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We consider a clean layered magnetic superconductor in which a continuous magnetic transition takes place
inside a superconducting state. We assume that the exchange interaction between superconducting and magnetic
subsystems is weak so that superconductivity is not destroyed at the magnetic transition. A representative
example of such material is RbEuFe4As4. We investigate the suppression of the superconducting gap and
superfluid density by correlated magnetic fluctuations in the vicinity of the magnetic transition. The influence of
nonuniform exchange field on superconducting parameters is very sensitive to the relation between the magnetic
correlation length ξh and superconducting coherence length ξs defining the ‘scattering’ (ξh < ξs) and ‘smooth’
(ξh > ξs) regimes. As a small uniform exchange field does not affect the superconducting gap and superfluid
density at zero temperature, smoothening of the spatial variations of the exchange field reduces its effects on
these parameters. We develop a quantitative description of this ‘scattering-to-smooth’ crossover for the case
of quasi-two-dimensional magnetic fluctuations realized in RbEuFe4As4. Since the magnetic-scattering energy
scale is comparable with the gap in the crossover region, the standard quasiclassical approximation is not
applicable and full microscopic treatment is required. We find that the corrections to both the gap and superfluid
density increase proportionally to ξh until it remains much smaller than ξs. In the opposite limit, when the
correlation length exceeds the coherence length both parameters have much weaker dependence on ξh. Moreover,
the gap correction may decrease with increasing of ξh in the immediate vicinity of the magnetic transition if it is
located at temperature much lower than the superconducting transition. We also find that the crossover between
the two regimes is unexpectedly broad: The standard scattering approximation becomes sufficient only when ξh

is substantially smaller than ξs.

DOI: 10.1103/PhysRevB.102.054505

I. INTRODUCTION

Since the seminal work of Abrikosov and Gor’kov (AG) [1]
and its extensions [2–4], the pair breaking by magnetic scat-
tering has been established as a key concept in the physics
of superconductivity. Its applications extend far beyond the
original physical system for which the theory was devel-
oped, singlet superconductors with dilute magnetic impu-
rities. In particular, the magnetic pair-breaking scattering
strongly influences properties of superconducting materials
containing an embedded periodic lattice of magnetic rare-
earth ions. Several classes of such materials are known
at present including magnetic Chevrel phases REMo6X8

(RE=rare-earth element and X=S, Se), ternary rhodium
borides RERh4B4 [5–8], the rare-earth nickel borocarbides
RENi2B2C [9–11], and recently discovered Eu-based iron
pnictides [12–16]. Some of these compounds experience a
magnetic-ordering transition inside the superconducting state.
Depending on the strength of the exchange interaction be-
tween the rare-earth moments and conducting electrons, the
magnetic transition may either destroy superconductivity or
leave it intact. In any case, in the paramagnetic state, the
fluctuating magnetic moments suppress superconductivity via
magnetic scattering, similar to magnetic impurities. Near
the ferromagnetic transition, the moments become strongly
correlated which enhances the suppression. The AG theory

has been generalized to describe this enhancement in several
theoretical studies [17,18]. A straightforward generalization,
however, is only possible when the magnetic correlation
length ξh is shorter than the superconducting coherence length
ξs and this condition was always assumed in all theoret-
ical works. For a continuous magnetic transition, there is
always temperature range where this condition is violated,
see Fig. 1(a). A small uniform exchange field does not
modify the superconducting gap in clean materials at zero
temperature [19], because, in absence of free quasiparticles,
the exchange field does not generate spin polarization of the
Cooper-pair condensate. This observation indicates that, once
the exchange field becomes smooth at the scale of coherence
length, its efficiency in suppressing superconducting parame-
ters at low temperatures diminishes. We can conclude that the
existing treatments of the impact of correlated magnetic fluc-
tuations on superconductivity are incomplete. A full theoreti-
cal description of this phenomenon requires consideration of
the crossover between the ‘scattering’ and ‘smooth’ regimes
illustrated in Fig. 1(a). For most magnetic superconductors,
however, such full theory would be a mostly academic exer-
cise, because the coherence length is typically much larger
than the separation between magnetic ions. Consider, for
example, the magnetic nickel borocarbide ErNi2B2C, which
has the superconducting transition at Tc ≈ 11 K and magnetic
transition at Tm ≈ 6 K [9,10]. Its c-axis upper critical field has
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FIG. 1. (a) Schematic temperature dependences of the magnetic correlation length ξh and superconducting coherence length ξs. The
influence of the fluctuating magnetic moments on superconductivity is very different in the regions ξh > ξs and ξh < ξs. (b) Typical scales in
momentum space characterizing scattering on magnetic fluctuations for two relations between ξh and ξs in the case ξh � k−1

F with h̄kF = pF .
The small circle illustrates the small-angle scattering on magnetic fluctuations with the range |p − p′| ∼ h̄/ξh and the ring with width h̄/ξs

illustrate the range relevant for superconductivity.

linear slope 0.3 T/K near Tc [20], from which we can estimate
the in-plane coherence length at Tm as ξs(Tm) ≈ 18 nm which
is ∼54 times larger than the distance between the Er3+ mo-
ments. Therefore, in this and similar materials the magnetic
correlation length exceeds the coherence length only within an
extremely narrow temperature range near the magnetic transi-
tion. The situation is very different, however, in Eu-based lay-
ered iron pnictides, such as RbEuFe4As4 [13,15,16,21]. The
latter material has the superconducting transition at 36.5 K
and the magnetic transition at 15 K. The magnetism is quasi-
two-dimensional: The Eu2+ moments have strong ferromag-
netic interactions inside the magnetic layers with easy-plane
anisotropy [22] and weak interactions between the magnetic
planes leading to helical interlayer order [23,24]. Due to
the quasi-two-dimensional nature of magnetism, the in-plane
magnetic correlation length smoothly grows within an ex-
tended temperature range. Another relevant material’s prop-
erty is a very short in-plane coherence length, ∼1.5–2 nm,
which is only 4–6 times larger than the distance between the
magnetic ions. As a consequence, contrary to most magnetic
superconductors, the magnetic correlation length exceeds
the coherence length within a noticeable temperature range
near the magnetic transition. Therefore, for the magnetic
iron pnictides, the crossover between the ‘scattering’ and
‘smooth’ regimes is very relevant. Recent vortex imaging in
RbEuFe4As4 with scanning Hall-probe spectroscopy revealed
a significant increase of the London penetration depth in the
vicinity of the magnetic transition [25]. This suggests that
the exchange interaction between Eu2+ moments and Cooper
pairs leads to substantial suppression of superconducting pa-
rameters near Tm.

The goal of this paper is to develop a quantitative the-
oretical description of the influence of correlated magnetic
fluctuations on the superconducting gap and supercurrent
response with a proper treatment of the crossover at ξh ∼ ξs.
The problem occurs to be technically challenging because
in the crossover region the probability of magnetic scat-
tering varies at the energy scale comparable with the tem-
perature or the gap. This forbids the standard energy inte-
gration necessary for the quasiclassical approximation and
requires a full microscopic consideration. In this consider-
ation, one has to include the self-energy correction to the

electronic spectrum and maintain the energy dependence of
the scattering probability. As this accurate analysis is rather
complicated, we utilize several simplifying assumptions. We
limit ourselves to the case of weak exchange interaction and
consider only the lowest-order corrections. We also assume
the static approximation for magnetic fluctuations. This as-
sumption is justified when typical frequency scale for mag-
netic fluctuations is smaller than the superconducting gap.
Due to the critical slowing down, this always becomes valid
sufficiently close to the transition. In the scattering regime,
the dynamic effects have been investigated in several the-
oretical papers, see, e.g., Refs. [17,26,27]. The behavior is
also sensitive to the dimensionality of magnetic fluctuations.
Having in mind application to layered magnetic superconduc-
tors, such as RbEuFe4As4, we assume quasi-two-dimensional
magnetic fluctuations. In this case the discussed effects are
more pronounced than for three-dimensional magnetic fluctu-
ations [18].

