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Periodicity of superconducting shape resonances in thin films
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The pairing temperature of superconducting thin films is expected to display, within the Bardeen–Cooper–
Schrieffer theory, oscillations as a function of the film thickness. We show that the pattern of these oscillations
switches between two different periodicities at a density-dependent value of the superconducting coupling.
The transition is most abrupt in the antiadiabatic regime, where the Fermi energy is less than the Debye
energy. To support our numerical data, we provide analytical expressions for the chemical potential and the
pairing temperature as a function of thickness, which only differ from the exact solution at weak coupling by
exponentially small corrections.
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I. INTRODUCTION

Since the pioneering study of Thompson and Blatt raised
hopes to observe improved critical temperature in thin films
made of superconducting materials [1], a large number of
experimental [2–17] and theoretical [18–32] works have fol-
lowed up on this idea. Thanks to the quantum confinement
along one direction, the thin-film geometry splits the three-
dimensional dispersion law of the superconductor into a set
of two-dimensional subbands. The energy separation between
the subbands varies with changing film thickness such that the
Fermi level, which is fixed by the bulk electron density, must
adjust as well. In the Thompson–Blatt model (a free-electron
like metal confined in the film by hard walls), the critical
temperature varies with reducing film thickness, drawing a
sawtoothlike increase (Fig. 1), where jumps occur each time
the Fermi level crosses the bottom of a subband. These
quantum oscillations have become known as superconducting
shape resonances. The resulting “period” (actually a wave-
length) of critical-temperature oscillations is

�0 = π

kF
≈ n−1/3, (1)

where kF and n are the bulk Fermi wave vector and electron
density, respectively. For typical metallic densities of order
1022 cm−3, the expected oscillations period is a few angström.
The period �0 obtained by Thompson and Blatt tracks discon-
tinuities of the critical temperature Tc versus film thickness
L. These discontinuities arise due to a simplification adopted
when solving the Bardeen–Cooper–Schrieffer gap equation,
while the exact dependence Tc(L) is continuous [33]. The
simplification consists in ignoring that, when the Fermi energy
is sufficiently close to the bottom of a subband, the frequency-
dependent pairing interaction is cut by the subband edge rather
than by the ordinary Debye cutoff h̄ωD. Although the exact

function Tc(L) is continuous, its first derivative dTc/dL has
discontinuities when the bottom of a subband coincides with
the upper edge of the interaction window, i.e., rather than
triggering a discontinuity of Tc when it crosses the subband
edge, the Fermi level triggers a discontinuity of dTc/dL when
it reaches h̄ωD below the subband edge. This leads to a
corrected period [33],

� = π√
k2

F + 2mωD/h̄
∝ 1√

EF + h̄ωD
, (2)

which tracks the discontinuities of dTc/dL. The exact period
Eq. (2) is shorter than the Thompson–Blatt result Eq. (1),
although both coincide in the adiabatic limit EF � h̄ωD.
Equations (1) and (2) are asymptotic results obtained in the
weak-coupling regime λ � 1, where λ is the dimensionless
coupling constant for pairing. In this limit, Tc approaches
zero and the chemical potential at Tc is close to the zero-
temperature Fermi energy. Furthermore, these expressions are
valid for large L, where the period becomes well defined and
the Fermi energy approaches the bulk value.

Simulations performed at intermediate to strong coupling
show that Eq. (2) works in this regime as well [34]. The
discontinuities of dTc/dL are large in that case (in a sense to
be made precise below) and the Tc(L) curve has cusps point-
ing downward at the discontinuities, separated by maxima
in between each cusp (Fig. 2). Since the optimal condition
to observe the difference between Eqs. (1) and (2) is the
antiadiabatic regime EF � h̄ωD, which is often associated
with strong coupling [35–37], it is interesting that Eq. (2)
is valid beyond weak coupling. Of course, the applicabil-
ity of the static BCS approach is not guaranteed for these
cases. Luckily, there exists low-density systems such as n-
doped SrTiO3 which, albeit falling into the class of antiadi-
abatic superconductors [38], have low values of the coupling
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FIG. 1. Variations of the BCS critical temperature relative to the
3D bulk value showing shape resonances versus film thickness at
fixed electron density (left panels, ñ = 1) and versus electron density
at fixed film thickness [right panels, L = 5�0(ñ = 1)]. The black
curves show the Thompson–Blatt result [Eqs. (6) or (A3)] while the
red curves show the exact result [Eqs. (3)]. The exact curves approach
the Thompson–Blatt curves at weak coupling (upper panels).

