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Fractional Shapiro steps in resistively shunted Josephson junctions
as a fingerprint of a skewed current-phase relationship
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We study numerically the fractional Shapiro step response in low-frequency driven Josephson junctions which
have a nonsinusoidal current-phase relation. We perform this study within the resistively shunted Josephson
junction model. We demonstrate that fractional steps, as a fingerprint of a skewed current phase relation, will
manifest themselves only for higher values of the reduced frequency. We compare the theoretical observations
with experimental measurements in an anisotropic Josephson junction array containing over 500 superconductor-
normal-superconductor junctions having a skewed current phase relation. We demonstrate that changing the
critical current by applying a magnetic field is a robust method to modify the reduced frequency over a broad
range of values. The presence of fractional Shapiro steps at high values of the reduced frequency directly confirm
the theoretical results.
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I. INTRODUCTION

The potential of Josephson junctions for applications in
the terahertz range stems from the second Josephson rela-
tion, dϕ

dt = 2e
h̄ V . Due to the smallness of the flux quantum

(�−1
0 = 2e

h ≈ 0.5 GHz/μV), this relation reflects that a small
variation of the voltage drop V over a junction leads to a
fast variation of the phase difference ϕ(t ) between the two
superconducting electrodes [1]. Moreover, a driven Josephson
junction (JJ) has the ability to have a resonant or phase-locked
response when subjected to a high-frequency radiation field
of frequency νac [2]. This resonant response manifests itself
as constant-voltage plateaus, so-called Shapiro steps, in the
V -I characteristics of the junction at voltage values

Vn
q

= n

q
�0νac. (1)

These voltages depend only on a fundamental constant, the
flux quantum �0, and the driving frequency νac. Further,
q ∈ N0, n ∈ Z, and the qth ( �= n) fractional step originates
from the phase-locked response with the qth harmonic in the
current-phase relation (C�R) [3–5],

Is(ϕ) = Ic

∞∑
q=1

bq sin (qϕ), (2)

where Ic ≡ max[Is(ϕ)] is the critical current of the junction.
The harmonic content of C�R is determined not only by the
nature and geometry of the Josephson junction but also by
temperature, the transport parameters of the superconducting
banks, and the properties of the JJ interfaces [6–8].

In a recent work [9], the phase-locked response was mea-
sured on anisotropic Josephson junction arrays (JJAs). It was
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demonstrated that an anisotropic JJA shows single-junction
behavior, free of collective effects [10–13]. The array geome-
try provides a giant Shapiro response and high device critical
currents, making the measurement of the Shapiro response
easily accessible even for drive frequencies as low as νac =
50 MHz. As the C�R becomes nonsinusoidal for a transparent
superconductor-normal-superconductor (SNS) junction when
approaching T = 0, this system provides a perfect playground
for investigating the nonlinear resonant response of a JJ with
a C�R containing higher-harmonic terms, as described by
Eq. (2) [7,14]. The presence of giant fractional Shapiro steps,
under certain strict experimental conditions, is direct evidence
of the nonsinusoidal C�R. Nevertheless, a detailed inter-
pretation of such experiments is complicated by the strong
nonlinear nature of the Josephson junction’s response to an
ac excitation. In order to identify the experimental conditions
needed to observe the impact of higher-order modes in C�R
on the Shapiro response, a direct comparison with detailed
theoretical modeling is required.

In this paper, we will extend the work of Russer [15]
and Likharev [16,17] discussing the Shapiro response of a JJ
which has a sinusoidal C�R (bq = 0 for q > 1) to the case
of JJs with a C�R containing higher-harmonic terms. We will
consider only the limit of overdamped JJs characterized by
a Stewart-McCumber parameter [18,19], β � 1, as described
within a resistively shunted Josephson junction model (RSJ
model). This limit is appropriate for a quantitative description
of externally shunted junctions of any type and for a quali-
tative description of (unshunted) weak links [16]. For a dis-
cussion regarding the intermediate damped and underdamped
case β � 1, we refer to Refs. [16,20–25]. In addition, we per-
form transport measurements on an anisotropic JJA containing
over 500 SNS junctions. The measurements are performed at
400 mK temperature to ensure a skewed current-phase relation
[9]. These results show good qualitative correspondence with
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the model. The obtained insights can be used to define the
experimental conditions enabling the observation of fractional
Shapiro steps.

