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Magnetic field induced global paramagnetic response in a Fulde-Ferrell superconducting strip
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We theoretically study the magnetic response of a superconductor/ferromagnet/normal-metal strip in an
in-plane Fulde-Ferrell (FF) state. We show that unlike an ordinary superconducting strip, the FF strip can be
switched from diamagnetic to paramagnetic and then back to a diamagnetic state by increasing the perpendicular
magnetic field. Being in a paramagnetic state, the FF strip exhibits a magnetic field driven second-order phase
transition from the FF state to the ordinary state without spatial modulation along the strip. We argue that the
global paramagnetic response is connected with a peculiar dependence of the sheet superconducting current
density on supervelocity in the FF state, and it exists in the nonlinear regime.
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I. INTRODUCTION

The diamagnetic Meissner effect, together with zero re-
sistivity, is the fundamental property of a superconducting
state. When one places a superconducting specimen in a
weak magnetic field, screening supercurrents expel magnetic
flux from the interior of the superconductor, which leads to
its diamagnetic response. However, there are experimental
observations of the so called paramagnetic Meissner effect
(PME) in high-Tc superconductors [1,2] and disks of conven-
tional superconductors [3,4]. But in all these cases, anomalous
paramagnetic response was observed only upon cooling in
low magnetic fields and was absent upon cooling without an
applied field. For granular high-Tc superconductors, the PME
can be explained by the presence of the π -junctions [5], while
in the other cases the PME is caused by the trapped flux on
intrinsic inhomogeneities or the surface [6,7].

Paramagnetic response without the captured flux (vortices)
can be realized in the case of unusual Cooper pairing, namely
the odd-frequency superconductivity. Odd-frequency pairs
formally have negative density that leads to paramagnetic
supercurrents and, consequently, local paramagnetism [8].
The odd-frequency superconducting state can be realized in
the ferromagnet part of hybrid superconductor/ferromagnet
(SF) structures [9], near the normal metal/p-wave super-
conductor (NS) interfaces [10], and near the surface of
d-wave superconductors [11]. A local paramagnetic response
of odd-frequency superconductivity was directly observed
in a superconductor/ferromagnet/normal-metal (SFN) tri-
layer [12] via measurement of an enhanced magnetic field
in a normal layer. Also, a paramagnetic response of nor-
mal metal was seen at ultralow temperatures in the hybrid
superconductor/normal metal structure [13], which could be
explained by the presence of dilute magnetic impurities lead-
ing to odd-frequency superconductivity [14].

In relatively thin SF or SFN strips, the paramagnetic re-
sponse of odd-frequency superconducting correlations in F
or FN layers may exceed the diamagnetic response of the S

layer (at a proper choice of material parameters), and the in-
plane Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state could
be developed [15,16]. It is modulated along the strip super-
conducting state, and its existence was originally predicted
for bulk superconductors with a spatially uniform exchange
field and energy splitting of electrons with opposite spin of
order of the superconducting gap [17,18]. In the FF state,
the superconducting order parameter has the form of the
plane wave [∝ exp(iqFFr)], while in the LO state it is the
standing wave [∝ cos(qLOr) near T FFLO]. In the pioneer work
of Refs. [17,18], it was shown that when the system is in
the FF or LO state, it retains the conventional diamagnetic
Meissner response at small magnetic fields.

Here we show theoretically that the magnetic response of
an SFN strip in an in-plane Fulde-Ferrell state is also diamag-
netic at small and large fields, but there is a finite range of
fields where the magnetic response is globally paramagnetic.
It differs from a global paramagnetic response predicted for
small-sized unconventional superconducting disks [19] and
thin disks/squares made of an SFN trilayer [20], where it
appears due to the finite-size effect and exists only at small
fields. We argue that in the case of an SFN strip, a global para-
magnetic response is connected with the peculiar dependence
of sheet superconducting current density on supervelocity in
the FF state, and it appears in the nonlinear regime (when the
dependence of superconducting current on the vector potential
is nonlinear). The paramagnetic response is accompanied by
a magnetic field driven second-order phase transition from an
FF-like state to an ordinary state without spatial modulation
along the strip. We also find that in the presence of a parallel
magnetic field, magnetization curves could be different de-
pending on the direction of qFF along the strip, which allows
one to determine its direction from magnetic measurements.