constants [39–43]. Simulations of the Tc(L) curves performed
at low values of λ show, however, that the oscillation pattern
changes as λ → 0. The size of the discontinuities in dTc/dL
decreases and the relative amplitude of the oscillations in
Tc(L) increases. While the separation between discontinuities
continues to be described by Eq. (2), the new oscillation
pattern is not controlled by these discontinuities any more and
approaches a period given, somewhat surprisingly, by Eq. (1).
Thus, in the antiadiabatic regime, where Eq. (2) would suggest
that the period of Tc oscillations becomes independent of the
density, this is true only for moderate to strong coupling, while
the density dependence given by Eq. (1) reappears at weak
coupling. This is the main message of the present paper, which
we elaborate in the following.

II. MODEL AND RESULTS

We consider a simple BCS superconductor with parabolic
dispersion and a local electron-electron attraction that is con-
fined by two parallel hard walls. The more realistic case of
a finite-depth potential well can be treated similarly at the
cost of introducing one additional parameter, but this plays a
marginal role in the question of the periodicity discussed here.
The value of the critical temperature Tc is found by solving the
following set of coupled equations:

n = mkBTc

π h̄2L

∑
q

ln
(

1 + e
μ−Eq
kBTc

)
, (3a)

�p =
∑

q

Vpq�q
m

2π h̄2

∫ h̄ωD

−h̄ωD

dE θ (μ+ E − Eq)
tanh

(
E

2kBTc

)
2E

.

(3b)

These equations may be derived from the most general
Gor’kov mean-field expressions by linearizing them at Tc,
where all order parameters vanish, and specializing to a
separable BCS-like pairing interaction (see Appendix of

FIG. 2. (a), (b) Evolution of Tc with film thickness in the an-
tiadiabatic (a) and adiabatic (b) regimes. Tc(L) is normalized to its
value at L = 10�0. Different curves correspond to different coupling
constants, as indicated by the dots in (c). The horizontal red and
blue bars show � and �0, respectively. The dotted lines show the
fitted background. (c) Illustration of the crossover from Eq. (2)
(bright) to Eq. (1) (dark) with decreasing λ across the antiadiabatic
and adiabatic regimes. The gray scale shows the ratio of Fourier
components at 2π/� and 2π/�0 (see text). Tc is smaller than
machine precision in the yellow region. The green curve (right scale)
shows that � and �0 become difficult to distinguish in the adiabatic
regime. All calculations are done for a mass equal to the bare electron
mass.

Ref. [33]). Equation (3a) sets the chemical potential
μ(n, L, Tc), such as to keep the electron density fixed when L
and Tc vary. The q sum runs over all nonzero positive integers,
with Eq = h̄2

2m ( qπ

L )2 giving the minima of the subbands in
the quantum well. The simple form of the density equation
with a logarithm results after summing the Fermi occupation
factors for the momenta parallel to the confinement walls.
Equation (3b) is the linearized gap equation at Tc, where
the pairing order parameters �q in all subbands vanish.
The 3D electron-electron attraction has the same matrix el-
ement V between all states having energy within the range
[−h̄ωD,+h̄ωD] from the chemical potential. Equation (3b) is,
however, written in the basis of the quantum-well eigenstates,
where the matrix elements are no longer all identical, but are
larger for the intrasubband processes than for the intersubband
ones: Vpq = V

L (1 + δpq/2) [1,33]. The integration variable E
spans the dynamical range of the interaction and accounts for
the energy gained by pairing states of subband q in that range,
weighted by m/(2π h̄2), which is the density of states of the
subband. When μ + E < Eq, the energy E falls below the
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subband, where there are no states to pair, hence the Heaviside
function for removing that energy window from the integral.

