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Skyrmion mass from spin-phonon interaction
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The inertial mass of a skyrmion arising from spin-phonon interaction is computed exactly within a toy model
of the magnetoelastic coupling in a ferromagnetic film. The mass scales as the square of the strength of the
magnetoelastic coupling, as the square of the film thickness, and as the first power of the lateral size of the
skyrmion. For nanometer skyrmions it is in the ballpark of a few electron masses but may be significantly
greater in materials with large magnetostriction. These findings are expected to stand for any complex structure
of spin-phonon interaction in real materials. They must be taken into account when addressing the speed of
information processing based upon skyrmions.
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Magnetic skyrmions are swirls of magnetization in thin
films. They proliferated into condensed matter physics [1–7]
from field models of atomic nuclei and topologically stable el-
ementary particles [8–12]. In ferro- and antiferromagnets they
are topological defects of the uniform magnetization (Néel
vector) that cannot be easily destroyed. Unlike micron-size
magnetic bubbles studied in the past [13,14], skyrmions can
be small compared to the domain wall thickness, making them
promising candidates for topologically protected nanoscale
information processing [15–20].

Skyrmions can be moved by current-induced spin-orbit
torques [20–23]. The speed of the information processing with
skyrmions depends on their inertia. The effort to compute
and measure skyrmion inertial mass has been limited so far.
The mass of a skyrmion bubble of dipolar origin, similar to
the Döring mass [24] of the domain wall in the thin-wall
approximation, has been discussed by Makhfudz et al. [25].
Large inertia has been reported in experiments on skyrmion
breathing modes in the gigahertz frequency range [26]. Sim-
ilar effects have been observed in the breathing and hypocy-
cloid motion of skyrmions by Shiino et al. [27]. Inertial mass
of electromagnetic origin due to excitation of magnons by a
moving skyrmion has been studied by Lin [28]. Psaroudaki
et al. [29] have demonstrated that translational symmetry
makes classical skyrmions massless. They computed the mass
arising from defects, nonuniformity of the magnetic field,
and confining potentials, and elucidated the contribution of
thermal and quantum fluctuations to the mass. Kravchuk et al.
[30] used collective coordinates to demonstrate that skyrmion
dynamics in a continuous spin-field model is massless even
if one accounts for magnon excitations. Massive skyrmions
have been reported by Li et al. [31] in simulations of col-
lective magnetic dynamics on a two-dimensional honeycomb
lattice. Measurement of the mass of the oscillating skyrmion
in a confined geometry of a semicircular nanoring has been
recently proposed by Liu and Liang [32].

The range for the skyrmion mass obtained in experiments is
rather broad. It is not always clear whether it is associated with

the confined geometry or more fundamental effects studied
by theorists. The latter hints towards zero skyrmion mass
in the presence of full translational invariance. The crystal
lattice violates such invariance. In this Rapid Communication
we show that skyrmions acquire a finite mass due to the
spin-phonon interaction even within translationally invariant
continuous spin-field and elastic theories. The physics behind
the contribution of the atomic lattice to the skyrmion mass
is transparent. The time-dependent spin field corresponding
to the moving skyrmion induces, through the magnetoelastic
coupling, the motion of the atoms whose inertia contributes
to the mass of the skyrmion. Materials that host skyrmions
are rather complex. In addition to the dominant exchange
interaction, they possess various other kinds of magnetic
interactions that are important for stabilization of skyrmions,
such as Dzyaloshinskii-Moriya, Zeeman, and crystal-field
interactions [5,18,33–35]. Pertinent to our purpose, we shall
consider in this Rapid Communication a toy model of the
Belavin-Polyakov skyrmion [1] interacting with an isotropic
elastic environment. We shall study two simple forms of the
magnetoelastic coupling: The extreme anisotropic case and
the fully isotropic case. The skyrmion is modeled by the
dimensionless three-component spin field S of unit length
given by [1]

Sx = 2λ(x cos γ − y sin γ )

