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Doping of a plate-type acoustic metamaterial
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We theoretically, numerically, and experimentally investigate the feasibility of acoustic doping, i.e., changing
one of the effective properties of a medium by adding an impurity, to achieve supersqueezing. This effect,
characterized by perfect and zero-phase transmission, can be obtained with zero index media. In acoustics,
zero-phase propagation can be achieved with a plate-type acoustic metamaterial (PAM) acting as a density-near-
zero metamaterial (DNZ). We point out the possibility of modifying the compressibility of a DNZ medium by
mounting a Helmholtz resonator in parallel with the PAM. We are then able to dope the system and to turn it into
a density-and-compressibility-near-zero medium, thus allowing supersqueezing.
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Introduction. The tremendous boom of electromagnetic
and acoustic metamaterials [1–4] has opened up a wide range
of unexpected applications and design options for wave ma-
nipulation and control, including bending, cloaking, focusing,
as well as energy trapping. A carefully engineered structure
can bring an effective medium to extreme macroscopic pa-
rameters, such as a near-zero refractive index n(ω) = √

με ≈
0 in electromagnetics. Zero-index media, in which one or
more of the constitutive parameters vanish, can be classified
into three categories [5,6]: epsilon-near-zero (ENZ) [7–12]
(almost zero permittivity ε ≈ 0), mu-near-zero [13–15] (al-
most zero permeability, μ ≈ 0), or epsilon and mu-near-zero
(EMNZ) media [16,17] (both the permittivity and the per-
meability are zero at a given frequency, ε ≈ 0, μ ≈ 0). As a
result, the wavelength is stretched and gives rise to a staticlike
field, a large phase velocity, and thus a nearly constant phase
distribution along the material, allowing directivity pattern-
ing [18], tunneling, and supercoupling (full transmission of
the incident wave with no distortion or phase change along
the material) [19,20]. It is worth noting that, although there
is almost no spatial variation, the field still oscillates in time.
The wavelength enlargement is accompanied by a decoupling
of the spatial and temporal field variations [6].

EMNZ media have the particularity of being able to satisfy
both the zero-phase propagation, associated with the staticlike
ENZ field distribution, and the impedance matching condition
to free space (impedance Z0), given for normal incidence
by Z = √

μ/ε = Z0. An interesting way to design EMNZ
structures is to use doping, i.e., a control of the material
macroscopic parameters by locally embedding appropriate
inclusions/impurities, in an ENZ metamaterial [21–24]. Lib-
eral et al. [25] showed that the inclusion of a single well-
designed impurity can transform the effective properties of an
ENZ body into those of an EMNZ, thus leading to full trans-
mission without phase delay, regardless of the host geometry
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and doping impurity location. It is important to note here that
homogenization remains possible even with a small number
of potentially large impurities thanks to the ENZ effective
stretching of the wavelength [25].

Equivalent effects to zero-index ones can be found in
acoustics by analogy with the transverse magnetic modes
in electromagnetism. The acoustic constitutive parameters
analogous to ε and μ are, respectively, the density ρ and the
compressibility C (inverse of the bulk modulus κ). Quasistatic
field distribution and zero-phase propagation can there-
fore be achieved using density-and-compressibility-near-zero
(DCNZ) [26,27], compressibility-near-zero [28], or density-
near-zero (DNZ) media [29–33]. A periodic arrangement of
thin elastic plates (or membranes) in air—a plate-type acous-
tic metamaterial (PAM)—makes the DNZ condition possible
thanks to the strong dispersion around the band gap associated
with the plate resonance. Such a system can be character-
ized with the help of three different frequencies [33]. The
impedance matching occurs at the plate resonance frequency
but is accompanied by a phase delay depending on the length
of the system. At the exact zero effective density frequency,
none of the supercoupling conditions, i.e., zero-phase prop-
agation and impedance matching, are met as can be seen
with the transmission coefficient (module and phase) of a
PAM of thickness L, cross section S, effective compressibility
C = C(ω), and density ρ = ρ(ω):
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with subscript ·0 referring to the surrounding medium. Al-
though the tangent term vanishes when the density tends
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FIG. 1. Full-wave simulation of a 2D acoustic doping with a
single dopant: sketch of structure (a), pressure field when the medium
is filled with air (b), with a DNZ medium (c), with a doped DNZ
medium (dopant: transverse bar of the “A” letter, filled with a medium
of bulk modulus κd and of width H ) (e), or with a DCNZ medium
(f). (d) shows the effective bulk modulus of the entire host “LAUM”
depending on the geometry of the dopant H . The doping condition to
turn the host DNZ medium into an effective DCNZ medium occurs
when C ≈ 0, thus for κ → ∞, at H = 10.1 cm [arrow in (d)].