The paper is organized as follows. In Sec. II, we introduce
the model for layered magnetic superconductors. In Sec. III,
we evaluate the self energy caused by scattering by correlated
magnetic fluctuations for arbitrary relation between the mag-
netic correlation length and coherence length and develop a
quantitative description of the crossover between the scatter-
ing and smooth regimes. In Sec. IV, we use these results to
evaluate the exchange correction to the gap. In Sec. V, we
evaluate the leading correction to the electromagnetic kernel
accounting for the vertex correction. Also, in Appendix B
this correction is evaluated in the scattering regime with
quasiclassical approach. Finally, in Sec. VI, we discuss the
results and illustrate them by plotting representative tempera-
ture dependences for the parameters roughly corresponding to
RbEuFe4As4.

II. MODEL

We consider a layered material composed of superconduct-
ing and magnetic layers described by the Hamiltonian

H = ĤS + ĤM + ĤMS,

(1)
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where

ĤS =
∑

n,p‖,σ

ξ2D(p‖)a†
n,σ (p‖)an,σ (p‖)

+
∑

n,p‖,σ

t⊥[a†
n+1,σ (p‖)an,σ (p‖) + a†

n−1,σ (p‖)an,σ (p‖)]

−
∑
n,p‖

[�a†
n,↑(p‖)a†

n,↓(−p‖) + �∗an,↓(−p‖)an,↑(p‖)]

(2)

is the standard BCS Hamiltonian describing a layered super-
conductor. Here σ is spin index, ξ2D(p‖) = ε2D(p‖) − μ is the
single-layer spectrum, t⊥ is the interlayer hopping integral,
and � is the superconducting gap. The full 3D spectrum
for this model is ξp = ξ2D(p‖) + 2t⊥ cos (pzs). However, its
exact shape has very little effect on further consideration.
The second term, ĤM, describes the quasi-two-dimensional
magnetic subsystem leading to a continuous phase transition
at Tm. The last term

ĤMS =
∑

n,m,R

∫
d2rJnm(r − R)Sm(R)σ̂αβa†

n,α (r)an,β (r) (3)

describes the interaction between the magnetic and supercon-
ducting layers with the strength set by the nonlocal exchange
constants Jnm(r−R). Here the index m marks magnetic layers,
σ̂ is Pauli-matrix vector, and summation is assumed over the
spin indices α and β. We can rewrite the interaction term as

ĤMS = −
∑

n

∫
d2ra†

n,α (r)hn(r)σ̂αβan,β (r), (4)

where

hn(r) = −
∑
m,R

Jnm(r−R)Sm(R) (5)

is the effective exchange field acting on spins of conducting
electrons. It can be split into the average part h̄ due to either
polarization of the moments by the magnetic field or sponta-
neous magnetization in the ordered state and the fluctuating
part h̃n(r), hn(r) = h̄ + h̃n(r),

h̄ = −
∑
m,R

Jnm(r − R)S̄, (6a)

h̃n(r) = −
∑
m,R

Jnm(r − R)S̃m(R). (6b)

The fluctuating part of the exchange field also depends on
time. We assume that the time scales of magnetic fluctuations
exceeds time scales relevant for superconductivity and employ
the quasistatic approximation. This assumption is justified
near the transition due to the critical slowing down. The
fluctuating part is characterized by the correlation function

〈h̃n(r)h̃n′ (r′)〉 =
∑

m,R,R′
Jnm(r−R)Jn′m(r′−R′)〈S̃m(R)S̃m(R′)〉.

(7)

Here we neglected correlations between different magnetic
layers. In the following, we limit ourselves to the case when
the uniform field h̄ can be neglected. This corresponds to

the paramagnetic state and ordered state near the transition
in the absence of an external magnetic field. We will also
neglect correlations between different conducting layers and
drop the layer index 〈h̃n(r)h̃n′ (r′)〉 → δn,n′ 〈h̃(r)h̃(r′)〉. This
corresponds to the two-dimensional approximation for mag-
netic fluctuations. The spin correlation function is related to
the nonlocal spin susceptibility χ (r − r′). Sufficiently close
to the magnetic transition, the spin correlation length exceeds
the range of Jnm(r − R) and we can approximate

〈h̃(r)h̃(r′)〉 ≈
∑

m

J 2
nm〈S̃m(r)S̃m(r′)〉 (8)

with Jnm = ∑
R Jnm(r − R). Away from the transition, how-

ever, the nonlocality of the exchange interaction may have
substantial influence on the amplitude and extent of the
exchange-field correlations. We neglect these complications
and assume the simplest shape of the correlation function of
h̃(r) defined by a single length scale, the in-plane magnetic
correlation length ξh,

〈h̃α (r)h̃β (r′)〉 = h2
0

2
δαβ fh(|r−r′|/ξh), (9)

where fh(0) = 1, and the parameter h2
0 = 〈h̃2〉≈∑

m J 2
nm〈S̃2〉

weakly depends on temperature. The Fourier transform of the
correlation function is

〈|h̃q|2〉 = sh2
0

∫
d2r fh

(
r

ξh

)
exp(iqr) = sh2

0ξ
2
h f̃h(ξhq). (10)

Here we assume a conventional Lorentz shape for the q depen-
dence, f̃h(ξhq) = Ch/(1 + ξ 2

h q2) with Ch = 2π
∫ ∞

0 fh(x)xdx.
In real space, this corresponds to

fh

(
r

ξh

)
= ξ 2

h

∫
d2q

(2π )2

Ch

1 + ξ 2
h q2

exp(iqr) = Ch

2π
K0

(
r

ξh

)
.

(11)
The logarithmic divergency K0(r/ξh)∝ ln (ξh/r) has to be
terminated at the distance between neighboring moments
r ∼ a. Since the function fh(r/ξh) is normalized by the con-
dition fh(0) = 1, this means that Ch ≈2π/ ln (ξh/a).

We will utilize the Green’s functions formulation of the
superconductivity theory [28,29]. For investigation of scatter-
ing by the magnetic fluctuations, we have to operate with the
matrix 4×4 Green’s function [3],

Ĝ(1, 2) = −
(

〈Tτ a†
α (1)aβ (2)〉 〈Tτ aα (1)aβ (2)〉

〈Tτ a†
α (1)a†

β (2)〉 〈Tτ aα (1)a†
β (2)〉

)
.

We will expand it with respect to the fluctuating exchange
field. The unperturbed Green’s function can be written as

Ĝ0 = − (iωnτ̂0 + ξpτ̂z )σ̂0 − �σ̂yτ̂y

ω2
n + ξ 2

p + �2
, (12)

where σ̂a and τ̂b are the Pauli matrices in the spin and Nambu
space, respectively. We see that the unperturbed Green’s func-
tion can be expanded as Ĝ = ∑

ab σ̂aτ̂bGab and, without the
uniform exchange field, the only nonzero components are 00,
0z, and yy. For the single-band BCS model, the gap equation
is

� = UT
∑
ωn

∫
d3p

(2π )3
Gyy(p), (13)

where U is the pairing interaction.

054505-3



A. E. KOSHELEV PHYSICAL REVIEW B 102, 054505 (2020)

III. SCATTERING BY FLUCTUATING EXCHANGE FIELD

The Green’s function renormalized by scattering is

Ĝ−1 = Ĝ−1
0 − ̂, (14)

where Ĝ−1
0 = iωnσ̂0τ̂0− ξpσ̂0τ̂z+ �σ̂yτ̂y and

̂(p) =
∫

d3q
(2π )3

〈|h̃q,i|2〉α̂iĜ(p + q)α̂i (15)

is the self-energy due to the scattering on the fluctuating
exchange field with α̂ = (τ̂zσ̂x, τ̂0σ̂y, τ̂zσ̂z ) [3]. Using the ex-
pansion ̂(p) = ∑

a,b abσ̂aτ̂b, we obtain that the relevant
components with ab = 00, 0z, yy are

ab(p) =
∫

d3p′

(2π )3
〈|h̃p−p′ |2〉Gab(p′)

with

00(p) = −
∫

d3p′

(2π )3
〈|h̃p−p′ |2〉 iωn

ω2
n + ξ 2

p′ + �2
, (16a)

0z(p) = −
∫

d3p′

(2π )3
〈|h̃p−p′ |2〉 ξp′

ω2
n + ξ 2

p′ + �2
, (16b)

and yy(p) = − �
iωn

00(p).