II. THE CURRENT-BIASED SHAPIRO MAP

A Shapiro map, which traces the width of the Shapiro
plateaus as a function of the ac and dc drive of the system,
is a very powerful tool to investigate the harmonic content

of the C�R in a variety of weak links. Examples include
weak links, where the coupling between the superconduct-
ing banks is established by a normal metal; a topological
insulator; and graphene [26–30]. As such, we will focus our
attention on these types of experiments. In case the drive
has a voltage nature, vbias = vdc + vac cos (ωact ), with ωac =
2πνac, the current contains a dc current component when
vdc = Vn

q
, where n ∈ Z, q ∈ N0. The dc component can be

obtained analytically in closed form and is given by (see the
Supplemental Material [31])

I0 = Ic

∞∑
q=1

bqJ0

(
q

2e

h̄ωac
vac

)
sin (q	ϕ0), n = 0, (3a)

I n
q

= Ic

∞∑
q′=1

bq′ (−1)q′nJq′n

(
q′ 2e

h̄ωac
vac

)
sin (q′	ϕ0) for integer steps, n ∈ Z0, q = 1, (3b)

I n
q

= Ic

∞∑
q′=1

bq′q(−1)q′nJq′n

(
qq′ 2e

h̄ωac
vac

)
sin (qq′	ϕ0) for fractional steps, n ∈ Z0, q ∈ N > 1, mod(n, q) �= 0, (3c)

where Jn is the nth-order Bessel function of the first kind,
	ϕ0 is the initial phase difference [8,32], and the fractional
step number n

q is always considered to be written in the lowest
terms. Note that this solution has an oscillatory dependence on
the amplitude of the applied ac voltage (as it appears inside of
the Bessel function), while it is independent of the particular
value of Ic or bq.

In the majority of experimental arrangements, no special
measures are employed to provide matching. As such, the
impedance of the environment is larger than the character-
istic impedance of the JJ, and the driving source acts as
a current source. For such a current-biased system, ibias =
idc + iac cos (ωact ), where ik = Ik/Ic (with k = ac, dc) is the
reduced current, the Shapiro map can be obtained only nu-
merically. It is well established that in the case of a sinusoidal
C�R only integer Shapiro steps appear [16] (see the Supple-
mental Material [31]). In general, the current width of the
nth-integer Shapiro step depends in a nontrivial way on the
reduced frequency [15–17]:

� = �0νac

2πRIc
. (4)

This reduced frequency is a measure of the ratio of the mag-
nitude of the minimum impedance of the Josephson junction
and the magnitude of the impedance of the resistive channel
[8,16]. Moreover, in the current-biased case the Shapiro map
is independent of the initial phase difference over the junction.
To investigate the impact of higher harmonics in the C�R
on the Shapiro step response, we integrate numerically the
overdamped RSJ equation of motion [9–12]

h̄

2eR

dϕ

dt
= Idc + Iac cos ωact − Is(ϕ, 	) (5)

for a current-biased noise-free junction, characterized by C�R
given by

Is(ϕ, 	) = Ic sin

(
ϕ − 	

Is

Ic

)
, (6)

where Ic = max(|Is|) is the critical current of the junction. The
parameter 	 is given by

	 = Ic

(
dIs

dϕ

)−1

π

+ 1, (7)

which has a simple geometrical interpretation and determines
the level of skewness of C�R [6,7]. Equation (6) is only
an approximation of the real C�R [Eq. (2)]; however, it
captures the main aspects using only two parameters. The
upper and lower limits of each Shapiro step were determined
numerically by carefully sweeping the dc current for given
values of the reduced frequency � and ac amplitude iac within
a bisection algorithm. For each set of values of idc, iac, and
�, the full equation was integrated using the fourth-order
Runge-Kutta method over typically 2 × 107 time steps of size
h = 0.01t0, where t0 is the Josephson time.