λ2 + x2 + y2
, Sy = 2λ(x sin γ + y cos γ )

λ2 + x2 + y2
,

(1)

Sz = λ2 − x2 − y2

λ2 + x2 + y2
, S2 = S2

x + S2
y + S2

z = 1,

confined to the xy layer of thickness d , with S looking down
at infinity. Here λ can be viewed as the lateral size of the
skyrmion and γ describes the rotation of the spin field, with
γ = 0, π and γ = ±π/2 corresponding to the Néel-type and
Bloch-type skyrmions, respectively (see, e.g., Ref. [36]). Such
a spin field is typical for nanometer-size skyrmions whose
shape is dominated by the exchange interaction. The magne-
toelastic interaction, which is weaker by orders of magnitude,
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FIG. 1. Skyrmion in a magnetic layer confined between two
nonmagnetic solids. Arrows show directions of the magnetization.

would generally be of the form Aik jl uikS jSl , where

uik = 1

2

(
∂ui

∂rk
+ ∂uk

∂ri

)
(2)

is the strain tensor, u is the phonon displacement field, and
tensor Aik jl represents components of the magnetoelastic en-
ergy density.

We shall start with the extreme anisotropic form of the
magnetoelastic coupling, AuzzS2

z , that together with the elastic
contribution yields for the energy

E =
∫

d3r

[
1

2
ρ

(
∂u
∂t

)2

+ μ

(
u2

ik + σ

1 − 2σ
u2

ll

)
+ AuzzS

2
z

]
.

(3)
To simplify the problem we assume that the magnetic layer
is confined between two nonmagnetic semi-infinite solids
(see Fig. 1) having the same mass density ρ, the same
shear modulus μ > 0, and the same Poisson coefficient σ =
E/(2μ) − 1 (satisfying −1 � σ � 1/2), with E being the
Young’s modulus [37]. If the speed of the moving skyrmion is
small compared to the speed of sound, the elastic deformation
adiabatically follows the skyrmion via an extremal equation
for the energy:

∇2u + 1

1 − 2σ
∇(∇ · u) = − A

μ

∂S2
z

∂z
ez, (4)

where ez is the unit vector along the z axis. Its solution is

ui(r) = − A

μ

∫
d3r′Giz(r − r′)

(
∂S2

z

/
∂z

)
, (5)

where

Gik = 1

4π

[
δik

r
− 1

4(1 − σ )

∂2r

∂ri∂rk

]
(6)

is the Green’s function [37] of Eq. (4).
If the skyrmion moves along the x axis at a speed v

the solution (5) must be replaced with u(x − vt, y, z). Its
substitution into the first term of Eq. (3) gives for the kinetic
energy, Ek = 1

2 MSv
2, where

MS = ρ

∫
d3r

(
∂u
∂x

)2

(7)

is the mass of the skyrmion due to spin-phonon coupling.
Substitution of Eq. (5) in the expression for the mass yields

MS = ρ

(
A

μ

)2 ∫
d3r′

∫
d3r′′Fzz(r′ − r′′)

∂S2
z (r′)
∂z′

∂S2
z (r′′)
∂z′′ ,

(8)
where

Fzz(r′ − r′′) = ∂

∂x′
∂

∂x′′

∫
d3r Giz(r − r′)Giz(r − r′′). (9)

Using the Fourier transform of the Green’s function (6),

Gik (k) = 1

k2

[
δik − 1

2(1 − σ )

kikk

k2

]
, (10)

Fzz can be written as

Fk j (r′ − r′′) =
∫

d3k

(2π )3
e−ik(r′−r′′ ) k2

x

k4

[
δk j − p

kkk j

k2

]
, (11)

where

p = 1

(1 − σ )

[
1 − 1

4(1 − σ )

]
(12)

is the parameter of the elastic theory satisfying 7/16 � p � 1.
At this point it suffices to consider a thin-film approxima-

tion, d � λ, where one can write

S2
z (r) = S2

z (ρ)dδ(z) (13)

with ρ = xex + yey being the radius vector in the xy plane of
the magnetic layer. Integrating by parts in Eq. (8) one obtains

