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Two-photon driven magnon-pair resonance as a signature of spin-nematic order
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We theoretically study the nonlinear magnetic resonance driven by intense lasers or electromagnetic waves in
a fully polarized frustrated magnet near a less-visible spin-nematic ordered phase. In general, both magnons and
magnon pairs (two-magnon bound state) appear as the low-energy excitation in the saturated state of spin-nematic
magnets. Their excitation energies are usually in the range between 10 GHz and 10 THz. Magnon pairs with
angular momentum 2h̄ can be excited by the simultaneous absorption of two photons, and such multiphoton
processes occur if the applied THz laser is strong enough. We compute laser-driven magnetic dynamics of a
frustrated four-spin system with both magnon (h̄) and magnon-pair (2h̄)-like excitations, which is analogous to
a macroscopic frustrated magnet with a spin-nematic phase. We estimate the required strength of the magnetic
field of a laser for the realization of two-photon absorption, taking into account dissipation effects with the
Lindblad equation. We show that an intense THz laser with an ac magnetic field of 0.1–1.0 T is enough to
observe magnon-pair resonance.
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Introduction. Laser science and technology have pro-
gressed in the last decades, and have stimulated the study
of condensed matter and nonequilibrium physics because the
progress makes it possible to observe or create a variety of
excitations in solids, liquids, and so on. In recent years, the
laser science in the range of 0.1–1 THz [1–4] has greatly
developed and we can use THz-laser pulses with an intensity
of 1 MV/cm (∼0.3 T). As a result, it is becoming possible to
control magnetic excitations or textures with a laser because
the photon energy in the THz range is comparable to that of
magnetic excitations, especially those of antiferromagnets [5].
Photoinduced magnetic phenomena have also been actively
explored as issues of magneto-optics [6] and spintronics [7].
Several groups have observed linear and nonlinear magnetic
responses for THz lasers or waves: for instance, large mag-
netic resonances driven by THz lasers or waves [8,9], high
harmonic generation (HHG) induced by a THz-laser pulse in
an antiferromagnetic insulator [10], electromagnon resonance
driven by an electric field of THz waves [11–13], dichroisms
in a ferrimagnet driven by THz vortex beams [14], etc. In
addition, the electron spin resonance (ESR) driven by electro-
magnetic waves in the range between 10 GHz and 1.0 THz has
long been studied [15–25]. Microscopic or quantum theories
for magnetic dynamics driven by intense electromagnetic
waves have also begun to develop: Floquet engineering in
magnetic systems [26–30], control of exchange couplings
in Mott insulators [31,32], ultrafast creation or control of
magnetic defects in chiral magnets [33–36], applications of
topological light waves [37,38], laser-driven spin current in
magnetic insulators [39,40], HHG in quantum spin systems
[41], etc.
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Motivated by these activities, in this Rapid Communi-
cation, we theoretically consider how to detect a signature
of less-visible spin-nematic (quadrupolar) order in magnetic
insulators with a laser or electromagnetic wave. A spin-
nematic ordered phase [42–44] is a physical state with a spin
quadrupolar order and without any spin dipolar (magnetic)
order. Its order parameter is defined as an expectation value
of the tensor product of two spins. In the present work, we
focus on the spin-nematic order in Sx-Sy plane defined by
〈S+

r S+
r′ + S−

r S−
r′ 〉, which accompanies the breaking of U(1)

spin rotation symmetry around the Sz axis. It is important to
inhibit the usual spin order for the emergence of such spin-
nematic states and thereby frustrated magnets often become
a good candidate. Another point is that not only standard
magnons but also magnon pairs (molecules of two magnons)
[45–47] usually appear in field-induced fully polarized (i.e.,
ferromagnetic) states of spin-nematic magnets [see Fig. 1(a)
and the Supplemental Material [48]]. If the applied magnetic
field is decreased and the magnon-pair band becomes lower
than the energy of the saturated state, the Bose-Einstein
condensation (BEC) of magnon pairs occurs. The product of
neighboring spins S−

r S−
r′ (S+

r S+
r′ ) can be viewed as the creation

(annihilation) operator of a magnon pair. In their BEC state,

0

FIG. 1. (a) Generic band structures of a magnon and magnon pair
in the field-driven fully polarized state of a frustrated magnet near a
spin-nematic phase [48]. (b) Frustrated four-spin model [see Eq. (1)].
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these operators have finite expectation values 〈S±
r S±

r′ 〉 �= 0 and
therefore it means the emergence of a spin-nematic order. This
is a typical scenario for generating a spin-nematic order.