A. Impact of the reduced frequency for an unskewed C�R

As a first step we construct the Shapiro map for an
unskewed C�R and explore the impact of the reduced fre-
quency. Some representative Shapiro step diagrams for the
sinusoidal case [	 = 0 (bq = 0, q > 1)] are shown in Fig. 1(a).
They present the dependence of the reduced Shapiro current
step widths, 
in = 
In/Ic, on the reduced frequency. These
diagrams show the reduced dc current drive idc on the x axis
and the reduced ac current drive iac on the y axis. Regions in
this parameter space where phase-locked solutions (Shapiro
steps) were identified are colored; regions where none were
identified remain blank.
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FIG. 1. (a) Shapiro step diagrams for the sinusoidal case, 	 = 0, and three different reduced frequencies, � = 0.05, 0.2, 1. In these Shapiro
step diagrams orange fills delimited by black lines correspond to integer steps; fractional steps could not be identified for 	 = 0. The numbers in
the Shapiro map indicate the integer step number n. (b) The reduced current step width of the first three integer Shapiro steps 
in (n = 0, 1, 2)
as a function of the ac current amplitude iac for two different reduced frequencies � = 0.05, 0.2. The dashed black lines illustrate that the
maximum of the width of steps scales as i−1/2

ac . (c) The width of the first three integer Shapiro steps 
in (n = 0, 1, 2) as a function of reduced
frequency � for a fixed reduced ac current amplitude iac = 8 as a log-log plot. Solid lines are for 	 = 0, while dashed lines correspond to
	 = 0.6. The dashed black line indicates that the maximum of the width of steps scales as

√
�.

The Shapiro step diagrams shown in Fig. 1(a) contain
only signatures of integer Shapiro steps (q = 1). The corre-
sponding amplitude and frequency dependence of the reduced
current step widths, 
in = 
In/Ic, of the first n = 0, 1, 2
steps are shown in Figs. 1(b) and 1(c), respectively. The
dependence of the integer (q = 1) reduced current step widths
on the reduced ac amplitude and reduced frequency follows a
Bessel-like dependence over a wide range of amplitudes and
frequencies:


in ∼ Jn

(
iac

�

)
, n ∈ Z, q = 1. (8)

It is remarkable that, for a wide range of values for the reduced
frequency, the Bessel-like dependence, as obtained for the
voltage-biased case [Eq. (3)], is qualitatively preserved for
the current-biased junctions. This was already observed by
Likharev [16], who showed that the Bessel-like dependence
persists if one of the following conditions is fulfilled: � � 1,
iac� � 1, or n�3 � 1. According to the properties of the
Bessel functions of the first kind, Jn(z) increases first as zn and
reaches a maximum value of 0.675n−1/3 at z ∼ n. For large
values of z and any value of n Jn(z) slowly decrease, oscillat-
ing with a period 	z ∼ 2π , under an envelope as

√
2/(πz).

This asymptotic behavior, with z = iac/�, is indicated by the
black dashed lines in Figs. 1(b) and 1(c).

Only in the case of low ac current amplitudes, low reduced
frequencies, and low step numbers does the step size not
follow the Bessel-like dependence. In this case [Fig. 1(b),

left panel, � = 0.05], 
i0 decreases nearly linearly with
increasing ac current amplitude. In addition, the widths of
the first and second Shapiro steps 
i1,2 are roughly equal and
increase as

√
iac [33].

Since the impact of the higher harmonics of C�R is
expected to introduce fractional steps, a sufficiently large
spacing is required between the consecutive integer Shapiro
steps. For the range of parameters where Eq. (8) is valid, the dc
current spacing between two consecutive Shapiro steps (white
zones in Fig. 1) is proportional to (see the Supplemental
Material [31])


Inosteps
dc = �0νac

R
− Ic

(
�0νac

2π IacR

)1/2

(9a)

= �Ic

[
2π −

(
Ic

Iac�

)1/2]
. (9b)

Consequently, the range of dc currents 
Idc between two
consecutive Shapiro steps (orange zones) increases with re-
duced frequency for a fixed critical current Ic and ac drive
amplitude Iac.