The model has five parameters (m, V , h̄ωD, n, L), which can
be reduced to four by using h̄ωD as the unit of energy. Follow-
ing Ref. [44], we define a dimensionless density parameter:

ñ = n

2[mωD/(2π h̄)]3/2
= 4

3
√

π

(
EF

h̄ωD

)3/2

. (4)

It is seen that ñ is not, strictly speaking, a measure of the
density—for instance, at fixed physical density, ñ changes if
the mass of the particles changes—but rather a measure of
the adiabatic ratio EF/h̄ωD. The value ñ ≈ 0.75 marks the
transition between the antiadiabatic regime EF < h̄ωD and the
adiabatic regime EF > h̄ωD. The dimensionless pairing
strength is usually measured by the product of the interac-
tion with the 3D density of states at the chemical potential,
λ =V N (μ). This definition is impractical when μ is adjusted
self-consistently and Ref. [44] used instead λ̄ = V N (h̄ωD).
With the latter convention, the values of the coupling con-
stant are not easily compared with experimentally determined
values. In the present paper, we use the more conventional
definition λ = V N (EF), where EF is computed from n using
noninteracting-electron expressions, like in Eq. (4). In terms
of the model parameters, the coupling constant is

λ = mV

2π h̄2

(
3n

π

)1/3

. (5)

With the definitions Eqs. (4) and (5), the coupled Eqs. (3) only
involve the four parameters m, λ, ñ, and L.

Two simplifications are sometimes made to Eqs. (3): The
density equation is replaced by its zero-temperature limit and
in Eq. (3b), θ (μ + E − Eq) is replaced by θ (μ − Eq). The
resulting simplified equations are

n = m

π h̄2L

∑
q

max(0, μ − Eq), (6a)

�p =
∑

q

Vpq�q
m

2π h̄2 θ (μ− Eq)
∫ h̄ωD

−h̄ωD

dE
tanh

(
E

2kBTc

)
2E

.

(6b)

By solving Eqs. (6) numerically, we obtain the discontinuous
variations of Tc shown in Fig. 1 as black lines. This is
reminiscent of the Thompson–Blatt results who, rather than
solving Eqs. (6) at Tc, computed the order parameters at
T = 0 using equivalent simplifications. The system of Eqs. (6)
admits a closed solution that reproduces accurately the data
shown in the figure (see Appendix A). Figure 1 also shows
the solution of Eqs. (3) in red for comparison. There are
significant differences but the red lines seem to approach the
approximate result at weak coupling.

Figures 2(a) and 2(b) show some more results from
Eqs. (3), with Tc(L) displaying quantum oscillations on top
of a background that increases with decreasing L. At suffi-
ciently large coupling (red curves), the oscillation period is
set by the discontinuities of dTc/dL, which correspond to

FIG. 3. Evolution of the discontinuity measure (left scales) and
critical temperature at the discontinuity (right scales) across the
transition from � to �0 periodicity in the antiadiabatic (a) and
adiabatic (b) regimes.

downward-pointing cusps, leading to Eq. (2). In the adiabatic
regime [Fig. 2(b)], additional discontinuities occur when the
Fermi level is h̄ωD above the bottom of a subband [33]. As
the coupling is reduced, the discontinuities of dTc/dL are
suppressed and the quantum oscillations display the period
�0 (blue curves). To measure the evolution of the period as
a function of coupling, we calculate the dependence Tc(L) for
10�0 < L < 100�0, we remove the background by fitting it
to the form Tc(∞) + 1/(a + bLc), and we compute the cosine
transform of the remaining function. The ratio of the Fourier
coefficients at 2π/� and 2π/�0 indicates the dominant pe-
riod. Repeating this calculation at each density and coupling,
we obtain the data shown in Fig. 2(c). Although this measure
is somewhat noisy, it shows well the transition from the period
Eq. (2) to the period Eq. (1) as the coupling is reduced. The
transition is sharp in the antiadiabatic regime and becomes
more and more gradual as one enters the adiabatic regime.
At large ñ, both periods become similar and their difference
reaches the resolution limit of our Fourier transform.