The behavior of ̂p depends on the relation between
three length scales: the magnetic correlation length ξh, in-
plane coherence length ξs, and inverse Fermi wave vector
k−1

F . Consider first limiting cases qualitatively. For very long
correlations ξh > ξs, we have a slowly varying exchange field.
In this case, we can neglect p′ dependence everywhere except
〈|h̃p−p′ |2〉 giving

̂(p) ≈ h2
0Ĝ0(p). (17)

This corresponds to the correction due to the uniform ex-
change field equal to h0 averaged over its directions. We
make two observations from this simple result, which will be
essential in the further consideration: (i) ̂(p) has the same
nonzero components as Ĝ0(p), i.e., 00, yy, and 0z and (ii) the
momentum dependence in ̂(p) cannot be neglected.

In the case ξh <ξs, we can integrate over ξp′ and obtain
the well-known Abrikosov-Gor’kov magnetic-scattering re-
sult [1],

̂(p) ≈ 1

2τm

−iωnσ̂0τ̂0 + �σ̂yτ̂y√
ω2

n + �2
(18)

with the scattering rate

1

2τm
=

∫
πdS′

F

(2π )3v′
F

〈|h̃p−p′ |2〉, (19)

which accounts for possibility that the range of 〈|h̃p−p′ |2〉
may be much smaller than the Fermi-surface size [18]. Note
that, in contrast to the case of long correlations, Eq. (17),
(i) the p dependence of ̂(p) in Eq. (18) can be neglected
and (ii) 0z component can be omitted. These are standard
approximations of the AG theory. In the regime ξh > k−1

F the
magnetic fluctuations give small-angle scattering, see illustra-
tion in Fig. 1(b). The dependence of the scattering rate on the
correlation length following from Eq. (19) is sensitive to the
dimensionality of scattering. For three-dimensional scattering,

the scattering rate increases logarithmically with ξh [18]. In
our quasi-2D case, we assume that scattering occurs in the
whole range of pz − p′

z but with small change of the in-plane
momentum. In this case Eq. (19) gives

1

2τm
= 2π

s

∫ ∞

−∞

πdq

(2π )3vF

Chsh2
0ξ

2
h

1 + ξ 2
h q2

= Chh2
0ξh

4vF
. (20)

In a general case, the product Chh2
0ξh in this formula and

in several results below can be directly computed from the
correlation function of the exchange field as

Chh2
0ξh =

∫ ∞

0
dr〈h̃(r)h̃(0)〉. (21)

This relation allows evaluation of the scattering rate from
the spin-spin correlation function, see Eq. (8), which can be
computed for a particular magnetic model. We can see that
in the quasi-2D case the scattering rate increases linearly with
ξh, much faster than in the 3D case [18]. For completeness, we
also present here the result for very short correlation ξhkF < 1
when magnetic fluctuations scatter at all angles. In this case
we can replace |h̃p−p′ |2 with |h̃0|2 and obtain the Abrikosov-
Gor’kov result for uncorrelated magnetic impurities

1

2τm
= Chνh2

0sξ 2
h , (22)

where ν is the density of states. In particular, for quasi-2D
electronic spectrum ν = m/(2π h̄2s) where m is the effective
mass.

Away from the magnetic transition, the magnetic corre-
lation length ξh is of the order of separation between the
magnetic moments a. For a continuous magnetic transition in-
side the superconducting state, the magnetic correlation length
rapidly increases for T → Tm and at some point exceeds the
coherence length. At this crossover the impact of magnetic
fluctuations on superconductivity modifies qualitatively. We
now quantify the crossover between the regimes ξh > ξs,
Eq. (17), and ξh < ξs, Eqs. (18) and (20). It is important to
note that in the second (scattering) regime only two com-
ponents of ̂ are essential, 00 and yy. In the first regime,
however, also the 0z component describing spectrum renor-
malization has to be included. The latter component obviously
also has to be taken into account in the description of the
crossover. First, we consider the 00 component (the 00 and yy
components are related as yy = − �

iωn
00). As the scattering

in the regime kF ξh � 1 is small angle, we need to consider
only a small region at the Fermi surface near the initial
momentum p. Selecting the x axis along this momentum and
y axis in the perpendicular direction [see Fig. 1(b)] and using
〈|h̃q|2〉 in Eq. (10), we transform Eq. (16a) as

00(p) = −
∫ d p′

xd p′
y

(2π )2

Chh2
0ξ

2
h

1 + ξ 2
h (p′

x −px )2 + ξ 2
h p′

y
2

× iωn

ω2
n + v2

F (p′
x −pF )2 + �2

. (23)
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Integrating with respect to p′
y, we obtain

00(p) = − Chh2
0ξh

4π

∫ ∞

−∞
d p′

x

1√
1 + ξ 2

h p′
x

2

× iωn

ω2
n + v2

F (p′
x + δpx )2 + �2

= − Chh2
0

4π

iωn

ω2
n + �2

U (δkx, gn), (24)

where δpx = px − pF ,

gn = vF /ξh√
ω2

n + �2
, δkx = vF (px −pF )√

ω2
n + �2

= ξp√
ω2

n + �2
, (25)

and the reduced function U (k, g) is defined by the integral

U (k, g) =
∫ ∞

−∞
du

1√
1 + u2

1

1 + (gu + k)2 ,

which can be taken analytically giving

U (k, g) = Re[W (k, g)],

W (k, g) = 2√
(ik + 1)2−g2

ln

(
ik + 1 +

√
(ik + 1)2−g2

g

)
.

(26)

We note that the k dependence of the function U (k, g) corre-
sponding to the ξp dependence of the self energy is essential
only for g � 1. The value of the function U (k, g) at k = 0 has
the simple analytical form

U (0, g) =

⎧⎪⎨
⎪⎩

2√
1−g2

ln
1+

√
1−g2

g for g < 1

2√
g2−1

arctan
√

g2 − 1 for g > 1
.

The asymptotic U (0, g) � π/g for g � 1 corresponds the
scattering regime, Eqs. (18) and (20). In this limit the k
dependence of the function U (k, g) can be neglected. On the
other hand, the asymptotic for g � 1 is

U (k, g) � 2

[
1

1 + k2
ln

(
2

√
1 + k2

g

)
+ k

1 + k2
arctan k

]
.

It corresponds to the uniform-field result in Eq. (17) only
for the main logarithmic term. Additional terms appear be-
cause the correlation function 〈h̃α (r)h̃β (r′)〉 in Eq. (9) is not
a constant at |r − r′| < ξh but increases logarithmically as
ln(ξh/|r − r′|).

As mentioned above, for the proper description of the
crossover at ξh ∼ ξs, we also need to take into account the
0z component of the self energy,

0z(p) = −
∫ d p′

xd p′
y

(2π )2

Chh2
0ξ

2
h

1 + ξ 2
h (p′

x −px )2 + ξ 2
h p′

y
2

× vF (p′
x − pF )

ω2
n + v2

F (p′
x −pF )2 + �2

. (27)

Following the same route as in derivation of Eq. (24), we
present it as

0z(p) = −Chh2
0

4π

1√
ω2

n + �2
V (δkx, gn), (28)

where the parameters gn and δkx are defined in Eq. (25),

V (k, g) =
∫ ∞

−∞
du

1√
1 + u2

gu + k

1 + (gu + k)2 =−Im[W (k, g)],

(29)
and the function W (k, g) is defined in Eq. (26). In particular,
for g → 0

V (k, g) � 2

1 + k2

[
k ln

(
2

g

)
− arctan k

]
.