B. Shapiro map for a skewed C�R

Figure 2(a) shows Shapiro maps for the case 	 �= 0 for a
fixed reduced frequency � = 0.2 and three different levels of
skewness, 	 = 0.2, 0.6, 0.8. The color code in Fig. 2(a) dis-
tinguishes between the different Shapiro regions, with white
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FIG. 2. (a) Shapiro step diagrams for a fixed reduced frequency � = 0.2 and three different levels of skewness, 	 = 0.2, 0.6, 0.8. In these
Shapiro step diagrams orange fills delimited by black lines correspond to integer steps, while green and blue fills correspond to the q = 2
and q = 3 fractional steps, respectively. Higher-order fractional steps, q > 3, are not indicated. The numbers above and in the Shapiro map
indicate the step number n/q. Additionally, we show the C�R for each value of the skewness parameter. (b) The width of the zeroth, (1/2)th
and (1/3)th Shapiro steps 
in/q as a function of the reduced ac current amplitude iac for a reduced frequency � = 0.2 and 	 = 0.6. The black
lines illustrate that the maximum of the width of the (n/q)th step scales as bqq−1/2i−1/2

ac . (c) The width of the zeroth, (1/2)th, and (1/3)th
Shapiro steps 
in/q as a function of reduced frequency � for a fixed reduced ac current amplitude iac = 8 as a log-log plot. The black lines
illustrate that the maximum of the width of the (n/q)th step scales as bqq−1/2

√
�.

meaning no phase-locked solutions were identified, orange
for integer steps, and other colors for the fractional steps. It
is clear all three Shapiro maps contain both integer (q = 1)
and fractional Shapiro steps. Only the first 
i n

q
, with q =

1, 2, 3, steps are shown in the Shapiro map. Higher-order
fractional steps, q > 3, are not indicated. The dependence of
the step widths on the reduced ac drive amplitude and the
reduced frequency for 	 = 0.6 are shown in Figs. 2(b) and
2(c), respectively.

When a current-biased junction has a skewed C�R, the
Bessel-like dependence of the reduced fractional step widths
on the reduced ac amplitude and reduced frequency, as ob-
tained for the voltage-biased case, is also qualitatively pre-
served for a broad range of drive parameters. It is given in
first-order approximation by


i n
q

∼ bqJn

(
q

iac

�

)
(10)

for n ∈ Z0, q ∈ N > 1, and mod(n, q) �= 0. The dependence
of the reduced fractional step widths on the reduced ac am-
plitude and reduced frequency, as formulated by Eq. (10), is
confirmed by several observations:

(i) For each oscillation of the integer steps (q = 1, n =
0, 1, . . . ), in a plot of the reduced step width versus the re-
duced ac amplitude [Fig. 2(b)] or frequency [Fig. 2(c)], there
are q local minima for the fractional steps (q = 2, 3, 4, . . . ).
This is qualitatively similar to the voltage bias case, Eq. (3c),
where the resonance condition would lead to Bessel-like
oscillations with a period q times smaller than that of the
fundamental (n = 0) resonance.

(ii) The black lines in Figs. 2(b) and 2(c) indicate that
the dependence of the (n/q)th step width on the reduced ac
current amplitude iac and reduced frequency � qualitatively
follows the expected Bessel-like dependence [Eq. (10)] when
iac and � are sufficiently large and if we consider that
the bq components decrease rapidly with increasing q. For

054507-4



FRACTIONAL SHAPIRO STEPS IN RESISTIVELY … PHYSICAL REVIEW B 102, 054507 (2020)

/ [Ω] 0 13

[
]

(a) (b)

−5 0 5 10 15 20

100

200

300

500

400

0

[ ]

(c)

Ω

( ) 69.

( ) 3.

Ω( , ) 0.008

Ω( , ) 0.18

Single Junc�on parameters
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excitation is applied. The differential resistance is measured by a standard lock-in technique. (c) Single-junction parameters, including the
value of the resistive shunt, the critical current, and reduced frequency.