Generally, it is quite difficult to detect clear evidence of
the spin-nematic order compared to usual magnetic orders
because its detection requires a direct observation of a ten-
sor product of two spins 〈S+

r S+
r′ + S−

r S−
r′ 〉 or a four-point

spin-nematic correlation function such as 〈S+
r S+

r+δ
S−

0 S−
δ
〉.

For a spin-nematic quasi-long-range ordered phase in one-
dimensional magnets, it has been shown [49,50] that NMR
[51–55], neutron scattering spectra [56,57], and the spin
Seebeck effect [58] are very useful to detect its signature,
while clear experimental ways of detecting spin-nematic long-
range orders have not been well established [59–61]. On the
other hand, as we mentioned above, magnon-pair excitations
almost always appear in the saturated state of spin-nematic
magnets including both spin-nematic long-range and quasi-
long-range ordered phases. We here discuss a method of
observing magnon pairs with intense laser or electromagnetic
waves as a way of obtaining indirect but strong evidence of
spin-nematic orders. Magnons and photons carry an angular
momentum h̄, while magnon pairs have an angular momentum
2h̄. Therefore, magnon pairs can be excited through two-
photon absorption and such multiphoton processes can be
realized with a sufficiently strong laser. We compute the
time evolution of laser-driven spin dynamics in a frustrated
nanospin model that is analogous to spin-nematic magnets.
We take into account the dissipation effect, which is quite
important to estimate realistic spectra of magnon-pair reso-
nance, by applying a quantum master equation with the Lind-
blad approximation. We show that magnon-pair resonance
spectra can be detected by currently available THz lasers or
GHz waves.

Model and method. Here, we define our model for study-
ing laser-driven spin dynamics. We focus on the frustrated
four-spin model described by Fig. 1(b). The Hamiltonian is
given by

H0 =
∑

j=1−4

(
J1S j · S j+1 + Δ1Sz

jS
z
j+1

) − HSz
tot

+
∑
j=1,2

(
J2S j · S j+2 + Δ2Sz

jS
z
j+2

)
, (1)

where S j is the electron spin- 1
2 operator on the jth site ( j:

mod 4), and Sα
tot = ∑4

j=1 Sα
j is the sum of four spins. Here,

J1,2 are the competing exchange interactions, �1,2 are the
Ising anisotropy constants, and H = gμBh0 is the strength of
Zeeman coupling for an applied static magnetic field h0 (g
is the g-factor and μB is the Bohr magneton). This Rapid
Communication uses the unit of h̄ = 1. The eigenenergies and
normalized eigenstates for H0 are respectively described as
{En} and {|ψn〉} with E1 � E2 � · · · � E16. It is shown that
a two-dimensional system consisting of weakly coupled four-
spin models (1) exhibits a spin-nematic order at J1/J2 ∼ −2
[62]. The model (1) thereby may be regarded as an analog of
a bulk spin-nematic magnet. Hereafter, we adopt J1 = −2.2,
J2 = 1, and �1 = �2 = 0.24, in which the energy eigenstates
are classified as a spin quintet |Stot, Sz

tot〉 = |2, M〉, three spin
triplets |1, M〉p, and two spin singlets |0, 0〉q (p = 1, 2, 3 and
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FIG. 2. (a) Field (H ) dependence of energy levels |Stot, M〉 of
the nanospin model (1) with J1 = −2.2, J2 = 1, and �1 = �2 =
0.24. (b) Low-energy level structure at a high field H = 0.56. ω1(2)

is the magnon (magnon-pair) resonance frequency. The unit of
h̄ = 1 is used.

q = 1, 2). As we show later, a finite anisotropy �1,2 generates
a difference between the resonant frequencies of a magnon
and magnon pair. The details of {|ψn〉} and {En} are explained
in the Supplemental Material [48].

