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Constrained thermalization and topological superconductivity
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We examine the thermalization/localization trade off in an interacting and disordered Kitaev model, specifi-
cally addressing whether signatures of many-body localization can coexist with the systems topological phase.
Using methods applicable to finite size systems (e.g., the generalized one-particle density matrix, eigenstate
entanglement entropy, inverse zero modes coherence length), we identify a regime of parameter space in the
vicinity of the noninteracting limit where topological superconductivity survives together with a significant
violation of the eigenstate-thermalization hypothesis (ETH) at finite energy densities. We further identify
that the coexistence regime features an anomalous behavior of the von Neumann entanglement entropy as a
function of disorder strength, which we attribute to competing ETH violation mechanisms. At low disorder,
prethermalization like effects that occur due to lack of hybridization between high-energy eigenstates reflect an
approximate particle conservation law. In this regime the system tends to thermalize to a generalized Gibbs
(as opposed to a grand canonical) ensemble. Moderate disorder tends to drive the system towards stronger
hybridization and a standard thermal ensemble, where the approximate conservation law is violated. This
behavior is cut off by strong disorder which obstructs many-body effects thus violating ETH and reducing the
entanglement entropy.
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The possibility of realizing Majorana bound states in prox-
imity coupled systems [1–9] has spurred a great deal of
activity over the last decade [10–20]. Much of this stems
from the belief that quantum devices, based on symmetry
protected topological order (SPTO), are a promising platform
for quantum information processing as they are robust against
many common forms of decoherence [21–25].

With the aspiration of enhancing the stability of these
systems at higher temperatures, in recent years there has also
been a growing interest in the behavior of these systems at
energies well above the topological gap. In this respect, one
exciting prospect is that it may be possible for regions of
the topological parameter space to coincide with interacting
regions that violate the eigenstate-thermalization hypothesis
(ETH) [26–28] due to localization in Fock space [29–31]. If
this can be engineered, it is expected that systematic errors due
to nonadiabatic manipulation (see [32–36]) and/or interaction
with the environment (see [37–51]) can be suppressed.

The goal of this paper is to find out if/where the
topological-order and many-body localizing behavior over-
lap in the interacting Kitaev chain (or Kitaev-Hubbard), the
prototypical model used to study this effect. One challenging
aspect here is that the key parameters being examined, namely
disorder [52–59] and interaction strength [60–68], both even-
tually conspire to drive the system out of the topological
phase. On the other hand, these effects work in opposition
when considering localization induced violations of ETH and
hence, for a given interaction strength, one has to consider
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whether the disorder required to prevent thermalization is
weak enough to keep the topological properties of the phase
intact [31].

Our first result is that there are indeed regions of parameter
space where both MBL signatures and topological order can
coexist, although these regions can generally only occur in
a narrow window about the noninteracting regime. The key
result in this regard is the contour plot in Fig. 1, in both
disorder and interaction strength. The plot shows that the
transition to ETH in the model resembles those obtained in
other nontopological models (see, e.g., [69]). However, it also
clearly illustrates that the measures of ETH and topological
order cut through the parameter space in a very different orien-
tation, showing that in a very literal sense that the phenomena
are distinct and orthogonal.

Our second key result concerns competing ETH-violating
effects in the model, which results in anomalous entanglement
properties at high energies. Specifically, we find that in certain
regimes of parameter space, weak amounts of disorder can
lead to an increase in the averaged entanglement entropy.
This property is observed in both the full- and one-body en-
tropies (e.g., those calculated from the single particle density
matrix [70–75]). We argue that this unusual behavior is also
related to effects observed in the study of so-called many-body
zero modes [31,76–88].

This phenomena can be cast in the language of prether-
malization where the observed ETH violation at relatively
weak disorder is due to an approximate conservation law [89].
This effective conservation means that interactions can drive
the system towards different types of thermal ensemble av-
erages in agreement with the general predictions of [90–95].
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FIG. 1. Average inverse coherence length 〈1/ξ〉 (red) and occu-
pation number discontinuity 〈�n〉 (blue), plotting with increasing
disorder strength W and interaction strength U : system size 14 sites,
μ = 0.4, � = 0.7, 500 disorder realizations. Due to the finite size
of the system, one expects �n ∼ O(1/N ) to be indicative of the
ergodic transition, while the edge of the topological region is in
principle indicated by values of 〈1/ξ〉 → O(1/N ). The jaggedness
of the contours, particularly noticeable at larger disorder strengths,
is due to the limited number of disorder realizations available to
average the above quantities.