	 = 0.6, the first three corresponding Fourier coefficients bq

are indicated in Fig. 2(c).
(iii) The (n/q)th step width scales with the value of the

corresponding qth Fourier component bq.
The asymptotic dependence of the maximum fractional

current step widths on the reduced frequency and amplitude
approximately follows a Bessel-like dependence, as discussed
above. The oscillatory behavior of the fractional steps, how-
ever, is more irregular. This is shown in the bottom panel of
Fig. 2(b), and it is qualitatively similar to the voltage bias case,
where at the qth fractional resonance condition, the different
(k × q)th harmonics, with k ∈ N0, also contribute to the step
width [see Eq. (3c)].

The higher-harmonic content in the C�R also has an
impact on the integer step widths. To illustrate this we show
Fig. 1(c), which displays the variation of the first three integer
step widths, n = 0, 1, 2, and q = 1, with reduced frequency
for 	 = 0.6 (dashed lines) and 	 = 0 (solid lines). By compar-
ing the integer Shapiro steps widths in the Shapiro maps in
Figs. 1(a) and 2(a), one can observe that whereas the reduced
Shapiro current step widths disappear for particular values of
iac, for the sinusoidal case, the Shapiro current step widths
remain finite for all iac for a skewed C�R. This is again
qualitatively similar to the voltage-biased case, where the
different (k × n)th harmonics, with k ∈ N0, also contribute to
the integer step widths [see Eq. (3b)].

III. EXPERIMENTAL RESULTS

A. Device characteristics

We compare the above theoretical observations with mea-
surements on a highly anisotropic Josephson junction ar-
ray containing over 500 SNS junctions. The array layout
is schematically shown in Fig. 3(a). The array consist of
Nx × Ny = 93 × 63 MoGe squares on top of a 40-nm-thick
gold film. The metallic base layer couples the different super-
conducting islands through the proximity effect, resulting in a
two-dimensional proximity-induced SNS Josephson junction
array [34]. The squares have a size of 500 × 500 nm2 and
are dx = 250 nm separated along the current direction (x
direction), while the separation perpendicular to the current

direction is dy = 1 μm. This results in a highly anisotropic
array with η = dy/dx = 4.

As shown in Ref. [9], which discusses a similar sample,
the high anisotropy of the array ensures that the array shows
single-junction behavior, free of collective effects in the array
[10–13]. Moreover, the large number of junctions results in a
giant Shapiro response and high device critical currents. It is
well known and also discussed in Ref. [9] that for a prototyp-
ical SNS junction the C�R becomes forwardly skewed at low
temperatures [14]. By measuring the temperature dependence
of the critical current at zero field on similar samples [9],
we can estimate the normal-metal coherence length to be
ξN (Tc) ∼ 45–55 nm. Using this estimation of ξN and consider-
ing the geometrical length of the link, dx = 250 nm, we apply
Likharev’s equilibrium description of a hard-boundary SNS
junction. This allows us to estimate the skewness parameter
	 ∼ 0.5 at T = 400 mK.

The field dependence of the critical current is shown in
Fig. 3(b). It exhibits the typical Fraunhofer-like dependence
illustrative of an extended weak link. This confirms that the
whole array behaves as a single Josephson junction. Note
that the particular field dependence of the critical current is
determined by the geometry of the normal metallic weak link
and can deviate from the ideal Fraunhofer dependence [35]. In
Fig. 3(c) we show the estimated values for the critical current
and the value of the resistive shunt for a single junction at
H = 0 mT and H = 10 mT, together with the corresponding
values of the reduced frequency. The relation between the
current and voltage over a single junction (no subscript or
superscript T) and the current and voltage over the whole
array (subscript or superscript T) is given through the relations
IT = NxI and VT = (Ny − 1)V .