Figure 2(a) shows the field dependence of energy levels in
the low-energy range. Since we consider the fully polarized
state and magnon-pair-like excitations in the model (1), we
set H = 0.56, in which the ground state is fully polarized
(Sz

tot = 2) as shown in Fig. 2(a). Then we calculate the spin
dynamics under the application of an intense THz laser or
electromagnetic wave. The ac Zeeman coupling is given
by Hcp(t ) = A

2 (e−iωt S+
tot + e+iωt S−

tot ) for a circularly polarized
laser and Hlp(t ) = A cos(ωt )Sx

tot = A
2 cos(ωt )(S+

tot + S−
tot ) for

a linearly polarized one. ω is the angular frequency of the
laser, A = gμBhac denotes the amplitude of the magnetic
field of the laser, and S±

tot = Sx
tot ± iSy

tot. The ac electric field
is negligible since the THz photon energy is usually much
smaller than the charge gap of the magnets.

To see the time evolution of the nanomagnet with ac
Zeeman coupling, we numerically solve the quantum master
equation for density matrix ρ(t ) [63–66],

ρ̇(t ) = −i[H(t ), ρ(t )]

+
16∑
j=2

[N (ω j ) + 1]

(
Ljρ(t )L†

j − 1

2
{L†

j L j, ρ(t )}
)

+
16∑
j=2

N (ω j )

(
L†

j ρ(t )Lj − 1

2
{LjL

†
j , ρ(t )}

)
, (2)

with the fourth-order Runge-Kutta method. The first line on
the right-hand side represents the dynamics driven by the
Hamiltonian H(t ) = H0 + Hcp(t ) [or H0 + Hlp(t )], while the
second and third lines give a so-called Lindblad-type dis-
sipation. The Lindblad (jump) operator Lj = √

γ |ψ j−1〉〈ψ j |
and γ is the coupling constant between the system and en-
vironment. The value of h̄/γ is the typical time of relax-
ation. If there is a degeneracy Ej−1 = Ej , we modify the
jump operators as Lj−1 = √

γ /2|ψ j−2〉(〈ψ j−1| + 〈ψ j |), Lj =
0, and Lj+1 = √

γ /2(|ψ j−1〉 + |ψ j〉)〈ψ j+1|. We set N (ω j ) =
1/(eω j/(kBT ) − 1) with ω j = Ej − Ej−1 so that the system
relaxes to the equilibrium state of H0 at temperature T .
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A many-spin model with a spin-nematic phase is surely
superior to the nanospin model (1) for the purpose of studying
magnon-pair resonance. However, there are at least three
reasons why the model (1) is expected to capture the essential
aspect of a magnon-pair resonance in bulk systems. First,
the diffraction limit (∼wavelength) of a THz laser is much
larger than the lattice space of the magnets and therefore
only magnetic excitations around the wave number k = 0 are
relevant for a laser application. Even bulk magnets have only
a few discrete modes around k = 0 [22–25] and excited states
in the model (1) may be viewed as analogs of these k = 0
modes. Second, the positions of two magnons in a single
magnon pair are quite close to each other [44,45] because
the attractive force between two magnons stems from short-
range exchanges. Therefore, excited states with two (one)
down-spins in the model (1) are analogous to those with a
magnon pair (magnon) in a bulk magnet. The third point,
which is most important, is that one can practically take the
dissipation effect into account within the Lindblad approxi-
mation if the spin system is small enough. For the analysis of
realistic magnetic-resonance spectra, small interactions break-
ing spin conservation and the spin-bath coupling (e.g., mag-
netic anisotropies, dipole interactions, spin-phonon coupling,
etc.) are more important than many-body effects. In fact, the
observed ESR spectrum shapes of nanomagnets [67–69] are
often similar to those of bulk magnets [22–25]. The Lindblad
term phenomenologically describes the effect of such small
interactions and makes the system relax to the equilibrium
state. For correlated many-spin systems, even finding energy
eigenstates is difficult and treating the dissipation effect in
such bulk systems is a massively hard task. Moreover, if
we continuously apply a laser to an isolated many-spin sys-
tem decoupled to the environment, the system is generally
heated up. From these arguments, we discuss magnon-pair
resonance by using the model (1) with the quantum master
equation (2). The analysis of spin dynamics in dissipative
many-spin systems is left to a future study.