However, we also show that disorder generally degrades this
conservation law, and it is this effect that triggers the anoma-
lous entanglement properties. This trend is cut off by strong
disorder which violates ETH due to localization effects and
leads to a reduction in the entanglement entropy.

I. THE MODEL AND SETUP

We formulate our results via the Kitaev chain model which
is a lattice p-wave superconducting model [21]:

H0 = −
N∑

j=1

μ j

(
c†

j c j − 1

2

)
−

N−1∑
j=1

tc†
j c j+1+ �c†

j c
†
j+1+ H.c.,

(1)

where t is the hopping parameter, � is the pairing potential,
and μ j is the local chemical potential at site j. Disorder is
introduced by sampling each μ j uniformly around a mean
value μ with the deviation set by a parameter W . Namely, μ j

are uniformly sampled from the interval [−W + μ,μ + W ].
Interactions are introduced by local quartic term giving a
density-density type interaction:

HI = 2U
N−1∑
j=1

(
c†

j c j − 1

2

)(
c†

j+1c j+1 − 1

2

)
.

With U set to zero, the clean model is known to ex-
hibit a topological phase when |�| > 0 and |μ| < 2t , with
exponentially localized Majorana zeros modes at the ends
of the wire [21]. In the analysis � can be assumed real
and in what follows t will be set to one. The goal of our

analysis is to ascertain whether the symmetry protected topo-
logical order in this model survives the transition from ETH
behavior (eigenstate-thermalization hypothesis [26–28]) to
what is known as MBL (many-body localization), see [96].

II. METHODS

To measure the transition from ETH to an MBL-type
phase our main tool is a generalization of the occupation
gap method [105,106] for superconducting systems that was
used previously for this model in [31]. This method has
been shown to be a particularly sensitive signature of many-
body localization. Given an eigenstate of the Hamiltonian one
can construct the generalized single particle density (GSPD)
matrix (Appendix A) corresponding to this state, which upon
diagonalization, yields so called natural single particle or-
bitals [105]:

R|φα〉 = nα|φα〉.
In the context of superconductivity or more generally particle
nonconserving Hamiltonians, the single particle orbitals will
be Bogoliubov quasiparticle orbitals, with eigenvalues nα that
are interpreted as occupations with 0 � nα � 1. The occupa-
tion numbers are ordered such that n1 � n2 � · · · � n2N , and
tr(R ) = ∑

i ni = N .
In the noninteracting limit the numbers �n = nN − nN+1

display a sharp jump from zero to one, delineating empty and
filled orbitals. This jump gradually becomes less pronounced
as we increase the local interaction strength and move to
higher energy densities. In this case introducing disorder
tends to on average reduce this trend, reinstating a sharper
occupation gap. This gap then offers a means to distinguish
ergodic �n ∼ O(1/N ) from localized �n ∼ O(1) phases.

We also probe both full- and one-body entanglement en-
tropies using a base two logarithm in our definition. We
perform position space cuts near the center of the wire, of
both ground (σE = 0) and high-energy states (σE = 1). For
even system sizes this separates sites N

2 and N
2 + 1, while

for odd systems sizes this separates sites N−1
2 and N+1

2 . The
energy “density” σE (denoted ε in [106]) is defined as σE =
2(E − Emin)/(Emax − Emin), for a given disorder realization.
Details on these techniques can be found in Appendix B.

To describe the global trends of entanglement entropy of
eigenstates, we compare numerical results to both the thermal
(grand canonical) and a generalized Gibbs ensemble defined
as

ρth = exp(−βH )

Zth
, ρG = exp(−βH − αN )

ZG
, (2)

where, for simplicity, H represents the clean (W = 0) Kitaev-
Hubbard system, and N is the quasiparticle number operator
for the clean noninteracting (W = U = 0) model but where
we exclude the zero mode number operator. For definition and
details on practical implementation see Appendix C.

III. RESULTS

Our key goal is to ascertain if Fock-space localization
and topological superconductivity can coexist in this model.
To analyze this in Fig. 1 we overlay contour plots of the
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values of 〈�n〉 (in blue) and the inverse effective coherence
length 〈1/ξ 〉 (in red) (also see Appendix D), for a system size
N = 14. The edge of the topological region is in principle
where 〈1/ξ 〉 → 0. In practice however, nonexponential decay
could be indicated by values of 〈1/ξ 〉 → O(1/N ). Similarly
for a ETH-MBL boundary in the thermodynamic limit one
expects that the occupation gap 〈�n〉 in ergodic regions to
be zero, such that any nonzero value would signal the MBL
phase. For finite systems, however, one always expects some
small discontinuity and so more realistically the values of
O(1/N ) should be taken as an indication of the threshold.

