random tree tensor networks. Top: Tree tensor network
geometry—the physical quantum degrees of freedom live at the
boundary (“leaves”) of the tree. Bottom: The entanglement entropy
of a region A at the boundary can be expressed as the free-energy cost
of a domain wall of a classical statistical mechanics model defined
on the Cayley tree.

allows us to include some locality structure in the geometry
of the “bulk” tensor network, controlling the entanglement of
the boundary physical system. We will focus on the tensor-
averaged Renyi entropies

S(n)
A = 1

1 − n
log

tr ρn
A

(tr ρ)n
, (1)

where (· · · ) refers to averaging over random tensors, and ρA

is the reduced density matrix in some contiguous interval A
of size LA obtained from tracing out the complement of A in
ρ = |ψ〉〈ψ | (Fig. 1).

Statistical mechanics model. In order to compute these
Renyi entropies, we follow Refs. [16,17,22,29] and use a
replica trick log tr ρn

A = limm→0[(tr ρn
A)m − 1]/m. This allows

us to express (1) as

S(n)
A = 1

n − 1
lim
m→0

1

m
(FA − F0), (2)

with FA,0 = − logZA,0 and Z0 ≡ (tr ρn)m, ZA ≡ (tr ρn
A)m.

Using this exact identity, the calculation of the Renyi entropies
reduces to computing Z0 and ZA, and to evaluate the replica
limit (2). When m and n are integers, the averages in Z0 and
ZA can be evaluated analytically using Wick’s theorem. One
can then express the partition functions ZA and Z0 in terms
of a classical statistical mechanics model, whose degrees of
freedom are permutations gi ∈ SQ=nm labeling different Wick
contractions at each vertex of the tensor networks. Since the
degrees of freedom of this statistical mechanics model live on
the nodes of the tree tensor network, they form a Cayley tree,
and ZA and Z0 differ only in their boundary conditions. Using
the results of Ref. [22], we find that Z0 = ∑

{gi} e−H, with the
following nearest-neighbor Hamiltonian,

H = −
∑
〈i, j〉

J〈i, j〉C
(
g−1

i g j
)
, (3)

where C(g) counts the number of cycles in the permutation g,
J〈i, j〉 = log D with D the bond dimension for links connecting
bulk tensors, and J〈i, j〉 = log d (with d the dimension of the
Hilbert space of the boundary physical qudits) for boundary
couplings involving physical degrees of freedom. This Hamil-
tonian is invariant under global left/right multiplication of the
degrees of freedom gi by any permutation h ∈ SQ, so it has a
SQ × SQ symmetry. In this mapping, the trace over physical
degrees of freedom in Z0 = (tr ρn)m forces the permutations
on the boundary sites corresponding to the physical qudits
to be fixed to the identity permutation g∂ = g0 = ( ) in Z0.
Meanwhile, boundary permutations in ZA are fixed to identity
if they belong to A (the complement of A), whereas they are
fixed to a different permutation gSWAP = (12 . . . n)⊗m if they
belong to A. The permutation gSWAP arises from enforcing the
partial trace in ZA ≡ (tr ρn

A)m. Note that C(g) is maximum
for the identity permutation, so that the Hamiltonian (3)
corresponds to ferromagnetic interactions.

In the language of this statistical mechanics model, the
Renyi entropies (2) can be computed from the free-energy cost
of inserting a domain wall between the boundary permutations
g0 and gSWAP at the entanglement interval. This provides a
very simple picture of the scaling of the entanglement entropy
as a function [38] of bond dimension D. If D is small (near 1),
we expect the statistical mechanics model (3) to be disordered
(paramagnetic), and the free-energy cost in (2) will not scale
with LA: This corresponds to an area-law phase. If on the
other hand D is large, the statistical mechanics model is in
an ordered (ferromagnetic) phase with all bulk permutations
aligned and equal to g0, and the free-energy cost in (2) will be
given by the energy penalty of the bonds frustrated by the do-
main wall minimizing this energy (“minimal cut” through the
network). For large LA and generic intervals A, this minimal
domain wall cuts ∼ log LA bonds of the tensor network (Cay-
ley tree) corresponding to logarithmic entanglement scaling
SA ∼ (log D) log LA. This implies that the ordering transition
of (3) at a critical coupling Jc = log Dc corresponds to an
area-law to logarithmic scaling of the Renyi entropies of the
random tree tensor networks.