The change of period is associated with a suppression of
the discontinuities in dTc/dL. To quantify the strength of the
discontinuities, we consider the dimensionless quantity,

A = (dTc/dL)+ − (dTc/dL)−
Tc/L

, (7)

which can be evaluated at each discontinuity of dTc/dL.
Figure 3 shows this quantity calculated with the data plotted
in Figs. 2(a) and 2(b) at the first discontinuity following
L = 10�0. It is seen that A is approximately constant across
the transition between the two periods. This means that the
size of the discontinuity scales like Tc and therefore drops
exponentially at weak coupling. The evolution of Tc is also
shown in Fig. 3 for comparison.

When the discontinuities become subdominant on the
Tc(L) curve and the periodicity turns to Eq. (1), it is tempting
to attribute each Tc maximum to a coincidence between the
chemical potential and the edge of a subband. This is not
the case, as Fig. 4 shows for the data of Fig. 2(a). Before
presenting this figure, we point out that self-consistency of the
chemical potential is crucial: the thicknesses at which μ(L)
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FIG. 4. Critical temperature as in Fig. 2(a) for two values of λ

(top) and corresponding evolution of the chemical potential (bottom).
The thick green lines show the minima of subbands 10 and 11 as they
vary with L and the lines labeled 22 to 25 indicate an energy lying
h̄ωD below the corresponding subbands.

presents a discontinuous derivative are different at T = 0 and
T = Tc [33]. Therefore, the conclusions drawn from analyzing
the shape resonances of the excitation gap at T = 0 [23]
may differ from those drawn from the Tc curve. Figure 4 and
all our numerical calculations involve the chemical potential
calculated self-consistently at Tc. To describe this figure, we
start at L/�0 = 12 with λ = 0.26 (red curves). The chemical
potential lies inside the 11th subband. Upon reducing L,
everything else held fixed, the electron density would increase
like 1/L due to compression, such that a lowering of the
chemical potential would be needed to compensate. However,
all subbands move up in energy like 1/L2 with reducing thick-
ness: the ensuing loss of states overweights the compression
such that the chemical potential must follow the trend of the
bands and increase like 1/L. The critical temperature also has
an increasing trend because the pairing matrix elements vary
like 1/L [1]. Below L/�0 = 11.8, the 25th subband at energy
μ + h̄ωD ceases contributing to pairing and this induces a
cusp in Tc and the discontinuity in dTc/dL. Accidentally,
this is also the point where the chemical potential leaves the
11th subband, but this crossing imprints no signature in Tc,
as can be seen when μ crosses the 10th subband at lower
thickness. For λ = 0.19 (blue curves), the critical temperature
is lower and the chemical potential is correspondingly higher.
For the rest, a precise interpretation seems difficult. Starting
from L/�0 = 12, both Tc and μ show an increasing trend
like for stronger coupling. However, near L/�0 = 11.9, Tc

starts to decrease before the chemical potential leaves the
11th subband and then goes through a minimum at a thick-
ness where μ has no obvious coincidence with the subband
energies. The feature in Tc(L) which seems to correlate best
with μ crossing a subband is a zero of the second derivative,
where the curvature changes from negative to positive with
decreasing L. The same conclusion is reached in the adiabatic
regime with the data of Fig. 2(b).

Figure 1 suggests that the exact Tc at weak coupling inter-
polates smoothly across the discontinuities of the approximate
result. These discontinuities occur when μ0 crosses a subband

FIG. 5. Mass dependence of the boundary between the periodic-
ities given by Eqs. (1) and (2). The orange lines show the coupling
constants in the light and heavy bands of SrTiO3, as determined in
Ref. [42].