II. MODEL

We study magnetic response of an SFN strip with length L
and width w made of a superconductor with thickness dS, a
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FIG. 1. The schematic representation of the SFN strip placed in
parallel and perpendicular magnetic field.

ferromagnet with thickness dF, and normal metal with thick-
ness dN (see Fig. 1). In Ref. [16] it was shown that when the ra-
tio of resistivities ρS/ρN � 1, the thicknesses of S and N lay-
ers are about of coherence length in the superconductor, and
the thickness of the F layer is about of coherence length in the
ferromagnet. The in-plane Fulde-Ferrell-Larkin-Ovchinnikov
state could be realized (in a realistic SF hybrid this state is
hard to achieve due to the large resistivity of the F layer). In
our work we consider only a Fulde-Ferrell-like state because
for the studied system, the LO state has higher energy [21]. In
bulk superconductors with a spatially uniform exchange field
(magnetic superconductor), the LO state has lower energy, as
was found in Ref. [18]. This difference could be connected
with the properties of the SFN trilayer, where superconducting
and ferromagnetic films are thin, spatially separated, and there
is a gradient of superconducting characteristics across the
thickness of the trilayer. This brings about a difference even
between the properties of Fulde-Ferrell states in the SFN
trilayer and the magnetic superconductor. In both systems in
the ground state there is a finite phase gradient ∇ϕ = qFF, but
in the SFN structure there are finite superconducting currents
flowing in the S and FN layers in opposite directions [16]
with the total (thickness integrated) zero current, while in
the magnetic superconductor there are no spatially separated
currents and both local and total currents are equal to zero.

To calculate the magnetization curve of the SFN strip,
we use two models. First, we use the two-dimensional (2D)
Usadel equation for normal g = cos � and anomalous f =
sin � exp(iϕ) quasiclassical Green functions [22–24], assum-
ing that � depends only on x and y, and we neglect their
dependence on the z coordinate,

h̄D

2

(
∂2�

∂x2
+ ∂2�

∂y2

)

−
(

(h̄ωn + iEex) + h̄
D

2
q2 cos �

)
sin � + � cos � = 0.

(1)

Here D is the diffusion coefficient of the corresponding
layer, Eex is the exchange field, which is nonzero only in
the F layer, � is the superconducting order parameter, which
is nonzero only in the S layer, h̄ωn = πkBT (2n + 1) are
the Matsubara frequencies (n is an integer number), q =
∇ϕ + 2πA/	0 is the gauge invariant phase gradient that is

proportional to supervelocity vs ∼ q (in this model it has
only a z component—see Fig. 1), ϕ is the phase of the order
parameter, A is the vector potential, and 	0 = π h̄c/|e| is the
magnetic flux quantum. � should satisfy the self-consistency
equation
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)
, (2)

where Tc0 is the critical temperature of a single S layer in
the absence of magnetic field. Equation (1) is supplemented
by the Kupriyanov-Lukichev boundary conditions between
layers [25],
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. (3)

We assume transparent interfaces between layers, and
thereupon � is a continuous function of x. For interfaces with
vacuum, we use the boundary condition d�/dn = 0.

Because the thickness of the whole structure is much
smaller than the London penetration depth λ of the single S
layer, we neglect the contribution to the vector potential from
screening currents. In calculations we use the following vector
potential: A = (0, 0,−H‖x + H⊥y), where H‖ is the parallel
and H⊥ is the perpendicular magnetic field (see Fig. 1).

We calculate the magnetization M as

M = m
dw

= 1

2cdw

∫∫
[r × js]dx dy, (4)

where js = (0, 0, jz ) is the superconducting current density,

jz(x, y) = 2πkBT

eρ
q

∑
ωn>0

Re(sin2 �), (5)

and we are interested in the x component of
magnetization, Mx.

In the numerical calculations we use dimensionless units.
The magnitude of the order parameter is normalized in units
of kBTc0, and length is in units of ξc = √

h̄DS/kBTc0. The
magnetic field is measured in units of Hs = 	0/2πwξc, and
magnetization Mx is in units of M0 = 	0/2πξ 2

c . We also
include in the calculations that λ(0)/ξc = 50, where λ(0) is
the London penetration depth in a single S layer at T = 0.