Q = 2 replicas and cavity method. In order to gain some
insight into the scaling of the entanglement entropy, we start
by analyzing the simpler case of Q = 2 replicas. As we will
argue below, the mean-field nature of the statistical mechanics
model on the Cayley tree will make critical properties mostly
independent of Q, allowing us to generalize this insight to
the replica limit Q → 0. For Q = 2, Eq. (3) is simply an
Ising model. If we let gi = ±1 be the two elements of S2

∼=
Z2, (3) reads H = −∑

〈i, j〉 J〈i, j〉(3 + gig j )/2, which up to an
irrelevant additive constant, is an Ising model with coupling
K = J/2 = (log D)/2. To proceed, we use the so-called cavity
method [33,39,40], which is a standard approach for solving
statistical mechanics problems on treelike graphs. We start
from an Ising model with coupling K , and generic boundary
fields hi acting on the boundary sites of the Cayley tree. It
is straightforward to show that all boundary spins can be
decimated, at the price of introducing new effective fields
acting on the next layer of the tree, which now forms the
new boundary. This process can then be iterated, and the
resulting recursion (“cavity”) equations for uniform boundary
fields are then given by [

∑
σi=±1 exp(Kσiσ j + h(k+1)σi )]

q−1 =
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C exp(h(k)σ j ), for some constant C. Here, we have assumed
that we are working with Z0 for simplicity so that the
boundary fields are uniform, but this approach can be readily
extended to arbitrary inhomogeneous boundary fields. The
critical behavior of this model is then easily deduced from
solving for the cavity fields recursively [41]. Approaching
the transition from the paramagnetic phase, we find that the
magnetization at the root of the tree decays exponentially
with the number of layers N , 〈σ0〉 ∼ exp(−N/ξ ) with a cor-
relation length ξ = −1/ log[(q − 1) tanh K] that diverges at
the critical coupling Kc = arctanh[1/(q − 1)], which is finite
for coordination number q > 1. Expanding near the critical
point yields ξ ∼ |K − Kc|−ν , with ν = 1. On the ferromag-
netic side, we have 〈σ0〉 ∼ h ∼ (K − Kc)β , with β = 1/2. (A
procedure to access this exponent was proposed in Ref. [18]
in the context of random circuits). The order parameter ex-
ponent β = 1/2 takes the mean-field value for a transition
in the Ising universality class, a general feature of statistical
mechanics on the Cayley tree [42]. On the other hand, the
correlation length exponent ν = 1 is inherited from quasi-one-
dimensional physics, as has been noted previously [43].

Entanglement scaling. The cavity method above can read-
ily be applied to arbitrary configurations of the boundary
fields, and can be used to evaluate Eq. (2) in the case of
Q = 2 replicas [41]. We denote the averaged free-energy cost
of a domain wall S(LA) = FA − F0, which is the quantity
which becomes entanglement entropy in the limit Q → 0
from Eq. (2). On the paramagnetic side of the transition [small
K = (log D)/2], the Ising order decays ξ layers into the bulk,
so we expect the entanglement to saturate to a constant value
S(LA → ∞) ∝ log ξ , corresponding to area-law scaling. This
is consistent with our numerical results [41], which indicate a
divergence S(LA → ∞) ∼ −α log(Kc − K ) as K → K−

c . The
saturation to this area-law value occurs for LA � ξ
 with the
crossover scale ξ
 = eξ = eC/|K−Kc|. Therefore, while ν = 1 in
the bulk, in terms of the entanglement scaling the relevant di-
verging length scale diverges exponentially near the transition,
due to the tree geometry. On the ordered side of the transition
(K > Kc), S(LA) is proportional to the energy cost of the
domain wall which scales as the number of layers into the bulk
∼ log LA. As expected from general scaling arguments, the
prefactor is set by ξ , and we find S(LA) ∼ log LA

ξ
. Finally, scal-

ing at the critical point is required to be S(LA) ∼ α log log LA

by general scaling considerations from the behavior in the
phases, in good agreement with our numerical solution to the
cavity equations for the system sizes we can access (Fig. 2).
In summary, we have

S ∼
⎧⎨
⎩

log LA

ξ
+ α log log LA, K → K+

c ,

α log log LA, K = Kc,

α log ξ, K → K−
c .

(4)

We find that our results are consistent with the entangle-
ment scaling at entanglement transitions in quantum chaotic
systems subject to projective measurements or in wave func-
tions given by square random tensor networks upon replac-
ing log LA → LA [8,11,22]. This is because geodesics (min-
imal cut minimizing the domain wall energy at large bond
dimension) in flat 2D Euclidean space are given by straight

FIG. 2. Entanglement scaling. Collapse of the boundary domain
wall free-energy cost for Q = 2 replicas, as a proxy for the entangle-
ment entropy in the replica limit Q → 0. For K = (log D)/2 > Kc

the domain wall mostly follows a minimal cut through the bulk,
so its energy scales logarithmically with the interval size LA. For
K < Kc, the domain wall fluctuates through the bulk over a number
of layers given by the correlation length, which diverges as ξ ∼
|K − Kc|−ν with ν = 1. Inset: At criticality, the entanglement scales
as S ∼ log log LA.

lines, whereas they scale with the logarithm of the size of
region A on the Cayley tree. These different regimes can be
summarized by the universal scaling form S − Sc = F ((K −
Kc)(log LA)1/ν ) with ν = 1 shown in Fig. 2.