In Fig. 1 we see that there is a region of U -W parameter
space where the measures for topological and Fock-space
localization coexist. One interesting feature is around the cho-
sen parameters (μ = 0.4 and � = 0.7) close to the perfectly
clean line (y axis), there is a drop in occupation gap if one
fixes an interaction strength and increases disorder strength
(moving along a horizontal line). This is visible as a dip in
the blue occupation gap contours. We will argue below that
this is related to a peculiarity in the band structure of this
model, which leads to an approximate conservation law that
offers some topological protection of high-energy states in the
presence of weak interactions [89]. The effect reduces when
bands of excited states with different quasiparticle number
merge more completely. This occurs for example when one
moves to weaker p-wave pairing and/or value of chemical
potential that are closer to the bottom of the conduction band.
However, as discussed in more detail below, disorder also
breaks this approximate conservation. We show below that
this explains why introducing small amounts of disorder into
the model can actually lead to an increase in the average
entanglement entropy.

A. Entanglement structure of coexisting region

In order to further examine the interplay between ETH-
violating mechanisms and topological superconductivity, we
examine how the entanglement entropy of a bipartition is
changed as we increase both the interaction strength U and the
disorder parameter W , focusing on both ground state (σE = 0)
and excited states (σE = 1). The ground state properties are
shown in Figs. 2 and 3(a), where the full- and one-body-
entanglement entropy for systems sizes N = 12, 13, 14 are
calculated in the even parity sector and disorder averaged
for W = 0.1 (constant W ) and U = 0.1 (constant U ) lines,
respectively.

For the ground state properties we see that for a signifi-
cant region of the disorder parameter space the entanglement
entropy remains roughly constant (∼1 entangled bit), before
eventually becoming reduced at around W = 2. The lack of
scaling is expected for the ground state of a gapped system
following an area law in entanglement entropy. In Fig. 3(c) we
also plot the quasiparticle entanglement spectrum for the N =
12 system, from where we can see how the individual one-
body quasiparticle entanglement spectrum values contribute
to the total. From Fig. 3(c) (black and dashed red data) we
see that the one-body contribution that dominates is a pair of
almost zero eigenvalues, which slowly start to gap out as the
system becomes more disordered.

FIG. 2. Entanglement entropies along line W = 0.1 for even
ground state for sizes N = 12, 13, 14, μ = 0.4, � = 0.7, 500 real-
izations. The one-body entanglement entropy (dashed line) tends to
be generically higher than the full entanglement entropy (solid line).
The difference is minimal however for weakly interacting systems.

For excited states the results are significantly different.
First, in Fig. 3(b) we see that the entropy values in low
disorder regions are significantly larger than the ground state
measures. However, we also see that for these parameter
values, modest amounts of disorder actually increase entropy
even further before eventually causing it to reduce. The fin-
gerprints of this behavior can also be seen clearly in the
quasiparticle entanglement spectrum in Fig. 3(c) (blue data).
There we see that the generally higher entropy is caused by an
accumulation of the quasiparticle spectrum around the ε = 0
point, where the states contribute the most weight [see, e.g.,
Fig. 3(d) and Appendix B]. The initial increase in total entropy
can be understood as a tightening of this entanglement spec-
trum band around the ε = 0 line, before eventually dispersing
at larger W values. In the next section we will show that
this behavior can be understood by examining the relationship
between entropy and the many-body spectrum.

B. Entanglement vs energy spectrum: Ensemble switching

While the expected trend is that disorder should decrease
the average value of the entanglement entropy, in Fig. 3 we
first see an initial increase before the onset of the expected
decrease. Similar anomalous behavior can be seen in the
lower left corner of Fig. 1 where we see a dip in the blue
contours indicating a drop in 〈�n〉 with disorder. As noted
in [106], there is a strong negative correlation between �n
for individual eigenstates and their entanglement entropies.
Indeed it was shown that in the ETH phase, eigenstates tend
to have large values of entanglement entropy and near-zero
values of the occupation gap. In contrast, after the transition
to the many-body-localized regime, the occupation gap tends
to unity, while the eigenstates have comparatively low values
of entropy. The same correlation is shown in Fig. 4, where
the averaged entanglement entropy for σE = 1 states has been
normalized to lie within the same range as �n, and is overlaid
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FIG. 3. Half-cut entanglement entropies along line U = 0.1 for system sizes N = 12, 13, 14, μ = 0.4, � = 0.7. (a) Ground state
σE = 0 – for the ground states of a weakly interacting system there is minimal difference between the averaged full- and one-body entanglement
entropies. (b) Averaged σE = 1 one-body entropy is consistently higher than the full entanglement entropy – the same general trends are
observed however. (c) Each mode in the quasiparticle entanglement spectrum contributes to the full entanglement entropy according to (d) [see
Eq. (B1)].

with rescaled values of 〈�n〉 and 1 − 〈�n〉, to show the direct
correlation.