edge, where μ0 is the chemical potential given by Eq. (6a).
Provided that the difference between the exact μ and μ0

becomes negligible at weak coupling, this would explain the
coincidence between the curvature changes of Tc(L) and μ

crossing a subband edge. In Appendix B, we show that the
exact chemical potential from Eqs. (3) indeed approaches the
value μ0 given by Eq. (6a) when Tc → 0, unless the vanishing
of Tc is driven by taking another limit, either L → 0 or n →
0. In the latter cases, μ(Tc = 0) 	= μ0 [33,44]. But for any
finite L and n, we find that the deviation of μ(Tc → 0) from
μ0 is exponentially small in kBTc/μ0. Furthermore, we also
show, based on a closed solution, that the Tc resulting from
Eqs. (3) approaches the one from Eqs. (6) with corrections
that are exponentially small for λ → 0 (except in the two
limits mentioned above). This allows us to conclude that in the
regime where the solution of Eqs. (3) oscillates with the period
�0, the inflection points where the curvature changes from
positive to negative with increasing L signal the population of
a new subband.

The boundary between the two periodicities in Fig. 2(c)
depends on the carrier mass. In Fig. 5, we show the boundary
extracted from Fig. 2(c), together with boundaries obtained
with other values of the mass. To compare different masses,
we normalize the density on the horizontal axis using the
bare electron mass me in all cases. As the mass increases, the
domain of Thompson–Blatt periodicity shrinks and moves to
higher densities. We also show in Fig. 5 the density-dependent
coupling constants λl and λh for SrTiO3, as determined in
Ref. [42] for the light (l) and heavy (h) bands with masses
ml = me and mh = 4me, respectively. As it turns out, in the
whole range of densities, SrTiO3 falls in the regime of the
Thompson–Blatt periodicity Eq. (1). Therefore, in spite of
the fact that this low-density material lies well within the
antiadiabatic regime, thin films of doped SrTiO3 are expected
to display oscillations of Tc with the period Eq. (1), because
of the low coupling [11,45]. We discuss the case of SrTiO3

further below.
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III. DISCUSSION AND CONCLUSION

In summary, we have studied a model of BCS supercon-
ductor confined to a thin film and we report a change from
a short to a long oscillation period in the pattern of critical-
temperature shape resonances. The crossover from one period
to the other occurs at a density- and mass-dependent value
of the coupling strength. The long period is found at weaker
coupling, larger carrier density, and lower carrier mass. The
short period tracks discontinuities in the derivative of the
variation of Tc versus film thickness. These discontinuities
vanish exponentially as the coupling is reduced and the long
periodicity emerges, which only depends on the carrier den-
sity. We support our numerical findings with analytical results.

The experimental demonstration of shape resonances in
thin films requires observing oscillations of Tc with varying
the film thickness. For simple band structures, the oscillation
pattern is linked with microscopic parameters of the bulk
material, allowing one to check that the variations of Tc are
indeed controlled by the quantum confinement. A clear-cut
demonstration of this effect in superconducting thin films has
proven difficult. While a mere increase or decrease of Tc

with changing thickness is routinely observed, this is not, per
se, proof that confinement effects of the kind discussed here
do occur. These variations can be attributed to other causes
like proximity effects [15] or the tuning of an alternate order
competing with superconductivity [16].

Shape resonances require electronic coherence over the
film thickness. This is manifested in Eqs. (3) by the subband
quantization (Eq) and pairing matrix elements (Vpq) that both
require the electronic wave functions to coherently feel the
two boundaries of the film. Depending on the ratio between
the inelastic (momentum-relaxing) electron mean-free path
λ and the film thickness L, different mesoscopic transport
regimes are realized and distinct measures of electronic coher-
ence are relevant [46]. In the clean regime λ > L, attainable
at low temperatures in systems with a low concentration of
defects, the electronic response is coherent over the entire film
thickness and λ itself provides the electronic coherence scale.
On the other hand, in the dirty regime λ < L, phase coherence
can still be preserved over the film if the phase-coherence
length 	φ > L. The condition 	φ > L can be rearranged using
Eq. (1) as L/�0 < 2	φ/λF, where λF is the Fermi wavelength.
The left-hand side L/�0 can be interpreted as the number
of resonances that can develop with increasing L, before L
exceeds 	φ . Thus, as a rule of thumb, the number of observable
resonances is expected to be twice the ratio of the phase-
coherence length to the Fermi wavelength. In practice, the
film thickness can only be varied by integer multiples of the
lattice parameter a. For high-density metals with kF ∼ π/a,
the period �0 ∼ a is too short to be observed. The shape
resonances should rather be searched in low-density metals
with �0 � a. Low-density metals may lie in the antiadiabatic
regime, where �0 is replaced by a shorter period � given by
Eq. (2) if the coupling is sufficiently strong. But the simu-
lations show that the relative amplitude of Tc oscillations is
largest at weak coupling. Therefore, the optimal conjunction
for an observation of shape resonances is a low-density metal
with a weak superconducting coupling and a long electronic
coherence length relative to the Fermi wavelength.