To find jz and Mx, we numerically solve Eqs. (1) and (2)
with corresponding boundary conditions. To reduce the num-
ber of free parameters, we assume that the resistivities of the
S and F layers are equal, i.e., ρS/ρF = 1, which corresponds
roughly to the parameters of real highly resistive S and F
films. We use ρS/ρN = 150 in our calculations because the
formation of the FF state in the SFN structure requires a large
ratio of resistivities of the N and S layers [16]. It corresponds,
for example, to the pair NbN/Au.

The model above is not able to take into account the states
with a dependence of � on a longitudinal coordinate (for
example, a vortex state). To obtain full in-plane distribution of
the superconducting order parameter and current density, one
has to solve the 3D Usadel equation, which is a complicated
problem. Instead, we use the Ginzburg-Landau-like approach
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and describe the SFN structure by the 2D (in the y and
z directions) equations with the effective superconducting
order parameter � averaged over the thickness of the SFN
trilayer [20]. The GL free-energy functional describing the
2D superconductor being in the FFLO phase was proposed
in Ref. [26],

F̃ = α(T )|�̃|2 + β

2
|�̃|4 + γ (|�y�̃|2 + |�z�̃|2)

+ δ(|�2
y�̃|2 + |�2

z �̃|2 + |�y�z�̃|2 + |�z�y�̃|2),
(6)

where �̃ is a complex superconducting order parameter, and
�y,z = ∇y,z + i2πAy,z/	0. One has to define the signs of
phenomenological parameters—α, γ < 0 and β, δ > 0—to
have the Fulde-Ferrell state as a ground state [27,28]. We
have to stress that for the SFN trilayer this functional was
not derived from microscopic theory, and we use it as a
phenomenological theory.

The dimensionless free energy F and order parameter
� are introduced as F = FGLF̃ = (α2/β )F̃ , � = �0�̃ =√|α|/β�̃, with the characteristic length ξGL = √|γ |/|α| and
the dimensionless parameter ζ = |α|δ/|β|2. Varying

∫
F dS

with respect to �̃∗, we obtain the Ginzburg-Landau equation
for the dimensionless order parameter:
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2
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Equation (7) is supplemented by the boundary conditions

��

∣∣∣
n

= 0, �3�

∣∣∣
n

= 0, (8)

which provide a vanishing of the normal component of su-
perconducting current js|n and supermomentum q|n = (∇ϕ +
2πA/	0)|n on the boundary of the FF strip with vacuum [20].

In the GL model we find Mx by numerical differentiation
of FGL(H⊥),

Mx = −dFGL

dH⊥
. (9)

In principle, the same could be done in the Usadel model
without use of Eq. (4), but it requires a small step in H⊥
and a very large amount of calculation time. This is why we
use different methods to find Mx(H⊥) in the Usadel and GL
models.

We use the relaxation method with addition of the time
derivative ∂�/∂t on the right-hand side of Eq. (7) and look-
ing for �(y, z), which does not depend on time. In numer-
ical calculations, we set ζ = 1/8, 1/2, 2, 4. Case ζ � 1/2
corresponds to a situation when the coherence length ξ =
ξGL{2ζ/[(1 + 4ζ )1/2 − 1]}1/2 (characteristic length variation
of |�| in the used model) is larger than q−1

FF = ξGL
√

2ζ while
for ζ � 1/2 we have the opposite case, which corresponds to
properties of the SFN strip with realistic parameters.