In order to pose an explanation for the anomalous increase
in entanglement entropy with moderate disorder strength, we
study the global properties of entanglement entropy of all
eigenstates. The results are plotted in Fig. 5. We identify four
distinct behaviors which reflect the interplay between inter-
action and disorder strength. In particular, we identify regions
of parameter space where single particle bands weakly overlap
corresponding to relatively weak interaction strength. Here the
energy-entropy plots arrange into a pattern of multiple over-
lapping “parabolas” as shown in Fig. 5(b). This behavior is
consistent the von Neumann entropy S of the reduced density
matrices of the Gibbs type ρG plotted against the expected
value of the energy E = tr(Hρth/G) as the inverse temperature

0 1 2 3 4 5
W

0

0.2

0.4

0.6

0.8

1
n

1- n
S

FIG. 4. Normalized entanglement entropy, and occupation gap
with increasing disorder strength, for N = 12, μ = 0.4, � = 0.7,
and U = 0.1, averaged for 1000 disorder realizations. The normal-
ization is a shift followed by a rescale x → (x − xmin)/(xmax − xmin),
where x = 〈S〉, 〈�n〉 and xmax/min are the max/min values of the
averaged quantity along the line U = 0.1 with 0 � W � 5 as shown
in the figure.

β is varied (dashed line), and reflects an approximate particle
number conservation law in this regime.

Strong interactions and moderate disorder break this ap-
proximate conservation law resulting in a global parabolic
trend [Fig. 5(d)]. This is consistent with the von Neumann
entropy S of the thermal ensemble ρth (solid line) and appears
in regions of parameter space with negligible occupation
number discontinuity (see Fig. 1). Disorder scatters these
global structures leading to a reduction in the entanglement
entropy which deviates from the thermal or Gibbs ensemble,
reflecting the violation of ETH seen in Figs. 5(a) and 5(c).

The anomalous increase in entanglement entropy occurs
when crossing from regimes where the behavior is of Gibbs

FIG. 5. Entanglement entropy versus energy with μ = 0.4, � =
0.7, N = 12 sites, for (a) U = 0.1, W = 1, (b) U = 0.2, W = 0.3,
(c) U = 0.1, W = 2, and (d) U = 0.5, W = 2. The solid lines in
(a)–(d) represent the von Neumann entropy of the thermal density
matrix ρth as a function of inverse temperature β, while the dashed
lines in (a) and (b) represent the von Neumann entropy of the density
matrix ρG as a function of inverse temperature β, while tuning α

to ensure a fixed expected number of quasiparticle excitations. See
Eq. (2) and Appendix C.
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type [Fig. 5(b)] to regimes approaching the thermal type
[Fig. 5(d)]. This behavior is then cut off by a decrease in
entanglement entropy caused by increased disorder
[Fig. 5(c)]. We note that regions of parameters space
characterized by bands that weakly overlap [as in
Fig. 5(b)], and thus reflect an approximate particle number
conservation, have been shown to protect many-body zero
modes [79,80,82,89]. However, here moderate disorder tends
to drive the system to regimes where stronger band overlaps
occur. This is expected to slightly increase the entanglement
entropy and was shown to reduce the topological protection
of the many-body zero modes [31]. Stronger disorder then
localizes the single particle states and consequently cuts
off many-body effects. This is expected to reduce the
entanglement entropy and partially restore the protection of
the zero modes before eventually driving the system entirely
out of the topological phase.

In comparing the peak in the entanglement entropy as a
function of disorder in Fig. 3(b), it is noticeable that the width
of the peak is visibly smaller for the odd system size compared
to the even ones. We note that the average entanglement
entropy in Fig. 3(b) is obtained by sampling eigenstates from
an energy window centered at energy density σE = 1. For
even systems sizes this falls in a valley between overlapping
parabolas (close to E = 0) similar to Fig. 5(b). For odd system
sizes this occurs at the peak of a parabola. This difference
together with the observed behavior of the entropy-energy
parabolas seem to account for the difference in peak widths,
see the Supplemental Material [109].