MS = ρ

(
A

μ

)2

d2
∫

d2ρ ′
∫

d2ρ ′′K (ρ′ − ρ′′)S2
z (ρ′)S2

z (ρ′′),

(14)
with

K (ρ) =
∫

d3k

(2π )3

k2
x k2

z

k4

[
1 − p

k2
z

k2

]
exp(−ikxx − ikyy). (15)

Changing the order of integration in Eq. (14) one can write it
as

MS = ρ

(
A

μ

)2

d2
∫

d3k

(2π )3

k2
x k2

z

k4

[
1 − p

k2
z

k2

]
f (k⊥), (16)

where k⊥ =
√

k2
x + k2

y and

f (k⊥) =
∣∣∣∣
∫

d2ρ S2
z (ρ) exp(ik⊥ · ρ)

∣∣∣∣
2

. (17)

Its independence on kz allows one to integrate over kz in
Eq. (16). This leads to

MS = 1

16π
ρ

(
A

μ

)2

d2

(
1 − 3

4
p

) ∫ ∞

0
dk⊥k2

⊥ f (k⊥). (18)
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We now have to compute f (k⊥). Substituting Sz(ρ) =
(λ2 − ρ2)/(λ2 + ρ2) from Eq. (1) into Eq. (17), we get

f (k⊥) = (8π )2λ4u2(k⊥λ), u(q) = −
∫ ∞

0
dr r

r3J0(qr)

(1 + r2)2
,

(19)
where J0 is the Bessel function. This gives for the mass

MS = 4πρ

(
A

μ

)2(
1 − 3

4
p

)
d2λ

∫ ∞

0
dq q2u2(q). (20)

Here u(q) given by Eq. (19) can be expressed via special
functions, which facilitates numerical computation of the
integral. The answer yields

MS = 0.787

(
1 − 3

4
p

)(
A

μ

)2

ρ d2λ. (21)

We have double-checked this result by performing a more
tedious integration in real space without replacing the layer
of thickness d with a δ function. It produces the same answer
with the numeric factor given by

c = 1

16π

∫
d2ρ̄ ′

∫
d2ρ̄

[
S2

z (ρ̄′ + ρ̄) − S2
z (ρ̄′)

]2 2x̄2 − ȳ2

ρ̄5
,

(22)
where ρ̄ = ρ/λ. This four-dimensional integral reduces to a
one-dimensional integral of an awkward elementary function
that has a numerical value of 0.785, very close to the factor
in Eq. (21). Notice that for the anisotropic magnetoelastic
interaction that we have studied, the mass does not depend
on the chirality angle γ .

To see how general this result is, consider now isotropic
magnetoelastic coupling of the form AuikSiSk . Repeating the
steps of the previous calculation we obtain for the skyrmion
mass

MS = ρ

(
A

μ

)2

d2
∫

d3k

(2π )3

k2
x

k4

[
|G|2 − p

|k · G|2
k2

]
, (23)

where

G =
∫

dx dy(k · S)S exp(−ikxx − ikyy). (24)

This calculation requires more effort as it involves all three
components of the skyrmion spin field. The final answer reads

Ms = c(p, γ )ρ

(
A

μ

)2

d2λ, (25)

with the numerical factor given by

c(p, γ ) = 4.118 + 0.727 cos(2γ ) − p[1.612 + 0.795 cos(2γ )

+ 0.255 cos(4γ )]. (26)

Thus, in general, one should expect the skyrmion mass to
depend on both the elastic properties of the crystal and the
chirality of the skyrmion.