As follows from Eq. (14), the renormalized Green’s function
can be obtained by substitutions iωn → iω̃n = iωn − 00,
� → �̃ = � − yy, and ξp → ξ̃p = ξp + 0z. The renormal-
ized frequency, gap, and spectrum can be written as

ω̃n = ωn(1 + αn), �̃ = �0(1 − αn), ξ̃p = ξp(1 − βn)
(30)

with

αn = Chh2
0

4π

U (δkx, gn)

ω2
n + �2

0

, βn = Chh2
0

4π

V (δkx, gn)/ξp√
ω2

n + �2
0

. (31)

With derived results for the self-energy in Eqs. (24) and (28),
we proceed with evaluation of correction to the gap parameter
from Eq. (13).

IV. CORRECTION TO THE GAP

The superconducting gap is the most natural parameter
characterizing the strength of superconductivity at a given
temperature. In this section, we calculate the suppression of
this parameter by correlated magnetic fluctuations. The key
observation is that a small uniform exchange field has no
influence on the gap at zero temperature [19]. Therefore,
one can expect that the suppression caused by correlated
magnetic fluctuations at low temperatures diminishes when
the magnetic correlation length exceeds the superconducting
coherence length.

The gap equation in Eq. (13) is determined by the integral

I =
∫

d3p
(2π )3

Gyy(p) = ν

∫ ∞

−∞
dξ

�̃

ω̃2
n + ξ̃ 2 + �̃2

, (32)

where the parameters with “∼” are defined in Eqs. (30)
and (31). We evaluate the linear correction to I with respect
to αn, βn ∝ h2

0 as

δI =ν

∫ ∞

−∞
dξ

�0

ω2
n + ξ 2 + �2

0

(
αn + 2αn

(
ω2

n −�2
0

)−2βnξ
2(

ω2
n + ξ 2 + �2

0

)
)

.

Making the substitution ξ = z
√

ω2
n + �2

0, we transform this
correction to the following form

δI = −Chνh2
0

4π

�0(
ω2

n + �2
0

)3/2

× Re

⎡
⎣∫ ∞

−∞
dz

W (z, gn)
(
(z − i)2 + 4ω2

n

ω2
n+�2

0

)
(z2 + 1)2

⎤
⎦. (33)

054505-5



A. E. KOSHELEV PHYSICAL REVIEW B 102, 054505 (2020)

Calculation of the integral described in Appendix A yields the result

δI = − Chνh2
0

�0(
ω2

n + �2
0

)5/2

{
�2

0

4 − g2
n

+ ω2
n

(
4−g2

n

)−2�2
0(

4 − g2
n

)3/2 ln

(
2 + √

4−g2
n

gn

)}
. (34)

The corrected equation for the gap � = UT
∑

ωn
(I0 + δI ) with I0 = π/

√
ω2

n + �2
0 gives the gap correction caused by the

nonuniform exchange field

�̃ = −Chh2
0T

∑
ωn

1(
ω2

n + �2
0

)5/2 Re

[
�2

0

4−g2
n

+ 4ω2
n −2�2

0−ω2
ng2

n(
4 − g2

n

)3/2 ln

(
2 + √

4 − g2
n

gn

)][
πT

∑
ωn

�0(
ω2

n + �2
0

)3/2

]−1

.

Substituting the definition of gn in Eq. (25), we finally obtain

�̃ =−
[
πT

∑
ωn

�0

�3
n

]−1

Chh2
0T

∑
ωn

1

�3
n

(
4�2

n − ε2
h

)
⎡
⎣�2

0 + 2
(
2ω2

n −�2
0

)
�2

n−ω2
nε

2
h

�n

√
4�2

n − ε2
h

ln

⎛
⎝2�n +

√
4�2

n−ε2
h

εh

⎞
⎠
⎤
⎦ (35)

with �n =
√

ω2
n + �2

0 and the magnetic-scattering energy scale εh = vF /ξh. Introducing the reduced variables

T̃ = 2πT/�0(T ), ω̃n = T̃ (n + 1/2),

αh = εh(T )/2�0(T ) = ξs(T )/ξh(T )

with ξs(T ) = vF /2�0(T ), and using the estimate Ch ≈2π/ ln (ξh/a), we rewrite this result in the form convenient for numerical
evaluation

�̃(T ) = − h2
0

2�0(T ) ln (ξh(T )/a)
V�

(
2πT

�0(T )
,
ξs(T )

ξh(T )

)
, (36a)

V�(T̃ , αh) = [D(T̃ )]−1T̃
∞∑

n=0

R[ω̃n, αh], (36b)

D(T̃ ) = T̃
∞∑

n=0

(
ω̃2

n + 1
)−3/2

, (36c)

R(z, αh) = 1(
z2 + 1

)3/2(
z2 + 1−α2

h

)
[

1 +
(

2z2−1− 2z2α2
h

z2 + 1

)
L(z, αh)

]
. (36d)

L(z, αh) =

⎧⎪⎨
⎪⎩

√
z2+1√

z2+1−α2
h

ln
(√

z2+1+
√

z2+1−α2
h

αh

)
, z2 >α2

h −1
√

z2+1√
α2

h−z2−1
arctan

√
α2

h−z2−1√
z2+1

, z2 <α2
h −1

. (36e)

Note that the function L(z, αh) does not have singularity at z =√
α2

h − 1 for αh > 1, contrary to what its shape may suggest.
We see that the gap correction has the amplitude h2

0/�0 and
mostly depends on two dimensionless parameters: reduced
temperature T/�0(T ) and the ratio αh = ξs(T )/ξh(T ). It also
weakly depends on the ratio ξh/a, which determines the
logarithmic factor in the denominator of Eq. (36a).

Let us discuss asymptotic behavior of the reduced function
V�(T̃ , αh) and the gap correction it gives. In the range αh � 1
corresponding to the scattering regime, the function R(z, αh)
in Eq. (36d) behaves as R(z, αh) � πz2

αh (z2+1)2 . This gives the

following asymptotics of the function V�(T̃ , αh)

V�(T̃ , αh) � π

αh
V�(T̃ ), (37a)

V�(T̃ ) = [D(T̃ )]−1T̃
∞∑

n=0

ω̃2
n(

ω̃2
n + 1

)2 , (37b)

where the limiting behaviors of the function V�(T̃ ) are
V�(0) = π/4 and V�(T̃ )�π2T̃ /[14ζ (3)] for T̃ �1 with
ζ (3) ≈ 1.202. Correspondingly, the correction to the gap in
this regime simplifies to

�̃(T ) � − πξhh2
0

vF ln (ξh/a)
V�(T̃ ) = − 1

τm
V�(T̃ ). (38)

This is a well-known result for the gap correction caused by
the magnetic scattering [1,2].