Here we stress that while this anomalous effect is observed
for small values of U and W , where one would expect to
observe signatures of the topological phase, the effect itself
seems unlikely to be purely topological in nature. For in-
stance, in the Appendix E we examine the model outside
of the topological phase, and observe the same increase in
entanglement entropy and decrease in �n for small disorder
and weak interactions. In addition, previous studies of global
properties of the entanglement entropy in models such as
an XXZ ladder, Bose-Hubbard model [107], have shown
the same global versus multiparabolic trends when plotting
entanglement entropy vs energy.

IV. CONCLUSION

We analyzed the behavior of the disordered Kitaev-
Hubbard model with the goal of identifying the coexistence
of localization and symmetry protected topological order.
Our methodology uses eigenstate entanglement entropy and
a generalization of the single particle occupation gap for
superconducting systems, and demonstrates that similar to its
number conserving counterpart [106], there is a strong cor-
relation between the averaged value of entanglement entropy
and the generalized occupation gap for σE = 1 states.

Our analysis allows us to discern distinct mechanisms lead-
ing to ETH violation, which can be attributed to prethermal-
ization effects or disorder. In particular, our results identify
a narrow region of parameters where SPTO and disorder
induced ETH violation can coexist.

In our study we discovered an unexpected increase of the
entanglement entropy due to moderate amounts of disorder.

This phenomena occurs when the interacting system transi-
tions between different types of thermal ensembles: The rela-
tively clean system follows a generalized Gibbs-like ensemble
with an approximate number conservation law (also known
as prethermalization). Moderate disorder shifts the system
slightly towards a thermal ensemble, which is eventually cut
off by strong disorder, which in turn reduces the entanglement
entropy compared to the thermal ensemble.
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APPENDIX A: GENERALIZED SINGLE PARTICLE
DENSITY MATRIX AND THE OCCUPATION GAP

In Refs. [105,106] it was argued that the discontinuity in
the single particle occupation numbers that occurs in nonin-
teracting systems should also persist if the system is in the
MBL phase. On the other hand, this occupation gap would be
completely washed out in an ergodic (ETH) phase, forming
a smooth function in the thermodynamic limit. In order to
study the region of overlap between an MBL-type phase and
the topological phase of the model we use a generalization of
this method to superconducting systems (see, e.g., [31] and
references therein). In this method one first forms the gener-
alized single particle density matrix (GSPD herein). Given a
fixed number L of fermionic degrees of freedom, and many-
body fermionic state �, not necessarily an eigenstate of the
total number operator N̂ , we can form the generalized single
particle density matrix R� by calculating the expectation
values of quadratic fermion operators ci and c†

j , 1 � i, j � L.
That is defining the following matrices:

R� =
(

ρ κ

−κ∗ 1 − ρ∗

)
, (A1)

where ρi j = 〈�|c†
j ci|�〉 and κi j = 〈�|c jci|�〉. This matrix

in block form above has the property that it can be used to
calculate expectation values in the state � of all operators
quadratic in the creation and annihilation operators. Writing
an operator M̂ = ∑

i, j Ai jc
†
i c j + Bi jc

†
i c†

j + Ci jcic j + Di jcic
†
j

in matrix form by collecting the fermi operators in vector
form, M̂ = (

c† c
)(A B

C D

)(c
c†

)
, M = (A B

C D

)
then we have

that 〈�|M̂|�〉 = tr(R�M ).
Suppose we perform a Bogoliubov transformation of the

fermionic operators, β
†
i = ∑

j Ujic
†
j + Vjic j , requiring the

transformation to be canonical and that βi = (β†
i )†, we find
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that the matrix W = (U V ∗
V U ∗

)
is unitary, and the transforma-

tion can be written as
(β

β†

) = W †
(c

c†

)
. If we form the GSPD

matrix of the quasiparticle vacuum state of this transforma-
tion, that is the state |φ〉 = ∏

βi|0〉, then matrix can be calcu-

lated as Rφ = (V ∗
U ∗

)(
V T U T

)
. In changing to the quasiparticle

basis, GSPD matrix of the vacuum state can be put in its
canonical form:

R ′
φ = W †RφW =

(
0 0
0 1

)
=

( 〈φ|β†β|φ〉 〈φ|ββ|φ〉
〈φ|β†β†|φ〉 〈φ|ββ†|φ〉

)
,

from which it is clear that the matrix satisfies R2
φ = Rφ .