III. MAGNETIC RESPONSE OF AN SFN STRIP
BEING IN THE FF STATE

In Fig. 2 we present the dependence Mx(H⊥), found in
the Usadel model, for the SFN strips with different widths

FIG. 2. The magnetization curves of SFN strips with different
widths, found from the Usadel model. At H⊥ = HI there is a lo-
cal minimum in dependence Mx (H⊥). At field H⊥ = HII there is
a second-order transition from the state with qz 
= 0 (H⊥ < HII—
FF-like state) to the state with qz = 0 (H⊥ � HII —ordinary state).
Numbers 1–4 indicate fields at which a distribution of sheet current
density over the width of the SFN strip is shown in Fig. 3(a). The
parameters of SFN strips are as follows: w = 5, 10, 20ξc; dS = 1.1ξc;
dF = 0.5ξc; dN = ξc; Eex = 5kBTc0; and T = 0.2Tc0.

being in an FF state at H⊥ = 0. The magnetic response is
diamagnetic at small fields as in ordinary superconductors and
magnetic superconductors with a spatially uniform exchange
field [17,18], but at some field (we mark it as HI in Fig. 2) Mx

reaches a minimal value and then becomes a nonmonotonic
function of H⊥ and changes sign twice. As a result, there is
a finite range of magnetic fields where magnetic response is
paramagnetic. Moreover, at field H⊥ = HII (see Fig. 2) there
is a kink, which is a signature of the second-order phase
transition from the state with qz 
= 0 (qz = ∫

qzdy/w is width
averaged qz) to the state with qz = 0.

To explain this behavior, in Figs. 3(a) and 3(b) we show
the distribution of sheet current density Jz = ∫

jzdx and su-
pervelocity ∼qz over the width of an SFN strip, and in Fig. 4
we show the dependence of Jz(qz ) in a spatially homogeneous
case [qz(y) = const and Jz(y) = const]. When H⊥ = 0 in the
ground state of the FF strip there is a finite phase gradient
∇φ = qFF but Jz(qFF) = 0. From Fig. 4 one can see that near
qz = qFF there is a London-like relation Jz(y) ∼ Jz(qFF) +
[2πAz(y)/	0]dJs/dqz ∼ −Az(y), which leads to the diamag-
netic response of the FF strip at small fields (see Fig. 2).
At that field dependence Jz(y) is a nearly odd function of
y [Jz(y) ∼ −Jz(−y)—see Fig. 3(a) for H⊥ = 0.06Hs] as in
an ordinary strip because dJs/dqz is almost constant at qz �
qFF—see the dashed line in Fig. 4.

At larger fields due to different nonlinearity of Jz(qz ) at
qz < qFF and qz > qFF the width averaged qz [qz(H⊥ = 0) =
qFF] decreases, as can be seen from Fig. 3(b), to provide zero
full current

∫
Jzdy = 0, and Jz(y) is not an odd function of

y [see Fig. 3(a) for H⊥ = 0.28Hs]. As a side effect it leads
to a nonmonotonous change of |Mx| and even to a paramag-
netic response because there is a region (0 < qz < qc1) where
dJz/dqz > 0. In the current driven regime with qz(y) = const
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FIG. 3. (a) Distribution of sheet current density Jz and (b) su-
pervelocity ∼q over SFN strip with width 20ξc at different H⊥
marked by numbers 1–4 in Fig. 2. At H⊥ = 0.32Hs the q = 0. Jz

is normalized in units of Jdep(0) = jdep(0)d , where jdep(0) is the
depairing current density of a single S layer at T = 0.

this region is not accessible [27] but it can be reached, as we
find here, with coordinate-dependent qz(y).

The qz goes to zero at H⊥ = HII and simultaneously Mx

reaches a maximal positive value. Mx decreases and then
changes sign at H⊥ > HII while qz = 0. Therefore, at H⊥ =
HII there is a second-order phase transition from the state
with qz 
= 0 (Fulde-Ferrell-like state) to the state with qz = 0,
which is manifested as a kink on Mx(H⊥) (see Fig. 2).

In an ordinary superconducting strip the vorticities enter
the sample when supervelocity at the edge exceeds a criti-
cal value [| ± qz(w/2)| � qc] [29], except for rather narrow
strips with w � 2ξ (T ), which do not have space for a vortex
[30,31]. We expect similar behavior for the FF strip, which is
why we do not present Mx(H⊥) in Fig. 2 at large fields where
qz(w/2) well exceeds qc2 [qz(w/2) = qc2 at H⊥ = 0.71Hs for
chosen parameters]. But for the FF strip we have an additional
critical value—qc1 (see Fig. 4). Note that qz(−w/2) becomes
smaller than qc1 (it occurs at H⊥ � HI ) before Mx changes
sign, which means that instability may occur, which breaks the
homogeneities along the strip state and changes depending on
Mx(H⊥). To check this, we calculate the magnetic response of
an FF strip of finite length using the Ginzburg-Landau model.