In the opposite regime αh → 0 corresponding to the vicin-
ity of the magnetic transition, the function R(z, αh) has a
logarithmic dependence on αh

R(z, αh) = R0(z) + R1(z) ln

(
1

αh

)
,

R0(z) = 1 + (2z2−1) ln(2
√

z2 + 1)

(z2 + 1)5/2
,

R1(z) = 2z2 − 1

(z2 + 1)5/2
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FIG. 2. Temperature dependences of the coefficients A(T̃ ) and
B(T̃ ) which determine the small-αh asymptotics of the function
V�(T̃ , αh ) in Eq. (39a). The inset shows the temperature dependence
of the ratio A(T̃ )/B(T̃ ).

meaning that V�(T̃ , αh) also logarithmically diverges for
αh → 0,

V�(T̃ , αh) = A(T̃ ) + B(T̃ ) ln

(
1

αh

)
, (39a)

A(T̃ ) = [D(T̃ )]−1T̃
∞∑

n=0

R0(ω̃n), (39b)

B(T̃ ) = [D(T̃ )]−1T̃
∞∑

n=0

R1(ω̃n) (39c)

with A(0) = 1, B(0) = 0. The plots of the coefficients A(T̃ )
and B(T̃ ) are shown in Fig. 2. The corresponding correction
to the gap can be presented as

�̃(T̃ ) =−h2
0B(T̃ )

2�0

[
1− ln

(
ξs

a

)−A(T̃ )/B(T̃ )

ln (ξh/a)

]
. (40)

Therefore, the absolute value of correction |�̃| decreases
when T approaches Tm if the ratio A(T̃m)/B(T̃m) exceeds
ln (ξs/a), which always occurs at sufficiently low tempera-
tures, see inset in Fig. 2. In this case the overall dependence of
the correction on ξh is nonmonotonic and maximum suppres-
sion of the gap occurs at ξh ∼ ξs. The limiting value at T =
Tm, �̃(T̃m) = −h2

0B(T̃m)/2�0, corresponds to the correction
from a uniform exchange field equal to h0. It vanishes for
Tm → 0 as exp (−�0/Tm). At temperatures much smaller than
Tc, the summation over the Matsubara frequencies in Eq. (36b)
can be transformed into integration leading to

�̃(0) = − h2
0

2�0 ln (ξh/a)
V�

(
ξs

ξh

)
, (41)

where the reduced function V�(αh) ≡ V�(0, αh) is defined by
the integral

V�(αh) =
∫ ∞

0
R(z, αh)dz.

543210
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FIG. 3. Plots of the function V�(T̃ , αh ) in Eq. (36b) determining
the gap correction caused by nonuniform exchange field on the
parameter αh = ξs/ξh for several values of the reduced temperature
T̃ = 2πT/�0. The corresponding relative temperatures for BCS
superconductors are shown in parenthesis. For zero temperature, we
also show the scattering-regime asymptotics (dashed line) and more
accurate asymptotics presented in Eq. (42) (dotted line).

This is a monotonically-decreasing function with the asymp-
totics

V�(αh)�
{

1+ 1
9 (6 ln αh + 1)α2

h, for αh �1

π2

4αh
− 2 ln αh+1

α2
h

, for αh �1
. (42)

It also has the exact value V�(1) = π2

8 − 1
2 . The large-

αh asymptotics corresponds to the magnetic-scattering
regime [1–3]. Substituting the first leading term into Eq. (41)
yields the known result for the gap correction at zero temper-
ature �̃(0) ≈ −π/4τm, where τm is given by Eq. (20).

Plots of the numerically evaluated function V�(T̃ , αh) are
shown in Fig, 3 for several values of the reduced tempera-
ture T̃ . The function monotonically decreases with αh and
increases with temperature. At zero temperature this function
approaches a finite value for αh → 0 while at finite tempera-
tures it logarithmically diverges, as discussed above. For zero
temperature, we also show the scattering-regime dependence
by dashed line and more accurate asymptotic presented in
Eq. (42) by dotted line. We can see that the scattering ap-
proximation noticeably overestimates the gap correction for
rather large values of αh. The finite value of the function for
αh → 0 at zero temperature is in an apparent contradiction
with the known result that a uniform exchange field does not
change the gap at zero temperature [19]. This finite value is the
consequence of small-distance behavior of the exchange-field
correlation function for the two-dimensional case: It does not
approach a constant for r � ξh but keeps growing logarithmi-
cally, see Eqs. (9) and (11). We note, however, that despite
this small-αh saturation of the function V�(0, αh), the gap
correction in Eq. (36a) does have a nonmonotonic dependence
on ξh and vanishes in the limit ξh → ∞ at low temperatures
because of the logarithmic factor in the denominator.
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V. CORRECTION TO THE ELECTROMAGNETIC KERNEL
AND LONDON PENETRATION DEPTH

In this section, we investigate the correction to the su-
perconducting current response caused by the exchange in-
teraction with correlated magnetic fluctuations. As in the
case of the gap parameter, there are two different regimes
depending on the relation between the magnetic correlation
length ξh and superconducting coherence length ξs. Our goal
is to quantitatively describe the crossover between these two
regimes. The case ξh < ξs corresponds to the well-studied
magnetic-scattering regime. Influence of magnetic scattering
on the electromagnetic kernel, which determines the London
penetration depth, was investigated by Skalski et al. [2],
see also Ref. [3]. Recently, a very detailed investigation of
this problem has been performed within the quasiclassical
approach [30]. Most studies, however, have been done for
isotropic magnetic scattering. The case of correlated mag-
netic fluctuation in the regime kF ξh � 1 requires a proper
accounting for the vertex correction to the kernel which is
equivalent to accounting for the reverse scattering events in
quasiclassical approach.1

The superconducting current response

jα (q, ω) = −Qαβ (q, ω)Aβ (q, ω) (43)

is determined by the electromagnetic kernel Qαβ (q, ω). In
strongly type-II superconductors, the screening of magnetic
field is determined by the local static kernel Qαβ ≡Qαβ (0, 0).
The superfluid density ns introduced in the phenomenological
London theory is related to Qαβ as Qαβ = e2ns/cmαβ , where
mαβ is the effective mass tensor. The London penetration
depth components λα are related to the static uniform ker-
nel as Qαα = c/(4πλ2

α ). In nonmagnetic superconductors the
screening length λ̃α is identical to this ‘bare’ length λα defined
via the electromagnetic kernel. In magnetic superconductors,
however, the screening length λ̃α is reduced by the magnetic
response of local moments as λ̃α = λα/

√
μ, where μ is the

magnetic permeability in the magnetic-field direction [5,31].
Note that the exchange and magnetic response have opposite
influences on the screening length: The former enlarges and
the latter reduces it. In the following, we concentrate on the
calculation of the bare London penetration depth.

In the Green’s function formalism, the kernel can be eval-
uated as [3]

Qαβ (q, ων ) = e2n

cmαβ

+ e2

2c
T

∑
ωn

∫
d3 p

(2π )3
vαvβ

× Tr[Ĝ(p, ωn)Ĝ(p−q, ωn−ων )], (44)

1The vertex correction for arbitrary magnetic scattering has been
considered in Ref. [2]. The recipe to account for the vertex correction
in the kernel given after Eq. (6.9), however, contains a mistake: The
sign in front of �t is incorrect.

where n is total density and vα = ∂ξp/∂ pα are the velocity
components.2 In particular, for clean case

Q(0)
αβ = 2πe2

c
ν〈vαvβ〉T

∑
ωn

�2
0(

ω2
n + �2

0

)3/2 (45)

giving Q(0)
αβ = 2 e2

c ν〈vαvβ〉 at zero temperature.
We first consider the scattering regime, ξh � ξs, within

the quasiclassical approximation. The generalization of the
isotropic-scattering calculations in Ref. [30] for arbitrary scat-
tering described in Appendix B gives the following result for
the correction to λ−2

α due to the magnetic scattering

λ−2
1α (T ) = −λ−2

0α (T )

[
1

τm�0(T )
Vλ,m

(
2πT

�0(T )

)

+ 1

τ tr
m�0(T )

V tr
λ,m

(
2πT

�0(T )

)]
, (46)

with

Vλ,m(T̃ ) = 1

D(T̃ )
T̃

∞∑
n=0

[
2ω̃2

n −1(
1 + ω̃2

n

)5/2 V�(T̃ ) + 3ω̃2
n − 1(

1 + ω̃2
n

)3

]
,

(47)

V tr
λ,m(T̃ )= 1

2D(T̃ )
T̃

∞∑
n=0

1 − ω̃2
n(

1 + ω̃2
n

)3 , (48)

where the functions D(T̃ ) and V�(T̃ ) are defined in Eqs. (36c)
and (37b), respectively. Here τm is the magnetic-scattering
lifetime, Eqs. (19) and (20), and τ tr

m is the corresponding
transport time,

1

2τ tr
m

=
∫

πdS′
F

(2π )3v′
F

(
1 − v · v′

〈v2〉
)

〈|h̃p−p′ |2〉. (49)

The two terms in Eq. (46) can be referred to as the pair-
breaking and transport contributions. In the case we consider,
the transport scattering rate is much smaller than the total rate,
1/τ tr

m ∼1/(ξhkF τm)�1/τm, and it does not increase when the
temperature approaches the magnetic transition. We point,
however, that the contribution from the total scattering rate
vanishes at low temperatures, Vλ,m(0) = 0, while the transport
contribution remains finite V tr

λ,m(0) = π/16. Nevertheless, as
our main goal is to understand suppression of the super-
conducting parameters near the magnetic transition, in the
following consideration we mostly focus on the behavior of
the pair-breaking term proportional to the total scattering rate.