APPENDIX B: FULL- AND ONE-BODY ENTANGLEMENT
ENTROPIES

To further probe the region of overlap between MBL-type
and topological phases of the model, we look at the full- and
one-body entanglement entropies, performing position space
cuts near the center of the wire, of both ground (σE = 0) and
high-energy states (σE = 1). The energy density σE (denoted
ε in [106]) is defined as σE = 2(E − Emin)/(Emax − Emin), for
a given disorder realization.

One expects, due to the spatial localization of the many-
body wave functions, that the entanglement entropy in an
MBL phase to be generally lower than in the ergodic phase.
Moreover, it can be shown that one of the defining features
of the MBL phase is an area law scaling for entanglement en-
tropy which, for one-dimensional systems, should be constant,
or at least bounded by a constant [29,97]. The (generalized)
one-body approximation to the entanglement entropy is cal-
culated directly from the reduced (generalized) single particle
density matrix. For more details see Appendix A. In the
case of free fermion systems this calculation agrees exactly
with the standard entanglement entropy (see [70–75]). As
one moves to more interacting regimes the one-body entropy
generically overestimates the full entropy (see Figs. 2 and 3),
although for modest interaction strengths the results are very
similar.

Our main motivation for examining the one-body entropy
is that it allows us to break down the total entanglement
entropy into the contributions from the individual modes of
the so-called entanglement Hamiltonian.

For the analysis of the single particle entanglement we will
also need to define a reduced density matrix R̃ where we
only consider a subset of matrix indices, corresponding to a
partition of the sites in position space. Choosing a subset of
the labels (sites) of the fermion operators { j1 · · · jk} we can
form a reduced density matrix R̃ψ by taking only the matrix
entries of Rψ corresponding to the indices { j1 · · · jk}, which
are the expectation values 〈ψ |c†

jl
c jm |ψ〉, with 1 � l, m � k.

This is equivalent to deleting rows and columns for labels
(sites) that are to be traced out. Now if one takes the von
Neumann entropy of this reduced density matrix, we call this
the one-body entanglement entropy Sone = −tr[R̃ψ log2(R̃ψ )].

It was shown by [70] that this is precisely the entanglement
entropy provided that the state is a free fermion eigenstate. In
this case we can write R̃ = [1 + exp(Hα )]−1 [108], where Hα

is free fermion single particle/excitation Hamiltonian. Given

that the eigenvalues of R̃ come in pairs 1
2 ± ηi due to particle

hole symmetry, this means the eigenvalues of Hα come in pairs
±εi. The values εi themselves are known as the quasiparticle
entanglement spectrum [75], which generate the entanglement
spectrum. Concretely in this case we have

S = −
∑
εi>0

f (εi ) log2[ f (εi )] + f (−εi ) log2[ f (−εi )], (B1)

where f (ε) = (1 + eε )−1 and the values f (εi ) are the eigen-
values of the reduced generalized density matrix R̃ where
the subset are the position space indices for half of the wire
(e.g., j � N/2) [75]. While this function is not symmetric
with respect to ε, given that the quasiparticle entanglement
spectrum is particle hole symmetric, we can combine the
positive and negative pairs into a symmetric contribution
which peaks at ε = 0 as in Eq. (B1).

For a generic state with a definite fermion number parity
the one-particle entropy tends to overestimate the entangle-
ment entropy. This is clearly seen in particular in Fig. 3 where
even for small interaction strengths the average value for
σE = 1 states is approximately one e-bit above the actual
value of the entanglement entropy. That said, it is also clear
that for the σE = 0 states, even for modest interactions, that
the value of the one-body entropy reasonably estimates the
actual value of the entanglement entropy. Furthermore, the
one-body entropy tends to mimic the global trends in the
entropy seen in Fig. 5.

APPENDIX C: THERMAL AND GENERALIZED GIBBS
ENSEMBLES

To study the expected MBL and ETH phases of the model
we compare numerical results to both the thermal (grand
canonical) and a generalized Gibbs ensemble defined as

ρth = exp(−βH )

Zth
, (C1)

ρG = exp(−βH − αN )

ZG
, (C2)

where, for simplicity, H represents the clean (W = 0) Kitaev-
Hubbard system, and N is the quasiparticle number operator
for the clean noninteracting (W = U = 0) model but where
we exclude the zero mode number operator. To elaborate on
the definition of the N operator, we take the clean (W = 0)
Kitaev model, diagonalizing as usual with a Bogoliubov trans-
formation so that H0 = ∑

j E jβ
†
j β j + �, � being the ground

state energy. In the topological phase there are (approximate)
zero modes which are combined into a fermion degree of
freedom with single particle energy Ek ∼ 0 for some index
k, then N is simply