Elemental bismuth is the lowest-density superconductor
with n = 3×1017 cm−3 [47] and probably the first metal in
which quantum-confinement effects have been observed in the
transport properties [48], thanks to a very long mean-free path
in the micrometer range. Due to a tiny carrier mass of order
10−3me, the Fermi energy is as large as 25 meV, to be com-
pared with a Debye energy of 12 meV. These figures locate
bismuth at ñ ≈ 2.3, in the adiabatic side of Fig. 2, although
this material is usually labeled as anti-adiabatic [47,49]. The
expected period �0 ∼ 150 Å is large but, unfortunately, in this
material the level quantization opens a gap and destroys the
metallic state for films thinner than 300 Å [50].

Another low-density superconductor is doped SrTiO3

(STO), the first discovered oxide superconductor [51]. Oxy-
gen reduction and Nb doping allow one to vary the carrier den-
sity in a broad range covering three decades, from 3.5×1017 to
3.5×1020 cm−3 [52,53]. Unlike in bismuth, the carrier mass is
of the order of the bare electron mass, resulting in a range of ñ
values spanning the whole antiadiabatic to adiabatic crossover
from ñ = 0.01 to ñ = 6, as seen in Fig. 5. The figure also
shows that the coupling constants are small. Hence, STO
fulfills the conditions of being a low-density metal with a
weak superconducting coupling. The expected Tc oscillation
period �0 varies from ∼14 nm at the lowest densities to
∼1.5 nm at the highest ones. The transport mean-free path
of STO single crystals reaches values above 200 nm at low
T [54]. For Nb-doped thin films in the dirty regime grown
by pulsed laser deposition, the temperature dependence of
the upper critical field indicates slightly lower values of 	φ

in the range 70–130 nm [55]. Similar figures were obtained
for two-dimensional electron gases. A study of the universal
conductance fluctuations in a surface electron gas made by
ion-liquid gating undoped STO reports values of the phase-
coherence length above 200 nm at ∼0.4 K. The magnetoresis-
tance at the SrTiO3/LaAlO3 interface points to 	φ = 157 nm
at 1.3 K [56], indicating a good coherence of the electrons, in
line with the recent observation of tunable confinement effects
in the normal state [57]. Since the interface electron gas
displays a superconductivity similar to that of bulk STO [42],
it is not surprising that the typical electronic coherence lengths
are also similar.

In conclusion, with 	φ � �0 � a, doped SrTiO3 stands
out as a candidate of choice for the observation of supercon-
ducting shape resonances. At a typical density of 1020 cm−3

with two bands occupied, the Fermi wavelength is of the order
of 5 nm and the period �0 ≈ 2.5 nm is six times longer that
the lattice spacing. The conservative estimate 	φ � 50 nm
would then imply that up to 20 resonances may possibly
be observed in thin films, by progressively reducing their
thickness below ∼100 unit cells [45].
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APPENDIX A: SHAPE RESONANCES
IN THE THOMPSON–BLATT MODEL

The enhancement of Tc relative to the bulk value shown in
Fig. 1 with the black lines was computed by solving numer-
ically Eqs. (6). These equations can also be solved (almost)
exactly. We give here a closed formula that produces curves
undistinguishable from the numerical data shown in Fig. 1.
The integral on the right-hand side of Eq. (6b) is independent
of the band index q and can be evaluated using∫ h̄ωD