We note that the magnon-pair band is sometimes located
around a wave number kα = π (α = x, y, or z) in antiferro-
magnetic spin-nematic magnets [44–47,49,50]. Magnon pairs
on such a band do not seem to be coupled to applied THz or
GHz electromagnetic waves. However, even in those cases, if
the crystal symmetry is low enough and the unit cell includes
multiple magnetic ions (e.g., due to dimerization), the usual
ac Zeeman coupling of a THz laser can excite magnon pairs.
In addition, if magnetoelectric coupling [70] exists in the
spin-nematic magnets, excitations around kα = π can be often
created with a laser [11–13,28,29].

Analysis and results. Based on the master Eq. (2), we study
laser-driven magnetic resonance in the model (1) with J1 =
−2.2, J2 = 1, �1 = �2 = 0.24, and H = 0.56. We consider
the low-temperature range of kBT � 0.1. The initial state
at t = 0 is set to be a polarized equilibrium state with a
temperature T and then we add the ac Zeeman coupling Hcp or
Hlp. The Lindblad term helps the laser-driven system to return
to the equilibrium state at T . From the low-energy levels of
Eq. (1) shown in Fig. 2, one sees that |ψ1〉, |ψ2〉, and |ψ3〉
have Sz

tot = 2, 1, and 0, respectively. Therefore, we may view
|ψ2〉 and |ψ3〉 as magnon and magnon-pair states, respectively.
As we mentioned, magnons (magnon pairs) can be resonantly

FIG. 3. Spectra �Sz(ω) for different values of laser strength or
temperature in the case of (a), (c) a circularly polarized laser and (b),
(d) a linearly polarized laser. Parameters are set to be J1 = −2.2,
J2 = 1, �1 = �2 = 0.24, and H = 0.56. Dotted lines denote the
resonant positions at ω = ω1 and ω2.

excited by a single photon (two photons). Thus the frequency
of the magnon resonance is given by ω1 = E2 − E1 = H −
1.5�1 = 0.2, while that of magnon-pair resonance is ω2 =
(E3 − E1)/2 = H − �1 = 0.32, as shown in Fig. 2(b). We
will consider the range of laser frequency ω including these
resonant values ω1 and ω2. We note that ω2 − ω1 = 0.12 is
much smaller than J2 = 1 and it means that our setup imposes
a tough condition to distinguish two resonance peaks.

One can numerically calculate the expectation value of any
operator O at arbitrary time t from the density matrix ρ(t ):
〈O(t )〉 = Tr[Oρ(t )]. Here, we concentrate on the magnetiza-
tion change between the initial state and the nonequilibrium
steady one [66] which is realized by waiting for a long
time from the beginning of the laser application. Namely, we
compute �Sz = 〈Sz

tot〉neq − 〈Sz
tot〉eq, where

〈
Sz

tot

〉
neq = 1

τ0

∫ τ+τ0

τ

dt
〈
Sz

tot (t )
〉
, (3)

and 〈Sz
tot〉eq is the initial value of 〈Sz

tot〉 at a fixed kBT . Here,
τ and τ0 are set to be sufficiently larger than the relaxation
time h̄/γ and the period 2π/ω of the laser, respectively. The
integration of Eq. (3) is necessary to eliminate the small
fluctuation of 〈Sz

tot (t )〉, especially in the case of a linearly
polarized laser. A large |�Sz| indicates a large precession
motion (i.e., a large oscillation of transverse magnetization)
driven by the laser [15] and it means that the system efficiently
absorbs photons. Therefore, we can use |�Sz| as an index of
the observability of magnon-pair resonances.

The relaxation time of electron spins in solids is usu-
ally from picoseconds to nanoseconds [6,19–21,71–76]. The
current THz-laser technique enables us to utilize intense
THz-laser pulses with a few T, which corresponds to a few
MV/cm [1–4]. For the reality, we hence consider the range of
γ ∼ 0.01J2–0.1J2 and A/J2 � 0.1 in the numerical calcula-
tion of �Sz: For instance, for J2/kB = 10 K (50 K), γ =
0.05J2 and A = 0.05J2 respectively correspond to the relax-
ation time h̄/γ � 15.2 ps (3.0 ps) and the ac magnetic field
hac � 0.37 (1.86) T.