N =
∑
j �=k

β
†
j β j . (C3)

With weak disorder and interactions, the energy spectrum
maintains the approximate doubling of degeneracy with num-
ber parity. Inclusion of the zero mode number operator does
not allow the assignment of a single number of quasiparticle
excitations to a single band as in Fig. 4(b) (main text), since
occupying the zero mode degrees of freedom counts as a
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quasiparticle with approximately the same energy. If one
includes the zero mode, one sees curves as in Fig. 4(b) (dashed
line) which instead encompass two neighboring “parabolas”
instead of just one. Here α plays the role of the quasiparticle
chemical potential [90–95]. In the thermodynamic limit [97]
one expects that if ETH holds, then for a small subsystem A
with environment B the reduced density matrix of an eigen-
state will agree with the reduced density matrix of ρth,A =
trB(ρth), with β fixed to give the expected energy of the
eigenstate. In particular, this means that the von Neumann
entropy of ρth,A will agree with the entanglement entropy of
the eigenstate.

To examine the global trends of entanglement entropy of
eigenstates, we study the von Neumann entropy of the reduced
thermal matrix ρth,A as a function of inverse temperature (β).
Suppose we partition the wire into subsystems A and B, the
environment for a given number of sites N . If one takes the
thermodynamic limit, adding degrees of freedom (sites) to the
environment B in such a way that the limit of the fraction of
sites in A to B goes to zero, then if the ETH holds, subsystem A
should be in thermal equilibrium. That is to say if one takes an
eigenstate |ψn〉 with energy En, and the thermal density matrix
for the full system ρ (eq)(T ) = Z−1(T ) exp(−H/kBT ), then

ρ
(n)
A = ρ

(eq)
A (Tn),

where ρ
(n)
A = trB(|ψn〉〈ψn|), ρ

(eq)
A (Tn) = trB[ρ (eq)(Tn)], and Tn

is such that tr[Hρ (eq)(Tn)] = En. As noted in [97], this implies
that the entropy of entanglement SAB = −kBtrAρ

(n)
A log2 ρ

(n)
A

between A and B for this eigenstate is equal to the equilib-
rium thermal entropy (von Neumann entropy) of the smaller
subsystem, A in this case.

For a fixed chain length, the infinite temperature limit
β = 0, corresponds to ρth = I/2N , the normalized identity op-
erator, which gives Eavg = tr(H )/2N for the expected energy,
and the von Neumann entropy of the reduced density matrix
ρth,A peaks at log2(DA) where DA is dimension of reduced
Hilbert space of subsystem A. If we allow for negative tem-
peratures, we can compare this to the entanglement entropy
of the eigenstates across all energies E , where E < Eavg cor-
responds to positive temperatures, and E > Eavg corresponds
to negative temperatures.

In order to describe trends in the entropy energy of eigen-
states, which in the weakly interacting chain still have a near
integer expected number of quasiparticles, we also compare
against the von Neumann entropy of the reduced Gibbs-type
density matrix ρG,A as a function of inverse temperature. We
impose the constraint n = tr(NρG), with n an integer 0 � n �
N − 1. The Gibbs-type operator is the one which maximizes
the statistical entropy given this constraint, which is normally
arrived at by treating α as a Lagrange multiplier. The trace
condition fixes α(β, n) as a function of β, and quasiparticle
number n. Numerically, however, we would like to find such
an α to construct the density matrix, so for fixed values β, n
we employ a bisection method on the parameter α.

APPENDIX D: INTERACTION AND TOPOLOGICAL
PHASE TRANSITIONS FOR FINITE SYSTEMS

It is known that topological superconductivity survives for
a range of disorder and interaction parameters [52–68]. In or-

0 1 2 3 4 5
W

0.4
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0.8

1

1.2

1.4

 E

N=12 odd
N=12 even
N=13 odd
N=13 even
N=14 odd
N=14 even
N=15 odd
N=15 even

FIG. 6. Energy gap for both number parity sectors as a func-
tion of disorder strength with fixed interaction strength U = 0.1,
μ = 0.4, � = 0.7 with 2000 disorder realizations.

der to define the topological phase of the model, one indicator
is the gap. Another distinguishing feature is the presence of
Majorana modes localized at the ends of the one-dimensional
wire. Addressing the first, in Fig. 6 the disorder averaged
energy gap to the first excited state in the even/odd parity
sector is plotted against disorder and interaction strength.