B. The dependence of the Shapiro response
on the reduced frequency

Changing the reduced frequency � can be done in two
different ways: by changing the ac frequency of the drive,
νac or by changing the critical current Ic. Figures 4(a) and
4(b) show the experimentally obtained dependence of the
Shapiro steps as a function of the radio frequency νac and as
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2
4

FIG. 4. (a) The experimentally measured frequency dependence of the Shapiro steps for a fixed rf excitation amplitude of Vac = 800 mV
at T = 0.4 K. Shapiro steps are clearly reflected in the map, as the zones of low differential resistance (black). The numbers on the side
indicate the Shapiro step number. (b) The experimentally measured field dependence of the Shapiro response is shown as a contour map of
the differential resistance as a function of the applied magnetic field and applied dc current for T = 0.4 K. The rf excitation parameters are
νac = 232 , MHz and Vr f = 950 mV. The numbers on the side indicate the Shapiro step number.

a function of the applied magnetic field H at a fixed drive
amplitude, respectively. Shapiro steps are reflected as (black)
zones of low differential resistance. The estimated value of
the corresponding reduced frequency is shown on the top axis
for both cases. The rf excitation is experimentally applied
by a function generator. This means that the conversion be-
tween the applied rf voltage and the transmitted rf current is
a priori unknown and can depend strongly on the rf frequency.
However, in both cases the drive current Iac � Ic.

In Fig. 4(a), we show the dependence of the Shapiro
steps when changing the drive frequency in the range νac =
100–300 MHz at zero applied magnetic field and for a fixed
large drive amplitude of Vac = 800 mV. The data show sig-
natures of integer Shapiro steps only in this range of � and
for this particular drive amplitude. In accordance with theory,
we observe that the distance between the steps increases
linearly with � and that the current width of the Shapiro steps,
which scales with the value of the minima in the differential
resistance as 
In ∼ (dVT /dIT )−1, increases with �. However,
we did not observe a clear oscillatory dependence of the step
widths on the drive frequency. This could be explained by
smearing of the Shapiro steps due to unavoidable disorder in
the Josephson junction array and thermal fluctuations [36].

Note that experimentally, continuously changing the drive
frequency in the range of interest (megahertz to gigahertz)
is challenging due to the typically complex frequency de-
pendence of the transfer function of the excitation system.
Moreover, this frequency tuning allows us to change � over
only a small range. Additionally, high frequencies can have an
impact on the C�R itself [as they can change (and control) the
Andreev bound-state spectrum occupancy] [14,37]. Because
of these considerations, methods that allow studying the C�R
in a broad frequency range are highly relevant [38].

In Fig. 4(b), we alternatively change the reduced fre-
quency by changing the critical current through exploiting its

Fraunhofer-like magnetic field dependence. In this case the
reduced frequency � changes by orders of magnitude. The
comparison with theory (Figs. 1 and 2) is not straightforward
in this case, as the Shapiro maps and the dependences of
the Shapiro step widths on the ac amplitude and reduced
frequency are discussed in terms of reduced units. However,
using the asymptotic limits of the Bessel function (valid for
iac/� � 1), we can derive that the magnitude of the nth
integer current step width scales with the critical current as


In ∼ Ic

(
iac

�

)− 1
2

∼ Ic

(
�0νac

2πRIac

) 1
2

. (11)

As the step widths scale linearly with Ic, they should follow
a Fraunhofer-like dependence on the applied magnetic field,
as can be observed in Fig. 4(b). Only for H > 9 mT do we
observe fractional Shapiro steps, which corresponds to the
observations in Sec. II and Eq. (9). Only when Ic becomes
sufficiently small (meaning for increasing �) does the dc
current range where no integer Shapiro steps can be identified
increase, leaving room for the manifestation of fractional
Shapiro steps. As indicated in Sec. II, the ratio of the current
width of the (n/q)th fractional steps and the nth integer steps
scales with the ratio of the Fourier components as bq/(

√
qbn),

which for 	 = 0.5 is about 0.20 (for n = 1, q = 2) and ex-
plains the lower intensity of the half fractional Shapiro steps in
comparison to the integer steps. Higher-order fractional steps,
q > 2, could not be identified.

C. The dependence of the Shapiro response
on the drive amplitude

Figure 5 shows two experimentally obtained Shapiro maps,
both obtained at a fixed frequency of νac = 232 MHz, but
at different low magnetic field values, H = 0 mT and
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FIG. 5. (a) The evolution of the Shapiro steps as a function of rf amplitude in a so-called Shapiro map. In particular the experimentally
obtained dependence of the differential resistance dVT /dIT as a function of the ac drive amplitude and dc current for a fixed radio frequency,
νac = 232 MHz at T = 400 mK and zero field is shown. (b) Similar data as for (a). The experimentally obtained dependence of the differential
resistance dVT /dIT as a function of the ac drive amplitude and dc current for a fixed radio frequency νac = 232 MHz at T = 400 mK and
H = 10 mT is shown.