The above results are only valid until ξh < ξs. We proceed
with the consideration of the crossover to the opposite regime,
which cannot be treated within the quasiclassical approach.
The total correction to the electromagnetic kernel is

δQαβ = e2

2c
T

∑
ωn

Cαβ (ωn), (50)

Cαβ (ω)

=
∫

d3 p
(2π )3

vα{2Tr[Ĝ(p, ω)vβĜ0(p, ω)̂(p, ω)Ĝ0(p, ω)]

+ Tr[Ĝ0(p, ω)υ̂βĜ0(p, ω)]}, (51)

2Note that n/mαβ = 2ν〈vαvβ〉 where ν is the density of states per
spin.
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FIG. 4. The diagrams for the lowest-order corrections to the
electromagnetic kernel caused by the nonuniform exchange field in
Eqs. (50) and (51). The left-column diagrams represent the self-
energy correction and the upper diagram in the right column gives the
vertex correction. The lower diagram in the right columns illustrates
the equation for the vertex, Eq. (52).

where the first term in Cαβ (ω) is the self-energy correction
with ̂(p, ω) given by Eq. (15) and the second term is the
vertex correction with

υ̂β =
∑

i

∫
d3 p′

(2π )3
α̂iĜ0(p′)v′

βĜ0(p′)α̂i〈|h̃p−p′,i|2〉. (52)

Figure 4 shows the diagrammatic presentation of these equa-
tions. We split the vertex correction into two contributions

υ̂β = vβ�̂p + δυ̂β,

�̂p =
∑

i

∫
d3 p′

(2π )3
α̂iĜ0(p′)Ĝ0(p′)α̂i〈|h̃p−p′,i|2〉,

δυ̂β =
∑

i

∫
d3 p′

(2π )3
α̂iĜ0(p′)(v′

β −vβ )Ĝ0(p′)α̂i〈|h̃p−p′,i|2〉.

The second contribution δυ̂β is proportional to the transport
scattering rate and in our situation is typically smaller than
the first one. We therefore focus on the calculation of the first
contribution.

Using the relations

Ĝ0Ĝ0 = i
∂Ĝ0

∂ω
, (53a)

�̂ = i
∂̂p

∂ω
, (53b)

where the second relation is usually called Ward identity, we
can present Cαβ (ω) as

Cαβ (ω) = Cm
αβ (ω) + C tr

αβ (ω),

Cm
αβ (ω) = i

∂

∂ω

∫
d3 p

(2π )3
vαvβTr[Ĝ0(p, ω)̂(p, ω)Ĝ0(p, ω)],

C tr
αβ (ω) =

∫
d3 p

(2π )3
vαTr[Ĝ0(p, ω)δυ̂βĜ0(p, ω)]. (54)

The term C tr
αβ (ω) corresponds to contribution in Eq. (46)

proportional to the transport magnetic scattering rate 1/τ tr
m .

As discussed above, in our case this term is typically small
and does not increase when the temperature approaches the
magnetic transition. That is why we will neglect this term in
the following consideration. As the term Cm

αβ (ω) is propor-
tional to a full derivative with respect to ω, it vanishes at zero
temperature. To evaluate this term, we explicitly compute the
trace inside the integral as

Tr[Ĝ0(p, ω)̂(p, ω)Ĝ0(p, ω)]

= 4[
(
G2

00 + G2
0z + G2

yy

)
00 + 2G00G0z0z + 2G00Gyyyy],

where 00 and 0z are given by Eqs. (24) and (28), respec-
tively, and yy = −(�/iω)00. Substituting these results into
Eq. (54), we transform Cm

αβ (ω) to

Cm
αβ (ω) = Chh2

0

π
ν〈vαvβ〉 ∂

∂ω

ω(
ω2 + �2

0

)3/2

× Re
∫ ∞

−∞
dz

−ω2+3�2
0

ω2+�2
0

+ z2 + 2iz

(z2 + 1)2
W (z, g),

where z = ξ/
√

ω2 + �2
0. The parameter g ≡ gn and the func-

tion W (z, g) are defined in Eqs. (25) and (26), respectively.
Computation of the z integral yields the result

Cm
αβ (ω) = −4Chh2

0ν〈vαvβ〉 ∂

∂ω

{
ω�2

0(
ω2 + �2

0

)5/2
(4 − g2)

[
1 − 6 − g2√

4 − g2
ln

(
2 +

√
4 − g2

g

)]}
. (55)

Therefore, the corresponding correction to the kernel, Eq. (50), is

δQm
αβ = −2

e2

c
Chh2

0ν〈vαvβ〉T
∑
ωn

∂

∂ωn

{
ωn�

2
0(

ω2
n + �2

0

)5/2(
4 − g2

n

)
[

1 − 6 − g2
n√

4 − g2
n

ln

(
2 + √

4 − g2
n

gn

)]}
. (56)

This result gives correction at the fixed gap parameter. The full
correction also contains the contribution due to the shift of �,
δQ�

αβ = �̃dQ(0)
αβ/d�, where �̃ is given by Eq. (36a). Using

the same reduced variables as in Eq. (36b), we rewrite the
corresponding correction to λ−2

α ∝ Qαα in the reduced form

suitable for numerical evaluation

λ−2
1α (T ) = −λ−2

0α (T )
h2

0

2�2
0 ln (ξh/a)

VQ

(
2πT

�0
,
ξs

ξh

)
(57a)
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T

FIG. 5. Plots of the function VQ(T̃ , αh ) in Eq. (57b) which
determines the correction to the electromagnetic kernel and Lon-
don penetration depth in Eq. (57a). The dashed lines show large-
αh asymptotics, VQ(T̃ , αh ) ∝ 1/αh, corresponding to the scattering
regime. The dotted lines show small-αh asymptotics, VQ(T̃ , αh ) ∝
ln (1/αh ).

with

VQ(T̃ , αh) = [D(T̃ )]−1T̃
∞∑

n=0

[KQ(ω̃n)V�(T̃ , αh)

+ RQ(ω̃n, αh)], (57b)

KQ(z) = − ∂

∂z

z

(z2 + 1)3/2
, (57c)

RQ(z, αh) = ∂

∂z

z
[
1 − (

3 − 2α2
h

z2+1

)
L(z, αh)

]
(z2 + 1)3/2

(
z2 + 1 − α2

h

) , (57d)

where the first term in the square brackets in Eq. (57b) is
due to the gap correction, the function V�(T̃ , αh) is defined
in Eq. (36b), and the function L(z, αh) in the last definition
is defined in Eq. (36e). For brevity, in Eq. (57a) we omitted
the T dependences of �0(T ), ξs(T ), and ξh(T ). Plots of the
function VQ(T̃ , αh) versus αh for different values of T̃ are
shown in Fig. 5. As the function V�(T̃ , αh) shown in Fig. 3,
this function also monotonically decreases with increasing of
both T̃ and αh. The essential difference is that the function
VQ(T̃ , αh) vanishes for T̃ → 0 while the function V�(T̃ , αh)
approaches the finite limit.

The large-αh asymptotics of the function VQ(T̃ , αh)
is VQ(T̃ , αh) ≈ π

αh
Vλ,m(T̃ ), where the function Vλ,m(T̃ ) is

defined in Eq. (47). These asymptotics are also shown
in Fig. 5 by dashed lines. Noting also the relation
πh2

0/(2αh�0 ln (ξh/a)) = 1/τm, we see that in the limit αh �
1 the above result reproduces the correction in Eq. (46) for the
scattering regime.