A clear energy gap can be seen in this figure, and it is
expected that the gap closes as interaction strength and/or
disorder is increased. It is unlikely that zero will actually be
obtained from this disorder averaging process given that the
energy gap is calculated as a positive quantity, and averaging
at best can yield a small but nonzero number. In order to show
the expected closing of the energy gap, in Fig. 6 the even/odd
parity energy gap is plotted for increasing system size for a
fixed interaction strength U = 0.1 which is averaged over 500
disorder realizations. One can see the downward trend of the
value of the gap at larger disorder and increasing system size.

In the main text we instead use the inverse of the effective
Majorana coherence length 1/ξ for the zero modes in the
topological phase of the model. Given the (even and odd parity
ground states) ground state and first excited state, denoted |0〉
and |1〉 of the above model, we define the cross correlators

〈0|c j |1〉 + 〈0|c†
j |1〉 = 〈0|γ j |1〉 for j = 1, . . . , N. (D1)

This function of position ( j) decays exponentially into the
middle of the wire as e−x/ξ where x = j (or N − j if using
a minus sign in the definition above). The effective inverse
coherence length 1/ξ is estimated by taking the logarithm of
absolute value of the cross correlators, averaging over disorder
realizations, and then performing a linear fit (least squares)
from sites 1 up to 	N/2
. Performing the linear fits first and
then averaging over the disorder realizations gives an identical
answer, which is a property of linear fitting with the least
squares method.

The inverse coherence length is shown in Fig. 7, aver-
aged over 2000 disorder realizations for parameters U/t =
0.1, μ/t = 0.4, and �/t = 0.7. The coherence length decays
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FIG. 7. Inverse coherence length as a function of disorder
strength and fixed interaction strength U = 0.1, μ = 0.4, � = 0.7
with 2000 disorder realizations

to zero relatively consistently when the disorder strength
reaches approximately W ∼ 5. The sudden jump in coherence
length from sizes 12,13 to 14,15 is an artificial artifact of the
procedure to estimate the coherence length.

APPENDIX E: ENTANGLEMENT ENTROPY
AND OCCUPATION GAP

As mentioned in the main text, there is a correlation
between the averaged entanglement entropy of eigenstates at
σE = 0 and the averaged occupation gap calculated from the
GSPD matrix of these eigenstates. In the main text, weak
disorder first led to an increase in the averaged entanglement
entropy and corresponding decrease in averaged occupation
gap. For larger disorder strengths, an overall expected de-
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1
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1- n
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FIG. 8. N = 13 sites, μ = −3, � = 0.7, U = 0.1, 500 disorder
realizations. (a) Scaled entanglement entropy and �n vs disorder
strength.
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1
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FIG. 9. N = 13 sites, μ = −0.2, � = 0.7, U = 0.1, 500 disor-
der realizations. (a) Scaled entanglement entropy and �n vs disorder
strength, periodic boundary conditions.

crease in entanglement entropy is seen with its corresponding
increase in averaged occupation gap. This was shown starting
from a region of parameter space wherein the model is in
a topological phase with weak disorder. This increase in
averaged entanglement entropy is also noticed in parameter
regimes where the model would not be in a topological phase
with weak disorder (Fig. 8), and with periodic boundary
conditions (Fig. 9). The correlation between averaged entan-
glement entropy and averaged occupation gap is seen in both
cases. The data as in the main text are normalized in Figs. 8
and 9. The normalization is a shift followed by a rescale x →
(x − xmin)/(xmax − xmin), where, x = 〈S〉, 〈�n〉 and xmax/min

are the max/min values of the averaged quantity along the
line U = 0.1 with 0 � W � 5 as shown in the figures. It

FIG. 10. N = 12 sites. Entanglement entropy versus occupation
gap for μ = 0.4 and � = 0.7 for (a) U = 0.5, W = 0.5, (b) U = 0.2,
W = 0.3, (c) U = 0.1, W = 3, and (d) U = 0.1, W = 5
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was noticed in [106] that in the ergodic phase eigenstates
with a large half-cut, entanglement entropy tended to have
low occupation discontinuity, while in the MBL phase states,
eigenstates typically had much lower values of entanglement
entropy and higher occupation gaps. This bunching in an
entropy-occupation gap plot is also seen in the model of the
main text, the Kitaev model with nearest neighbor interac-

tions. In Fig. 10 we show a density plot of the entanglement
entropy vs the occupation gap for all eigenstates of the Kitaev
model with 100 disorder realizations. We see a bunching of
high entropy states with low occupation gap in Figs. 10(a)
and 10(b), while in the limit of large disorder Figs. 10(c)
and 10(d) states tend to bunch up at lower entropies and have
large occupation gaps.
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