H = 10 mT, corresponding to �(0 mT) = 0.008 and
�(10 mT) = 0.18, respectively [see Fig. 3(c)]. Note that
it is difficult to pick a color scale that shows the Shapiro steps
clearly over the whole amplitude range as the offset on which
the Shapiro steps live changes with rf amplitude. As such,
we show some additional cross sections for both cases in
Figs. 6(a) and 6(b).

For H = 10 mT (corresponding to � = 0.18 and Ic =
3.2 μA), it is clear that the Shapiro step widths decrease with

increasing ac drive amplitude [see Eq. (11)]. Simultaneously,
the dc current range where no integer Shapiro steps can be
identified increases [see Eq. (9)]. Only for drive amplitudes
exceeding Vr f > 650 mV can we observe the n × (1/2)th
steps, with n ∈ N0 and mod(n, q) �= 0. This is more clearly
shown in Fig. 6(b). Note that as discussed before, the ratio of
the current width of the (n/q)th fractional steps and the nth
integer steps scales with the ratio of the Fourier components
as bq/(

√
qbn), which for 	 = 0.5 is about 0.20 (for n = 1,
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FIG. 6. (a) Some selected dVT /dIT vs Idc curves for different ac excitation amplitudes as extracted from Fig. 5(a). (b) Some selected
dVT /dIT vs Idc curves for different ac excitation amplitudes as extracted from Fig. 5(b).
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q = 2). This explains the lower intensity of the half fractional
Shapiro steps in comparison to the integer steps. Higher-order
fractional steps, q > 2, could not be identified in the map.

For H = 0 mT (corresponding to � = 0.008 and Ic =
69.5 μA), no fractional steps can be observed within the
range of experimentally accessible ac drive amplitudes. The
low-field condition is unfavorable to observe fractional steps
at this particular ac drive frequency. Compared to the H =
10 mT case, the explored ac drive range reveals only the first
five integer Shapiro steps, whereas in the H = 10 mT case
more than 13 steps can be identified. As such, the amplitude
dependence of the integer Shapiro steps shown in Fig. 6(a)
does not reflect the overall asymptotic dependence of the
Bessel function in Eq. (8) but is governed by the details of
the current step width oscillation of only a few Shapiro steps.

IV. CONCLUSIONS

In this work we extended the work of Russer [15] and
Likharev [16,17] discussing the Shapiro response of a JJ with
a sinusoidal C�R (bq = 0 for q > 1) to the case of JJs with
a C�R containing higher-harmonic terms. We limited the
discussion to the case of overdamped JJs characterized by a
Stewart-McCumber parameter, β � 1, as described within a
resistively shunted Josephson junction model. By numerically
calculating the Shapiro response, we showed that the response
of a Josephson junction with a skewed C�R is qualitatively
similar to the voltage-biased solution for a broad range of
parameters and that a higher value of � promotes the obser-

vation of fractional Shapiro steps. A qualitative comparison
with experimentally obtained Shapiro responses on a highly
anisotropic Josephson junction array was presented in Sec. III.
As established in Ref. [9], the SNS junctions in this JJA have
a skewed C�R at low temperatures, with skewness param-
eter 	 = 0.5 at T = 400 mK. We compared the measured
dependence of the Shapiro response on the reduced frequency
�(Ic, νac) when changing Ic or νac independently. These re-
sults indicate that (i) a complete picture is required in order
to explore the details of C�R through measurements of the
Shapiro response and (ii) a powerful method to obtain a high
reduced frequency (which favors observation of fractional
Shapiro steps as shown in Sec. II) while keeping the drive
frequency low is to change the critical current using a mag-
netic field. In order to obtain a more accurate correspondence
between data and experiment, the unavoidable disorder in
the Josephson junction array due to sample fabrication and
temperature fluctuations has to be taken into account.
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