to zero, the ratio
√

C/ρ tends towards infinity, resulting in
a nonzero constant phase limit when the density tends to
zero [34]. Zero-phase propagation occurs in the negative
density regime [ρ(ω) = −C(ω)ρ0/C0] with an impedance
mismatch. One way to achieve supercoupling with only a
PAM is to embed the latter within a waveguide that has a huge
cross-sectional difference with the surrounding waveguides
(S/S0 → 0), to compensate the impedance mismatch [31].
Another way to achieve both perfect transmission and zero-
phase propagation, implemented here, is to use doping to turn
the PAM, i.e., the DNZ body, into a DCNZ metamaterial
[ρ(ω) ≈ 0, C(ω) ≈ 0].

In this work, we first investigate the feasibility of an acous-
tic analog of the photonic doping effect on a two-dimensional
DNZ system. Then, we show that a one-dimensional lossless
PAM can be efficiently doped using a single doping impurity:
a tuned Helmholtz resonator. Finally, the influence of both the
dopant location and the losses are studied.

We start by a full-wave simulation of the doping phe-
nomenon on a two-port random two-dimensional (2D)
medium, using the COMSOL multiphysics software. The input
and output ports [light-blue areas in Fig. 1(a)] are air-filled
waveguides, plugged into the “L” and “M” shapes, respec-
tively. A monochromatic wave of frequency lower than the
cut-off frequency of the ports (above which other modes than
the plane wave one can propagate) impinges the structure
from the left ensuring plane-wave propagation. The “LAUM”-
shaped medium is filled with air (b), a DNZ medium [(c), (e)],
or a DCNZ medium (f). The dimension of the LAUM structure
(width Lx = 3 m and height Ly = 1.15 m) is chosen much
larger than the acoustic wavelength in the air (λ0 = 27 cm).

Figure 1(b) shows a nonuniform pressure field distribution
inside the 2D medium with high-order modes and a weak
transmission (7%). The pressure field is strongly dependent
on the geometry of the host. If the host medium is replaced
by either a DNZ or a DCNZ medium [Figs. 1(c) and 1(f)],
the pressure field becomes uniform within the medium due to
the stretching of the effective acoustic wavelength, allowing
a wave propagation without phase delay. In both cases, the
pressure field is geometry independent. A tunneling effect is
also achieved when the host medium is a DCNZ [Fig. 1(f)] in
contrast to the case of a DNZ [Fig. 1(c)]. The host medium
is impedance matched to the ports in the DCNZ case, which
leads to a zero-phase total transmission.

We propose to reproduce the DCNZ behavior by doping
the DNZ host using only a single impurity, i.e., by attribut-
ing different medium properties only to a small part of the
geometry. We choose here to use the transverse bar of the
“A” letter as a dopant. Doping can be achieved by tuning
either the bulk modulus κd or the geometry of the dopant.
Figure 1(d) shows the dependence of the effective bulk mod-
ulus of the whole system on the transverse bar geometry (the
width H) for a fixed value κd = 1.11 × 104 Pa. A resonant
behavior is observable. The optimal geometry to dope the
DNZ host is H = 10.1 cm, which is the width for which the
system’s effective bulk modulus is the largest, i.e., an almost
zero effective compressibility, while the zero effective density
remains unchanged. It is worth noting here, that the sensitivity
of doping to the dopant geometry directly depends on the
variation of the bulk modulus. Sharp variations require a high
degree of design precision to achieve a maximum value of
κ (ω). Figure 1(e) depicts the pressure field obtained for the
doped DNZ host. The system “DNZ and dopant” exhibits a
similar response to that of a medium integrally filled with a
DCNZ material, thus evidencing acoustic doping (see videos
in the Supplemental Material [34]).