We find that while the width of the strip is smaller than
wc ∼ 2q−1

FF , the evolution of Mx and qz with magnetic field
is similar to that found from the Usadel model [compare

FIG. 4. Dependence of sheet current density Jz on qz in a spa-
tially uniform case [Jz(y) = const] for SFN strip (parameters as in
Fig. 2) being in the FF state and the SFN strip (parameters as in
Fig. 2 except dF = 0.2ξc) being in an ordinary state. Jz is normalized
by critical current density (it corresponds to maximal |Jz| = |Jz|max).

Fig. 5(a) and Fig. 2]. There is a range of magnetic fields where
the magnetic response is paramagnetic and at H = HII there
is second-order transition to a state with qz = 0. At larger
fields, magnetic response again becomes diamagnetic, and
if the width of the strip is larger than ∼2ξ , vortices enter
the FF strip, which leads to jumps in Mx as in an ordinary
superconducting strip [see Fig. 5(a)]. Moreover, even the
relative change of magnetization is similar in Figs. 2 and 5
(if we compare, for example, maximal positive and negative
Mx). Note that in Fig. 2 we present results found in the Usadel
model for the SFN structure with realistic parameters, and
it helps to estimate the strength of the effect (see Sec. IV).
In Fig. 5 we present results found in the GL model, where
MGL is some parameter that we cannot express via material
characteristics of the SFN structure.

For a strip with w > wc, the evolution of Mx and qz in
the field range HI � H⊥ � HII is different. It turns out that
at H⊥ � HI there appears finite qy (transversal component
of �q) not only near the ends of the strip, where it provides
conservation of the full current, but also far from it [see the
insets in Fig. 5(b)]. In different halves of the strip, qy has
the opposite sign due to the different sign of the screening
currents. In regions where qy 
= 0, qz became suppressed, and
it has a maximum in the center of the strip. With increasing
magnetic field, qz(z) gradually decreases and at H = HII it
goes to zero along the whole strip.

Apparently, the found critical width of the strip wc ∼ 2q−1
FF

is correlated with the critical length of the quasi-1D FF super-
conductor Lc = π/

√
2q−1

FF � 2.2q−1
FF when a spatially modu-

lated state with q 
= 0 can appear [20]. In a narrower strip the
transition to the state with qz = 0 occurs homogenously along
the strip because qz depends on z only near the ends where
qz = 0 due to boundary conditions, and results found in the
framework of the Usadel and GL models qualitatively coin-
cide. In a wider strip, qz strongly depends on length at H⊥ >

HI because of the appearance of a transversal component of
�q. Obviously this result cannot be found in the framework
of our 2D Usadel model, which assumes spatial uniformity
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FIG. 5. Field-dependent magnetization of FF strips calculated
in the framework of the Ginzburg-Landau model. Lateral sizes of
FF strip are shown in panels (a) and (b), parameter ζ = 2 (q−1

FF =
2ξGL > ξ = √

2ξGL). Magnetic field is measured in units of HGL =
	0/2πξ 2

GL, magnetic moment is in units of MGL = FGL/HGL, and
N = ∮ ∇ϕdl/2π is a total vorticity in the strip. In the inset in (b) we
show the spatial distribution of |�| and q at different magnetic fields.

[qz(z) = const] along the FF strip. It leads to a quantitatively
different shape of Mx(H⊥) in a field range HI < H⊥ < HII

for strips with w > wc and w < wc [compare Fig. 5(b) with
Fig. 5(a) and Fig. 2]. For parameters of the SFN strip, the
magnetic response is shown in Fig. 2, q−1

FF ∼ 7.2ξc (see Fig. 4),
and hence only for a strip with w = 20ξc can we expect the
appearance of transversal modulation.