The majority of materials have p ∼ 1. At p = 1 one obtains
from Eq. (26) c = 2.186 for the Néel skyrmion (γ = 0) and
c = 2.316 for the Bloch skyrmion (γ = π/2). Notice that this
factor for the anisotropic magnetoelastic coupling at p = 1 is

0.197, which is an order of magnitude smaller. Up to that fac-
tor the proportionality of the skyrmion mass to ρ(A/μ)2d2λ

is robust. The model correctly captures universal scaling of
the mass as the square of the strength of the magnetoelastic
coupling, the square of the thickness of the ferromagnetic
layer, and the first power of the lateral size of the skyrmion.
Notice that the proportionality of the skyrmion phonon mass
to its size instead of its volume (V ∼ dλ2) is related to the
fact that only spin-field derivatives contribute to the effect.
If a thin-wall skyrmion bubble (or a cylindrical domain) of
radius R were considered instead, the mass would have been
proportional to the area of the wall and would scale linearly
with R.

In a homogeneous system the mass of the skyrmion is
determined by the magnetoelastic interaction and the shape
of the skyrmion which for small skyrmions is dominated
by the exchange. We computed it rigorously for an arbi-
trary skyrmion size λ in the lowest order on the magne-
toelastic interaction. In practice, the size of the skyrmion
is determined by the interplay between Dzyaloshinskii-
Moriya, crystal-field, and Zeeman interactions. However, in
the leading order, these interactions do not contribute to the
skyrmion mass.

To estimate the magnitude of the effect, notice that the
magnetoelastic energy density A is of relativistic origin (it
often comprises a noticeable part of the magnetocrystalline
anisotropy), while the shear modulus μ is of electrostatic
origin arising from the coupling between atoms in a crystal.
This allows one to roughly estimate the ratio A/μ to be in
the ballpark of 10−4. At ρ ∼ 5 × 103 kg/m3 and d ∼ 2 nm
it gives MS of the order of a few electron masses for a
skyrmion of size λ ∼ 10 nm. However, in materials with high
magnetostriction this mass can be significantly greater as it
scales as the square of the strength of the magnetoelastic
coupling.

Note that, in principle, the addition of the magnetoelastic
term to the energy of the skyrmion, determined in our model
by the exchange constant J , results in the perturbation of the
skyrmion shape, which adds corrections to the shape given by
Eq. (1). Adding the exchange energy density, 1

2 J (∂iS · ∂iS), to
Eq. (3) it is easy to see with the help of Eq. (4) that these
corrections are negligible as long as the size of the skyrmion
is small compared to (

√
Jμ/A)a (with a being the lattice

spacing), which would be typically in the micrometer range.
For a nanoscale skyrmion the corresponding modification
of our result for the mass is negligible too. We have not
included thermal phonons into our consideration. They enter
the problem trivially through the independently measurable
temperature dependence of elastic and magnetoelastic con-
stants, μ(T ), σ (T ), and A(T ).

The inertial mass enters the kinetic term in the Thiele
equation that describes the motion of skyrmions under the
action of the external force. It determines the characteristic
frequency (see, e.g., Ref. [25]), h̄/(MSa2), of the oscillating
motion of the skyrmion when it is manipulated by, e.g., the
magnetic field gradient or a spin-polarized electric current. A
common source of the skyrmion mass considered in literature
is a confining potential. Without it the translational invariance
makes the mass of the skyrmion zero [29] unless one takes
into account the always present magnetoelastic interaction,
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as we did in this Rapid Communication. When it is weak
and the skyrmion is small, its inertial mass is small too and
the characteristic frequency is too high to be of any concern
for applications of skyrmions as memory units. However, in
materials with high magnetostriction it can easily be in the
upper gigahertz range, thus imposing a practically important
limit on the speed of a skyrmion-based computer.

Our results on the scaling of the inertial mass on the
strength of the magnetoelastic coupling, skyrmion size, and
the thickness of the film must stand for antiskyrmions and for

other similar topological spin objects such as antiferromag-
netic skyrmions, merons, etc. Using the framework proposed
in this Rapid Communication one can develop a software
package for obtaining masses of such objects in homogeneous
materials with arbitrary crystal symmetry and arbitrary struc-
ture of the magnetoelastic coupling.
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