Replica limit. So far our results for the bulk critical expo-
nent and for the entanglement scaling (4) were inferred from
the case of Q = 2 replicas for simplicity. We now discuss
how one can obtain the critical properties in the replica limit
Q → 0 of Eq. (2). It is possible [41] to apply the cavity
method to the model (3), but the number of cavity fields is
then given by the number of irreducible representations of
SQ. As a result, the replica limit Q → 0 is still out of reach
on the Cayley tree. To proceed, we use the following trick
based on universality: We modify the Boltzmann weights of
the model Eq. (3) while preserving the SQ × SQ symmetry
of the Hamiltonian (3). Therefore, we introduce a different
statistical mechanics model,

Hmodified = −
∑
〈i, j〉

log
[
1 + Kχ̄

(
g−1

i g j
)]

, (5)

where χ̄ (g) = Q−1
Q! χ (g) with χ the character of the standard

representation of the symmetric group SQ. This model is
still invariant under left/right multiplication by elements of
SQ, and since the standard representation is faithful and well
defined for any Q, we do not expect this modified model to
have an enlarged symmetry. [This is inspired by the O(N )
model, whose critical behavior in 2D was understood by
Nienhuis [44] by introducing a different model with the same
symmetry group].

Remarkably, for uniform boundary conditions g∂ = g0 =
( ) (corresponding to Z0), the modified model (5) is still
solvable on the Cayley tree with coordination number q = 3
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using a single cavity equation for any Q. The cav-
ity equation reads

∑
gi

[1 + h(k)χ̄ (gi )]2[1 + Kχ̄ (g−1
i g j )] =

C(1 + h(k−1)χ̄ (g j )). Using standard representation theory re-
sults, we find the following recursion relation for the boundary
cavity fields,

h(k−1) = K

Q!

2h(k) + (h(k) )2 Q−1
Q!

1 + (h(k) )2
(Q−1

Q!

)2 . (6)

We can now analytically continue Q in this equation, and
study the critical behavior as a function of Q. We analyzed
the fixed points of this recursion relation and their stability
as a function of Q. For Q > 1, we find first-order transitions
(with Q = 2 being special), while for Q < 1 there is a second-
order transition for Kc = Q!/2. For K < Kc, the correlation
length reads ξ−1 = log Kc

K , so we find ν = 1 as in the Ising
(Q = 2) case. For K > Kc, the cavity fields flow to a nonzero
value which scales as ∼(K − Kc), so we find β = 1, which
is the mean-field magnetization exponent of the n-state Potts
model with n < 2. In the replica limit, we thus find ν = β =
1, which coincide with the critical exponents of the n-state
Potts model on the Cayley tree (for n < 2). Those exponents
do not depend on the replica number Q, as expected from
mean-field critical behavior in general—the only exception is
the exponent β which happens to be different for Q = 2 for
symmetry reasons. We expect these exponents to control the
critical behavior of our model (3) in the replica limit Q → 0,
and while we unfortunately cannot solve the modified model
(6) with inhomogeneous boundary conditions, we also expect
the general scaling (4) with ν = 1 to hold for Q → 0.

Numerical results. We verify our predictions by generat-
ing tree tensor network states and computing their entangle-
ment properties numerically. Each state consists of random,
Gaussian-distributed tensors of dimension D on each node
of the Cayley tree. By tuning the bond dimension we find a
phase transition from area-law to logarithmic scaling of the
entanglement entropy, with D = 1 (trivially) showing area-
law scaling and D = 3 showing clear logarithmic scaling.
As the dimension of tensors must be integer, we augment
these states with additional tensors on each bond of the tree
to interpolate between integer bond dimensions D = 1 and
D = 3. With the size of the tensors on the nodes fixed at
D = 3, we insert on each bond diagonal tensors with elements
(1, γ , γ 2), with the parameter γ tuned continuously from γ =
0, corresponding to D = 1, to γ = 1, corresponding to D = 3
(see Ref. [41]). Upon tuning γ , we find a phase transition from
area-law to logarithmic scaling of the entanglement entropy

FIG. 3. Numerical results. Left panel: Averaged von Neumann
entropy for random tree tensor network states of size L = 256 as
a function of the subsystem size LA for various values of γ , where
γ ∈ [0, 1] is a parameter tuning continuously the bond dimension
between D = 1 and D = 3 (see text). Right panel: Collapse of the
data with γc = 0.47 and ν = 1.

(Fig. 3), consistent with the mean-field theory results detailed
above. We estimate the location of the critical point γc to be
in the interval [0.4, 0.6] and the critical exponent ν to take
a value in [1, 1.5]. The precision is limited due to the rather
small depth of the Cayley tree that is accessible numerically;
however, we find that the quality of the collapse improves
with system size and is comparable to our results for the Ising
model on equally small Cayley trees [41].

Discussion. We have studied a new entanglement transi-
tion from area-law to logarithmic scaling of entanglement
in random tree tensor networks. This transition can be an-
alyzed using a mapping onto a replica statistical mechanics
model on the Cayley tree which exhibits mean-field critical
behavior. We computed exactly the critical exponents ν =
β = 1 relevant to this entanglement transition, and inferred
the general scaling properties of the entanglement near criti-
cality. We checked our predictions numerically by computing
directly the entanglement of random tree tensor network
states. It would be interesting to find other mean-field exam-
ples of entanglement transitions, especially in the context of
measurement-induced transitions in random quantum circuits.
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