Figure 3 depicts the computed �Sz(ω) as a function of ω,
changing the laser strength A or temperature T . We find that
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FIG. 4. Laser-strength A and frequency ω dependences of the
spectra �Sz(ω) in the case of (a), (c) a circularly polarized laser
and (b), (d) a linearly polarized one. We set J1 = −2.2, J2 = 1,
�1 = �2 = 0.24, and H = 0.56. Dotted lines denote the resonant
positions at ω = ω1, and ω2.

when the laser is weak in low T , only the magnon resonance
at ω = ω1 is clearly observed (this corresponds to the stan-
dard magnetic resonance), while magnon-pair peaks gradually
grow up with an increase of A. One sees that magnon-pair
peaks become visible for A � 0.03J2 (A � 0.06J2) in the case
of a circularly (linearly) polarized laser. Therefore the result
of Fig. 3 indicates that the magnon-pair resonance can be
observed with an available strong laser or electromagnetic
wave. Figure 4 shows the laser-induced magnetization �Sz

for both circularly and linearly polarized lasers in a large
range of (A, ω). This figure also tells us that magnon-pair
peaks at ω = ω2 become visible if the applied wave is
strong enough.

To more quantitatively see the required intensity of the
laser, we show the laser-strength dependence of �Sz at the
resonant points ω = ω1 and ω2 in Fig. 5. We find that
the magnon-resonance peak almost linearly increases with
A, especially in a weak dissipation regime, whereas the
magnon-pair peak exhibits a nonlinear increase in terms of A.
Moreover, the magnon-pair peak becomes comparable to the
magnon one if A is sufficiently strong (A � 0.01J2 − 0.05J2).

Finally, we introduce another index for the visibility of
magnon-pair resonances. As shown in Fig. 6(a), we first

FIG. 5. Laser strength dependence of the difference �Sz(ω) at
the resonant points ω = ω1 and ω2 for (a) a circularly and (b) linearly
polarized laser. We use the parameters J1 = −2.2, J2 = 1, �1 =
�2 = 0.24, H = 0.56, and kBT = 0.01.
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FIG. 6. (a) Definition of �Sz
min. (b) Contour line of the ratio R

of Eq. (4) in (γ /J2, A/J2) space in the case of a circularly polarized
laser. We again set J1 = −2.2, J2 = 1, �1 = �2 = 0.24, H = 0.56,
and kBT = 0.01. We also obtain a similar contour line in the case of
a linearly polarized laser.

define −�Sz
min as the minimum value of |�Sz(ω)| in the

range between ω = ω1 and ω2. Using it, let us consider the
following quantity,

R(ω1, ω2) = �Sz(ω2) − �Sz
min

�Sz(ω1) − �Sz
min

. (4)

A sufficient large R means a high possibility of detecting a
magnon-pair peak in the real experiment. Figure 6(b) draws
the contour curve of R in (γ , A) space, and it clearly indicates
that a large laser strength A and a small dissipation constant
γ are better for the observation of magnon-pair resonance.
If we assume that R > 0.1 is the necessary condition for the
observation of a magnon-pair peak, Fig. 6(b) implies that the
peak can be observed in the region of A � 0.3γ .

From Figs. 3–6, we conclude that one can observe not only
magnon but also magnon-pair resonances in fully polarized
states of spin-nematic magnets if the laser intensity reaches
hac ∼ 0.1–1.0 T and the resonant points ω1,2 are sufficiently
separated.

Conclusions. In summary, we theoretically discussed the
observability of magnon-pair resonance in fully polarized
states of spin-nematic magnets. We compute the laser-driven
spin dynamics in the frustrated nanospin model of Eq. (1),
which is analogous to a bulk spin-nematic magnet, by ap-
plying the Lindblad equation. Our calculation strongly in-
dicates that a currently available intense laser with hac �
1 T is enough to observe magnon-pair resonances. Besides
spin-nematic or nanomagnets, bound states of magnons also
emerge in a class of frustrated or low-dimensional quantum
magnets [77,78]. Our estimation of the required laser strength
for magnon-pair resonances would be applicable to such
magnets.
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