At small αh corresponding to the proximity of the magnetic
transition, the function RQ(z, αh) has logarithmic dependence
on αh,

RQ(z, αh) ≈ RQ,0(z) + RQ,1(z) ln

(
1

αh

)
,

RQ,0(z) = ∂

∂z

z[1 − 3 ln(2
√

z2 + 1)]

(z2 + 1)5/2
,

RQ,1(z) = − ∂

∂z

3z

(z2 + 1)5/2
.
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FIG. 6. Temperature dependence of the coefficients AQ(T̃ ) and
BQ(T̃ ) defined by Eqs. (58b) and (58c), respectively, which deter-
mine the small-αh asymptotics of the function VQ(T̃ , αh ), Eq. (58a).
The inset shows the temperature dependence of their ratio. The
coefficient AQ(T̃ ) changes sign at T̃ = 0.683.

The function V�(T̃ , αh) describing the gap contribution also
has logarithmic dependence on αh, Eq. (39a). Correspond-
ingly, the function VQ(T̃ , αh) also logarithmically diverges
with αh → 0,

VQ(T̃ , αh) = AQ(T̃ ) + BQ(T̃ ) ln

(
1

αh

)
, (58a)

with

AQ(T̃ )] = [D(T̃ )]−1T̃
∞∑

n=0

[KQ(ω̃n)A(T̃ ) + RQ,0(ω̃n)], (58b)

BQ(T̃ ) = [D(T̃ )]−1T̃
∞∑

n=0

[KQ(ω̃n)B(T̃ ) + RQ,1(ω̃n)], (58c)

where the coefficients A(T̃ ) and B(T̃ ) are defined in
Eqs. (39b) and (39c), respectively. The small-αh asymptotics
are plotted in Fig. 5 with dotted lines and plots of the co-
efficients AQ(T̃ ) and BQ(T̃ ) and their ratio are presented in
Fig. 6. Note that the coefficient AQ(T̃ ) becomes negative for
T̃ < 0.683. Even though the small-αh behavior in Eq. (58a)
looks similar to the behavior of the gap in Eq. (39a), the
essential difference is that both coefficients AQ(T̃ ) and BQ(T̃ )
vanish at T̃ = 0.

Similar to Eq. (40), we can present the correction in
Eq. (57a) in the limit ξh � ξs as

λ−2
1α = −λ−2

0α

h2
0BQ(T̃ )

2�2
0

[
1 − ln

(
ξs

a

) − AQ(T̃ )/BQ(T̃ )

ln (ξh/a)

]
. (59)

The ratio AQ(T̃ )/BQ(T̃ ) is of the order unity in the whole
temperature range and becomes negative for T̃ < 0.683,
see inset in Fig. 6, meaning that the nominator ln (ξs/a) −
AQ(T̃ )/BQ(T̃ ) is always positive. As a consequence, the
correction to the superfluid density monotonically increases
when temperature approaches Tm. This is different from the
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FIG. 7. The middle and bottom panels in both plots show computed dependences of the gap � and superfluid density ∝ λ−2 on the
reduced temperature t = T/Tc. The dotted lines show unperturbed values and dashed lines show the results obtained within the scattering
approximation. The unit of � is Tc and the unit of λ−2 is [λ0(0)]−2. The top panel shows the assumed temperature dependences of the magnetic
correlation length and coherence length. The plots on the left side are made for the parameters roughly corresponding to RbEuFe4As4 (see
text). The plots on the right side are made for the same parameters as in the left plots except for 2.7 times larger coherence length. In this case
the scattering-regime asymptotics are much more pronounced and the gap has nonmonotonic temperature dependence.

behavior of the gap correction, Eq. (36a), which becomes non-
monotonic at small temperatures. The maximum suppression
of λ−2

α for ξh → ∞, λ−2
1α,max = −λ−2

0α (h2
0/2�2

0)BQ(2πTm/�0),
corresponds to the correction from a uniform exchange field
equal to h0.

VI. DISCUSSION

In summary, we evaluated the corrections to the gap,
Eq. (36a), and superfluid density, Eq. (57a), caused by the
exchange interaction with quasi-two-dimensional magnetic
fluctuations in materials composed of superconducting and
local-moment layers. Growth of the correlation length near the
magnetic transition enhances spin-flip scattering leading to
increasing suppression of superconducting parameters. This
suppression significantly weakens when the magnetic corre-
lation length exceeds the coherence length. In addition to
dependence on the correlation length ξh(T ), the corrections
have also direct regular dependence on the ratio T/�0(T ).
Moreover, as one can see from Figs. 3 and 5, in the para-
magnetic state these dependences are opposite. While in the
immediate vicinity of the magnetic transition the growth of
ξh(T ) dominates, in a wider range, the overall temperature
dependence is determined by the interplay between both
sources. To generate the parameter’s temperature dependences
for real materials from the derived general formulas, one need
to specify the temperature dependent gap, coherence length,
and magnetic correlation length, as well as the strength of the
exchange field.

Even though the consideration of this paper has been
mostly motivated by physics of RbEuFe4As4, at present, there
are too many uncertainties in the parameters of this material
to make a reliable quantitative predictions. Therefore, we
limit ourselves with showing expected qualitative behavior us-
ing representative parameters and illustrating general trends.
Figure 7(left) shows the temperature dependences of the
gap and λ−2 for the parameters very roughly corresponding
to RbEuFe4As4. Namely, we assume (i)the the Ginzburg-
Landau coherence length ξGL

s0 = 1.46 nm, following from
the linear slope of the c-axis upper critical field [21,22],
(ii) the BCS value of the zero-temperature gap, �0(0) =
1.76Tc ≈ 5.6 meV, (iii) the BCS temperature dependences for
all unperturbed superconducting parameters, (iv) the ampli-
tude of the exchange field h0 = 0.6Tc, (v) the magnetic tran-
sition at tm ≡ Tm/Tc = 0.4, and (vi) Berezinskii-Kosterlitz-
Thouless (BKT) shape for the magnetic correlation length,
ξh(T ) = a exp[b

√
Tm/(T − Tm)], where a = 0.39 nm is the

distance between the neighboring Eu2+ moments and we
take the value b = 0.5 for nonuniversal numerical constant.
For these parameters, ξs(Tm) = 6.6a and the ‘scattering-to-
smooth’ crossover is nominally located at tcr ≈ 0.43. We
see, however, that above this temperature the behavior is not
well described by the scattering-regime asymptotics shown
by the dashed lines. This is related to the broad range of
the crossover. Consequently, for selected parameters, the gap
does not display a nonmonotonic behavior, expected from the
analysis of asymptotics. In fact, due to the interplay between
two competing temperature dependences, both corrections are

054505-11



A. E. KOSHELEV PHYSICAL REVIEW B 102, 054505 (2020)

almost temperature independent in the range 0.42 < t < 0.47.
Nevertheless, we see that, according to the general predic-
tions, �(T ) somewhat increases when T approaches Tm, while
[λ(T )]−2 shows a noticeable drop. For illustrative purposes,
we show in Fig. 7(right) the plots of �(T ) and [λ(T )]−2 for
the same parameters as in the previous figure except for larger
coherence length, ξGL

s0 = 10a ≈ 3.9 nm. In this case ξs(Tm) =
17.6a and the crossover nominally takes place much closer to
tm, at tcr ≈ 0.41. In this case the behavior at t > 0.43–0.44
is already fairly well described by the scattering asymptotics.
The gap in this case does have a nonmonotonic temperature
dependence.