We now focus on the feasibility to dope a PAM. We
consider a 1D periodic arrangement of N = 20 thin clamped
elastic shims (plastic with a Young’s modulus E0 = 4.6 GPa,
density ρ = 1400 kg m−3, Poisson’s ratio ν = 0.41, thickness
h = 102 μm) equally spaced by a distance Lgap = 1 cm and
plugged into a waveguide of radius Ra = 15 mm. The prop-
erties of such a PAM have been extensively studied [31–33].
The detailed transfer matrix model and the analytical acoustic
response of the 20-unit-long PAM can be found in the Sup-
plemental Material [34]. Impedance matching, zero-density,
and zero-phase propagation occur at three different frequen-
cies; respectively, fm = 422 Hz, fρ=0 = 414 Hz, and fφ=0 =
405 Hz. A strong impedance mismatch at the zero-phase prop-
agation frequency prevents such a PAM from total transmis-
sion. Doping the PAM results in shifting both the zero-phase
and the impedance-matching frequencies towards the zero-
density one, since zero compressibility occurs at the same
frequency as that of zero density. Therefore, doping should
allow one to achieve supercoupling effect with a PAM even
without a large section change. A doping inclusion mounted
in parallel to the waveguide is considered in this system, as
it is necessary to act on the effective bulk modulus [35–37].
The chosen dopant is a Helmholtz resonator, which is easily
tunable in practice and is of subwavelength dimensions. The
neck length Ln = 20 mm and the radii of the neck Rn = 2 mm
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FIG. 2. Doping of a 20-unit-long lossless PAM by adding a Helmholtz resonator: 3D sketches of the unit cell, of the 20-unit-long PAM
doped in its middle by a Helmholtz resonator, and of a close-up on the resonator (a). Transmission (black) and reflection (red) magnitudes (b),
real part of the system effective density (c), phase of the transmission coefficient (e), and real part of the system effective bulk modulus versus
frequency (f). Continuous lines and square symbols represent the analytical and numerical results, respectively. (d) shows the dependence of
the effective bulk modulus on the Helmholtz cavity length Lc. (g) and (h) depict the total pressure field of a 20-unit-long PAM without and
with a dopant at the zero-phase propagation frequency f = 405 Hz and f = 414 Hz, respectively (full-wave simulation).

and of the cavity Rc = 10 mm are fixed, while the cavity
length Lc is adjustable with a piston as shown in Fig. 2(a).

We first analyze the lossless case depicted in Fig. 2, where
the Helmholtz resonator is mounted between the 10th and
11th plates of the PAM. In order to find the configuration
where doping occurs, we apply a similar procedure to that
in Fig. 1(d), i.e., we look for the configuration that pro-
duces a maximum value of effective bulk modulus. This
optimal configuration corresponds to a length Lc = 32.06 mm
and requires being dimensioned with extreme precision.
Figures 2(b), 2(c), 2(e), and 2(f) show, respectively, the am-
plitude of the scattering parameters, the effective dynamic
mass density, the phase of the transmission coefficient, and
the effective bulk modulus for the configuration mentioned
above. The analytical results are validated against those from
a three-dimensional (3D) full-wave simulation shown by the
square symbols in Fig. 2. A zero density accompanied by a
maximum of bulk modulus is found at f = 414 Hz. At this
particular frequency, the total system behaves as a DCNZ
metamaterial as evidenced by the scattering parameters. The
zero value of the transmission phase occurs with a zero reflec-
tion and a unitary transmission, i.e., zero-phase propagation
and impedance matching are combined. We thus confirm the
possibility to realize supercoupling with a PAM using doping.

Figures 2(g) and 2(h) show the total pressure field, respec-
tively, without and with the doping impurity, to illustrate the

impact of the dopant at the zero-phase frequency. In both
cases, we observe a zero-phase propagation either with an
impedance mistmatch or with a full transmission. In the latter
case, the pressure field is perfectly symmetric with respect to
the PAM, which is characteristic of the supercoupling effect.
In contrast, although zero-phase propagation is satisfied when
doping is not reached, the pressure field is not symmetric
[see Fig. 2(g)] due to the nonunitary transmission (impedance
mistmatch).

Another property of interest of DCNZ doping is its inde-
pendence from the dopant location. Whatever the Helmholtz
resonator location in the PAM, doping occurs. To illustrate this
property, Fig. 3 shows two examples with different locations
of the Helmholtz resonator. The dopant is mounted between
the second and third plates in the first case, Fig. 3(a), while it is
placed between the 15th and the 16th in the second, Fig. 3(b).
Zero-phase total transmission is observed in both configura-
tions at f = 414 Hz. The independence on the location is due
to the large wavelength in the PAM and allows great freedom
in the design of the system.

We now analyze the robustness of doping in the presence
of losses. The full lossy problem is solved with both the
viscothermal losses in the main waveguide as well as in the
Helmholtz resonator and the viscoelastic losses in the plates.
Viscothermal losses (mainly due to friction on the walls of
the waveguide) are accounted for by considering complex and
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FIG. 3. Influence of the dopant position: transmission magnitude
(black), phase of the transmission coefficient (red), and pressure field
along the metamaterial. Tuned Helmholtz resonator placed between
the second and third plates (a) or between the 15th and 16th plates
(b). Continuous lines and square symbols represent the analytical and
numerical results, respectively.

frequency-dependent impedance and wave number Z0(ω) and
k0(ω), respectively [34,38], while the viscoelastic losses are
modeled by adding an imaginary part to the plate’s Young
modulus E = E0(1 + iβ ).