We also find interesting behavior when ζ = 1/2 and 1/8,
which correspond physically to ξ � q−1

FF . In a strip with w �
wc, the transition to the state with qz = 0 starts from the ends
of the strip but it is accompanied not only by the appearance
of finite qy but also vortex-antivortex pairs [see the insets
in Fig. 6(a)]. In a longer strip their number increases with
increasing magnetic field, and it reaches the maximal value at
H = HII (for example, when L = 48ξGL there are four vortex-
antivortex pairs—not shown here). At H = HII there is a first-
order transition to the state with qz = 0 and one additional
antivortex enters the strip in its center [see Fig. 6(a)]. With
a further increase of magnetic field the number of vortex-
antivortex pairs decreases one by one, and at large field only
vortices exist in the strip. In a wider strip [see Fig. 6(b)],
vortex-antivortex pairs do not appear, but the transition at

FIG. 6. Field-dependent magnetization of FF strips calculated
in the framework of the Ginzburg-Landau model. Lateral sizes of
the FF strip are shown in panels (a) and (b), parameter ζ = 0.5
(q−1

FF = ξGL < ξ � 0.84ξGL). For both panels, w > wc. In the insets
we show the spatial distribution of |�| and q at different magnetic
fields. Symbols − and + indicate antivortex and vortex, respectively.

H = HII is also of first order, and one antivortex enters the
strip in its center, which is annihilated with vortices at larger
fields [see Fig. 6(b)].

In ordinary superconductors, vortices and antivortices
can coexist in small-sized (mesoscopic) samples placed in
an external magnetic field [32–34] or near a ferromag-
netic domain wall where the magnetic field changes the
sign [experimentally such vortices and antivortices have
been observed recently in the ferromagnetic superconductor
EuFe2(As0.79P0.21)2 [35]]. In zero magnetic field, their si-
multaneous appearance in the ground state was predicted in
an FFLO system with two coupled superconducting order
parameters [36], and as a metastable state they may exist in
a small-sized FF superconductor [20]. We find that in the FF
strip, the vortex-antivortex chain is a ground state in a finite
range of the magnetic fields when w � wc and ξ � q−1

FF .
Using the Usadel approach, we also calculate the depen-

dence Mx(T ) at fixed H⊥ and Mx(H⊥) at different tempera-
tures (see Fig. 7). We use the same parameters as in Fig. 2,
except the thickness of the S layer was chosen, dS = 1.4ξc,
for which the transition temperature to the FF state T FF

is below the critical temperature of trilayer Tc = 0.62Tc0 >
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FIG. 7. (a) Dependence of the magnetization of the SFN strip
on the temperature at different values of the perpendicular magnetic
field. (b) The magnetization curve of the SFN strip at different
temperatures. We use the same parameters of the SFN strip as in
Fig. 2 except dS = 1.4ξN and choose w = 10ξc. The temperature of
transition to the FF state is T FF = 0.38Tc0, and the critical tempera-
ture of the SFN trilayer is Tc = 0.62Tc0 (both at H⊥ = 0).

T FF = 0.38Tc0. It can be seen that Mx(T ) at small fields is
nonmonotonous even at T > T FF, which is a consequence of
the existence of paramagnetic currents in FN layers, while the
global magnetic response is diamagnetic for all fields when
T > T FF [see Fig. 7(b)].

In the absence of a parallel magnetic field, the ground
FF state is twofold-degenerative due to the existence of two
states with opposite directions of qFF along the strip, and
for both directions magnetization curves Mx(H⊥) coincide. In
Ref. [21] it was shown that a parallel magnetic field removes
this degeneracy and makes the state with H‖ × qFF ↑↓ x more
favorable while the other state has larger energy (it becomes
unstable at relatively low but finite H∗

‖ ). This leads to different
Mx(H⊥) for states with opposite qFF at fixed H‖ or vice versa.
In Fig. 8 we show this effect. The metastable state becomes
unstable at some H⊥, and the SFN strip switches to the ground
state. Note that the abrupt change in magnetization is not
connected with the vortex entrance or exit, but it occurs due
to a change of direction of q.