−h̄ωD

dE
tanh

(
E

2kBTc

)
2E

≈ ln

(
2eγ

π

h̄ωD

kBTc

)
. (A1)

The relation becomes exact only in the limit kBTc � h̄ωD. If
Eq. (A1) is also used for the calculation of T 3D

c , a similar
error is made and both errors can be expected to cancel in
the ratio Tc/T 3D

c . This cancellation works as long as the
difference between Tc and T 3D

c is small compared to h̄ωD. It
therefore breaks down in the limit L → 0, where Tc diverges.
The numerics shows that all subband gaps approach zero with
the same slope at Tc, such that we have∑

q

V1q
�q

�1

m

2π h̄2 θ (μ − Eq) = mV

2π h̄2L

(
1

2
+ Nsb

)
, (A2)

where Nsb is the number of occupied subbands. Equation (6b)
is then readily solved to yield

Tc

T 3D
c

≈ exp

{
1

λ

[
1 − (3nL3/π )1/3

1/2 + Nsb

]}
. (A3a)

Discontinuities occur because Nsb is a discontinuous function
of n and L. This function follows by solving Eq. (6a). The
latter equation can be satisfied as long as the chemical poten-
tial is in the range ENsb < μ < ENsb+1, such that one can set
μ = ENsb and solve for Nsb. The result is

Nsb = floor

[
1

4

(
1 + C1/3 + 7

3
C−1/3

)]
, (A3b)

C = 3 + 25 3nL3

π
+

√(
3 + 25

3nL3

π

)2

−
(

7

3

)3

, (A3c)

where the function floor() returns the largest integer smaller
than its argument. Equations (A3) coincide with the black
lines in Fig. 1 up to several decimal figures. Deviations are vis-
ible only for L → 0 (not shown in Fig. 1), where Tc diverges
while Eqs. (A3) approach the finite value Tc/T 3D

c = exp(1/λ).

APPENDIX B: WEAK-COUPLING LIMIT OF EQS. (3)

The BCS Eqs. (3) present nonanalyticities that are not cap-
tured by the approximate Eqs. (6). As a manifestation of these
nonanalyticities, the three limits λ → 0, L → 0, and n → 0
do not commute. Specifically, if the limit λ → 0 is taken first,
Eqs. (3) reduce to Eqs. (6) as will be shown below. If the
limit L → 0 is then taken in Eqs. (6), the resulting chemical
potential approaches the bottom of the lowest subband and
the resulting Tc diverges. On the contrary, if the limit L → 0
is taken first in Eqs. (3), μ approaches E1 − h̄ωD irrespective
of the value of λ and Tc vanishes as a non-analytic function
of both L and λ [33]. On the other hand, if the limit n → 0

is taken after the limit λ → 0, μ again approaches the bottom
of the lowest subband and Tc approaches a finite value, while
if the limit n → 0 is taken first, μ approaches a value below
the lowest subband and Tc approaches zero as a nonanalytic
function of n and λ [44].

Here, we study the limit λ → 0 of Eqs. (3) at finite L
and n. In such conditions, μ takes at Tc = 0 the value given
by Eq. (6a), but the relation μ(Tc) is nonanalytic at Tc = 0.
A Sommerfeld-type expansion in powers of Tc is therefore
not possible. To study the behavior of μ(Tc → 0), we split
the sum in Eq. (3a) and we use the relation ln(1 + ex ) =
x + ln(1 + e−x ) for the terms q � Nsb:

n = mkBTc

π h̄2L

⎧⎨
⎩

Nsb∑
q=1

[
μ − Eq

kBTc
+ ln

(
1 + e− |μ−Eq |

kBTc

)]

+
∞∑

q=Nsb+1

ln
(

1 + e− |μ−Eq |
kBTc

)⎫⎬
⎭, (B1)

where we have taken into account that ENsb < μ < ENsb+1. We
define μ = μ0 + δμ, where μ0 is the solution of Eq. (6a),
which we write down for completeness:

μ0 = π2h̄2

3mL2Nsb

[
3nL3

π
+ Nsb(Nsb + 1)(2Nsb + 1)

4

]
. (B2)

Equation (B1) becomes

n = n + mNsb

π h̄2L
δμ + mkBTc

π h̄2L

∑
q

ln
(

1 + e− |μ0+δμ−Eq |
kBTc

)
. (B3)

Since for all values of q the exponential approaches zero for
Tc → 0, we can use the expansion ln(1 + x) = x. Further-
more, except at isolated points where μ0 = Eq, the correction
δμ is negligible compared to μ0 − Eq and Eq. (B3) can be
solved to yield

δμ ≈ −kBTc

Nsb

∑
q

e− |μ0−Eq |
kBTc . (B4)

We have confirmed numerically the accuracy of this expres-
sion. It shows that the deviation of the chemical potential
from μ0 is exponentially small for Tc → 0 (or equivalently
for λ → 0).

We now derive a closed expression for Tc, which matches
the solution of Eqs. (3) at weak coupling and converges to
Eqs. (A3) for λ → 0. If one starts from Eq. (6b), there are two
types of corrections needed to reproduce Eq. (3b). The first
corrections arise from subbands such that μ− h̄ωD < Eq < μ.
For these subbands, Eq. (6b) counts the pairing of inexistent
states between μ − h̄ωD and Eq. To remove this contribution,
we need the integral

−
∫ Eq−μ

−h̄ωD

dE
tanh

(
E

2kBTc

)
2E

= 1

2
ln

( |μ − Eq|
h̄ωD

)
. (B5)

The relation Eq. (B5) is exact for Tc → 0, because E is
negative in the whole integration range and the hyper-
bolic tangent can be replaced by −1. The subbands that
bring this correction have indices q = N−

sb, . . . , Nsb with
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FIG. 6. Comparison of Eq. (B9) (thin dark-blue lines) with the
numerical solution of Eqs. (3) (thick red lines) for m = me, ñ = 1
and three values of the coupling.

EN−
sb−1 < μ − h̄ωD < EN−

sb
, therefore

N−
sb = 1 + floor

⎡
⎣

√
2mL2

π2h̄2 (μ − h̄ωD)

⎤
⎦. (B6)

The corrections of the second kind arise from subbands with
μ < Eq < μ + h̄ωD that are excluded from Eq. (6b), which
therefore fails to account for the pairing of unoccupied states
between Eq and μ + h̄ωD. Adding this contribution requires
the integral

+
∫ h̄ωD

Eq−μ

dE
tanh

(
E

2kBTc

)
2E

= −1

2
ln

( |μ − Eq|
h̄ωD

)
. (B7)

These subbands have indices q = Nsb + 1, . . . , N+
sb with

EN+
sb

< μ + h̄ωD < EN+
sb+1, which implies

N+
sb = floor

⎡
⎣

√
2mL2

π2h̄2 (μ + h̄ωD)

⎤
⎦. (B8)

Proceeding as in Appendix A and adding the corrections, we
arrive at

kBTc

h̄ωD
= 2eγ

π
exp

⎡
⎣−

(3nL3/π )1/3

λ
− 1

2

∑N+
sb

q=N−
sb

sign(μ − Eq) ln
( |μ−Eq|

h̄ωD

)
1/2 + Nsb

⎤
⎦. (B9)

As the deviation of μ from μ0 is exponentially small in the weak-coupling regime, we can replace μ by μ0 in Eqs. (B6), (B8),
and (B9), which together with Eqs. (A3b) and (B2) provide a closed expression for Tc. This expression compares favorably with
the numerical result as seen in Fig. 6. Remarkably, the discontinuities contained in Nsb are precisely canceled by the correction
term in Eq. (B9) for the lowest values of λ and the resulting Tc(L) curve is smooth. At larger λ, the cancellation is imperfect and
spikes appear at the thicknesses where Nsb is discontinuous. Being independent of λ, the correction term in Eq. (B9) becomes
irrelevant for λ → 0 and the expression Eq. (A3) is therefore recovered in this limit.
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