Viscoelasticity being the dominant source of losses [34],
the number of plates in the PAM is reduced to six. In doing so
[see Figs. 4(b) and 4(c)], the transmission of the PAM at the
zero-phase frequency fφ=0 = 390 Hz is |Tfφ=0 | = 0.47 (0.42
measured in [33]). A large frequency offset separates this
zero-phase frequency from the zero-density and impedance
matched frequencies, respectively occurring at fρ=0 = 414 Hz
and fm = 439 Hz. To confirm the analytical and numerical
simulations, the scattering of the real doped system is also
measured using a four microphones impedance tube [34]. In
the following, solid lines, dashed lines, and circle symbols
represent the analytical, numerical, and experimental results,
respectively, the agreement of which is found to be very good.

The inset in Fig. 4(f) shows the evolution of the effective
lossy bulk modulus with respect to the length of the Helmholtz
resonator cavity. A maximum of the real part of the bulk
modulus is obtained for the optimal length Lc = 36.75 mm.
It is worth noting here that the value of this maximum is
much lower (by a factor 103) than in the previously presented
lossless case. Figures 4(d)–4(f) give the response of the lossy
system using this optimal configuration. The zero-phase fre-
quency is upshifted to fφ=0 = 412 Hz and gets closer to the
zero-density frequency of the system, i.e., fρ=0 = 414 Hz.

The careful design of the dopant thus allows one to strongly
reduce the frequency offset between zero-phase, maximum
of transmission, and zero-density frequencies. As a result
the zero-phase propagation frequency fφ=0 gets closer to fm.
In contrast to the lossless case, the losses prevent a perfect
coincidence of maximal transmission and zero-phase propa-
gation frequencies. As such, losses that are inherently present
in any acoustic system can clearly limit the effectiveness of
doping. Nonetheless, it is worth noting here that the doping
condition allows one to have a zero-phase propagation with
a 13% higher transmission (according to the analytics and
numerics, and 40% according to the measurements), the mea-
sured (respectively, analytical and numerical) magnitude of
which goes from 0.42 (respectively, 0.47) without dopant to
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FIG. 4. Doping in the presence of losses: (a),(d) pressure field
(full-wave simulation), (b),(e) reflection (red) and transmission
(black) magnitude, and (c),(f) phase of the transmission coefficient
of a 6-unit-long lossy PAM (a)–(c) and a 6-unit-long lossy PAM
doped with a Helmholtz resonator (Lc = 36.75 mm, Rc = 10 mm,
Ln = 20 mm, and Rn = 2 mm) mounted between plates 3 and 4
(d)–(f). Inset in (f) depicts the geometry optimization on the cavity
length of the dopant. Continuous lines and dashed lines represent the
analytical and numerical results. The experimental data are presented
in a statistical form, with the symbols being the average of the
23 observations (system disassembled then reassembled) and the
colored area the statistical standard error, i.e., the standard around
the mean value.

0.59 (respectively, 0.53) in the doped configuration. Reducing
the losses, i.e., finding plates with lower viscoelastic losses,
would lead to a better efficiency of the process.

Conclusions. In this study, we reported on the feasibility
of doping acoustic structures using only one impurity and we
highlighted the limitations induced by the viscothermal and
viscoelastic losses. We have demonstrated that the integration
of a carefully designed element into a DNZ metamaterial can
modify the effective compressibility of the structure so that the
system responds as a DCNZ metamaterial at the exact zero-
density frequency of the nondoped system. The dopant can be
designed based on either its bulk modulus value or its geome-
try. In doing so, a perfect transmission can be achieved in ad-
dition to the zero-phase propagation, induced by the stretching
of the effective wavelength, thus meeting the requirements of
tunneling and supercoupling for the lossless case. Moreover,
the DCNZ condition is achieved independently of both the
host geometry and the dopant location. Doping is therefore a
good alternative to the large change in cross section required
to observe supercoupling with a PAM, since it requires only
one element to be added to the system. The presence of losses,
mainly the plate viscoelastic ones for a PAM, has an impact
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on the ability to obtain zero effective compressibility, i.e., to
reach an infinite effective bulk modulus. The phenomenon of
doping, although still present, is therefore limited and depends
on the number of plates in the system. In the considered
case of a six-unit-long PAM, doping significantly reduces
the frequency offset between the zero-phase, zero-density,
and maximum of transmission frequencies. As a result, the
transmission amplitude of the zero-phase wave is increased
by almost 15% compared to the nondoped system. The choice
of plates with lower losses would increase the effectiveness
of doping. Although complex geometries with sharp angles

may restrict the use of PAMs, the doping phenomenon can
be applied to any other DNZ systems, thus enabling great
freedom in the design as well as the filling of more complex
geometries such as the 2D LAUM shape.
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