IV. SUMMARY

We show that the SFN strip being in a spatially modulated
(Fulde-Ferrell-like) ground state has a global paramagnetic
response in a finite range of perpendicular magnetic fields,

FIG. 8. The magnetization curves of the SFN strip being in
ground and metastable FF states (having opposite qFF) which are
controlled by a parallel magnetic field. For comparison we also
present Mx (H⊥) when H‖ = 0. The arrow indicates the direction of
magnetization jump which occurs with an increase of H⊥. The width
of the SFN strip w = 10ξc, H‖ = 0.2Hs, and the other parameters are
as in Fig. 2. At H‖ > H∗

‖ � 0.4Hs and H⊥ = 0 there is only a state
with H‖ × qFF ↑↓ x.

while at low and large fields the response is diamagnetic. We
demonstrate that the found evolution of a magnetic response
with increasing magnetic field is accompanied by a vanishing
of the width averaged longitudinal phase gradient qz, which
is equal to qFF at zero magnetic field. We argue that both the
paramagnetic response and the vanishing of qz are related, and
they are connected with a peculiar dependence of sheet super-
conducting current density on supervelocity (phase gradient)
in the FF state.

In a relatively narrow SFN strip with width w < wc ∼
2q−1

FF , the transition from the state with qz 
= 0 to the state
with qz = 0 at field H⊥ = HII is of second order and it
occurs uniformly along the strip (except its ends). At this
field, the paramagnetic response is maximal. In a wider strip
(w > wc) this transition is accompanied by the appearance
of spatial modulation of both the phase and magnitude of
the superconducting order parameter across the width, which
leads to a quantitative modification of the magnetic response.
Calculations in the framework of the Ginzburg-Landau model
show that the transition of the FF strip with width w � wc

and ξ � q−1
FF to a state with qz = 0 starts from the appearance

of vortex-antivortex pairs near the ends of the strip and ends
with the formation of a vortex-antivortex chain before the
first-order transition occurs at H⊥ = HII. At fields H⊥ � HII

both narrow and wide FF strips behave like an ordinary super-
conducting strip—they have a diamagnetic response, and the
number of vortices increases with an increase of H⊥.

A parallel magnetic field removes the degeneracy, con-
nected with two directions of qFF along the SFN strip. It
results in different magnetization curves Mx(H⊥) depending
on the parallel or antiparallel orientation of vector H‖ × qFF

and the normal vector to the surface of the SFN strip.
Using the parameters of NbN as the S layer (ρS =

200 μ� cm, DS = 0.5 cm2/s, Tc0 = 10 K) and those of
Au as the N layer (ρN = 2 μ� cm), we can estimate the

054519-6



MAGNETIC FIELD INDUCED GLOBAL PARAMAGNETIC … PHYSICAL REVIEW B 102, 054519 (2020)

geometrical parameters of the SFN strip and the value of the
paramagnetic response [any ferromagnetic material could be
used as a F layer if it stays ferromagnetic when its thickness is
about ξF = (h̄DF/Eex)1/2—for example, alloy CuNi [37]]. For
chosen materials, ξc = 6.4 nm and M0 = 8 T. From Fig. 2 it
follows that for the SFN strip with w = 20ξc ∼ 130 nm the
maximal positive 4πMx is of the order of a few tenths of
a Gauss. Therefore, to see the predicted effect in the array
of SFN strips, a SQUID magnetometer should be used to
measure their magnetization curves. We do not believe that
a vortex-antivortex chain can exist in the SFN strip because
q−1

FF � ξc ∼ ξ for this system.
When we calculate Mx(H⊥), we assume that magnetization

of the F layer is not changed. In reality it may vary, and it may
make an additional contribution to the magnetic response. One
way to solve this problem is to measure Mx(H⊥) above and
below Tc and then compare them. The second solution is to

choose a magnetic material with in-plane magnetization hav-
ing no or a small number of domains. To decrease H⊥ one can
take a wide FF strip. For example, in [37] a well pronounced
0-π transition was found in a planar NbN/CuNi/NbN Joseph-
son junction with lateral size 10 μm × 10 μm. This result says
that at least on this scale CuNi is sufficiently homogeneous.
For an FF strip based on NbN/CuNi/Au with a width 1 μm
and ξc = 6.3 nm, we have Hs ∼ 50 Oe, which is small enough.
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