Clearly, the plots in Fig. 7(left) do not literally describe
the behavior of RbEuFe4As4 and serve only as a qualitative
illustration. This material has several additional features that
influence the behavior of the parameters but substantially
complicate an accurate analysis. Firstly, the assumed two-
dimensional behavior always breaks down sufficiently close
to the transition and the dimensional crossover to the three-
dimensional regime takes place. In this 3D regime the corre-
lations between the different magnetic layers emerge meaning
that the assumption for two-dimensional scattering does not
work any more. In addition, the magnetic correlation length
does not follow the BKT temperature dependence assumed in
Fig. 7. Secondly, due to spatial separation between the mag-
netic and conducting layers, we expect a significant nonlocal-
ity of the exchange interaction, see Eq. (5), ranging at least
2–3 lattice spacing. Consideration of this manuscript assumes
that the magnetic correlation length exceeds this nonlocality
range. This assumption is only justified close to the magnetic
transition. The nonlocality significantly reduces the exchange
corrections at higher temperatures, when ξh drops below the
nonlocality range. Finally, our single-band consideration does
not take into account a complicated multiple-band structure of
RbEuFe4As4.

In this paper, we developed a general theoretical frame-
work for the analysis of the influence of correlated magnetic
fluctuations on superconducting parameters. We focus on the
behavior of the gap and superfluid density for the in-plane cur-
rent direction, but the consideration can be directly extended
to other thermodynamic and transport properties. For some
properties, however, such as specific heat and magnetization,
a reliable separation of the superconducting contribution from
the magnetic background in experiment is challenging. This
makes a theoretical analysis somewhat academic. Our result
can be straightforwardly generalized to the case of a large
exchange field leading to a strong suppression of supercon-
ductivity. Such generalization requires the development of
a self-consistent scheme similar to the AG theory [1]. For
the problem considered here, this is a formidable theoretical
task.
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APPENDIX A: CALCULATION OF THE INTEGRAL
FOR THE GAP CORRECTION

In this Appendix we briefly describe calculation of the
integral in Eq. (33) leading to result in Eq. (34). Substituting
the function W (z, g) defined in Eq. (26) into Eq. (33), we
present δI as

δI = −Chνh2
0

4π

�0(
ω2

n + �2
0

)3/2

[
T1(gn) + 4ω2

n

ω2
n + �2

0

T2(gn)

]
,

(A1)
where

T1(g) = Re

[∫ ∞

−∞
dz

2

(z + i)2
√

(iz + 1)2 − g2

× ln

(
iz + 1 +

√
(iz + 1)2 − g2

g

)]
,

T2(g) = Re

[∫ ∞

−∞
dz

2

(z2 + 1)2
√

(iz + 1)2 − g2

× ln

(
iz + 1 +

√
(iz + 1)2 − g2

g

)]
.

The integral for T1(g) has a pole at z = −i and branches at
the imaginary axis terminating at z± = i(1 ± g). Deforming
the integration contour into the complex plane, we reduce it to
the integral along the square-root branch z = ix, 1 + g < x <

∞,

T1(g) = −2π

∫ ∞

1+g
dx

2

(x + 1)2
√

(x − 1)2 − g2

= 4π

[
1

4 − g2
− 2

(4 − g2)3/2
ln

(
2 +

√
4 − g2

g

)]
.

The integral for T1(g) has the same square-root branches and
the poles at z = ±i. Consequently, we split the integral into
contribution from the pole at z = i and square-root branch z =
ix, 1 + g < x < ∞ which yields

T2(g) = π2

2g
− π

g2
+ 4π

∫ ∞

1+g
dx

1

(x2 − 1)2
√

(x − 1)2 − g2

= −π

[
1

4 − g2
− 6 − g2

(4 − g2)3/2
ln

(
2 +

√
4 − g2

g

)]
.

Substituting the above results into Eq. (A1), we arrive to
Eq. (34).

APPENDIX B: MAGNETIC-SCATTERING CORRECTION
TO THE LONDON PENETRATION DEPTH USING

QUASICLASSICAL APPROACH

The London penetration depth λ in the presence of
isotropic potential and magnetic scattering has been investi-
gated within the quasiclassical approach in Ref. [30]. Here
we derive a general equation for λ for arbitrary magnetic
scattering having in mind application to the case of corre-
lated magnetic fluctuations. The Eilenberger equations for the
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quasiclassical Green’s functions, f (p, r), f †(p, r), and g(p, r)
for arbitrary scattering are [32]

v� f = 2�g − 2ωn f + g〈[W (p, p′) − Wm(p, p′)] f ′〉′
− f 〈[W (p, p′) + Wm(p, p′)]g′〉′, (B1a)

−v�∗ f † = 2�∗g − 2ωn f † + g〈[W (p, p′) − Wm(p, p′)] f †′〉′
− f †〈[W (p, p′) + Wm(p, p′)]g′〉′, (B1b)

where we used shortened notations f ≡ f (p, r), f ′ ≡ f (p′, r),
� f ≡ (∇ + 2π iA/φ0) f , 〈A(p′)〉′ ≡ ∫

SF
d2 p′ρ(p′)A(p′), and

ρ(p) = [(2π )3νvF (p)]−1. Further, W (p, p′) and Wm(p, p′) are
the probabilities of potential and magnetic scattering defining
the corresponding scattering times as

1

τ
= 〈W (p, p′)〉′, 1

τm
= 〈Wm(p, p′)〉′.

For the model considered in this paper Wm(p, p′) =
2πν〈|h̃p−p′ |2〉. The above equations have to be supplemented
with the normalization condition g2 = 1 − f f †, the gap equa-
tion

�

2πT
ln

Tc0

T
=

∑
ωn>0

(
�

ω
− 〈 f 〉

)
, (B2)

and formula for the current

j = 4πeνT Im
∑
ωn>0

〈vg〉. (B3)

Our goal is to derive the response to weak supercurrents.
In linear order, weak supercurrents do not modify the gap
absolute value but only add the same phase θ (r) to � and
f and the opposite phase to f †. Therefore, the linear-order
solutions have the form,

� = �0 eiθ , f = ( f0 + f1) eiθ ,

f † = ( f0 + f1)e−iθ , g = g0 + g1,

where only the phase θ has coordinate dependence, while
f1, f †

1 , g1 are uniform meaning that � f = iP f and �∗ f † =
−iP f † with P = ∇θ + 2πA/φ0. Equations for the linear cor-
rections are

2�0g1 − 2ωn f1 + g1(p)

τ−
f0 − f1(p)

τ+
g0

+ g0〈[W (p, p′) − Wm(p, p′)] f1(p′)〉′
− f0〈[W (p, p′) + Wm(p, p′)]g1(p′)〉′ = ivαPα f0, (B4)

g0g1 = − f0 f1 (B5)

with 1
τ±

= 1
τ

± 1
τm

. The remaining averages in the first equa-
tion account for the reverse scattering events. These averages
vanish for the case of isotropic scattering. We assume that the
solutions are proportional to vαPα and define the correspond-
ing averages as

〈W (p, p′)v′
α〉′ = 1

τα
vα, 〈Wm(p, p′)v′

α〉′ = 1

τα
m

vα,

giving

1

τα
= 〈〈W (p, p′)vαv′

α〉〉′〈
v2

α

〉 ,
1

τα
m

= 〈〈Wm(p, p′)vαv′
α〉〉′〈

v2
α

〉 . (B6)

These quantities determine the corresponding transport times
in a standard way, 1/τ tr = 1/τ − 1/τα and 1/τ tr

m = 1/τm −
1/τα

m . In the case of correlated magnetic fluctuation which we
consider in this paper, the transport rate is much smaller than
the total scattering rate. The averagings in Eq. (B4) can now
be performed as

〈[W (p, p′) ± Wm(p, p′)] f1(p′)〉′ = f1(p)

τα±

with 1/τα
± = 1/τα ± 1/τα

m . This allows us to rewrite Eq. (B4)
as

2�0g1 − 2ωn f1 + g1

τ−
f0 + g0

f1

τα−
− f1

τ+
g0 − f0

g1

τα+
= ivαPα f0.

(B7)
Substituting g1 = − f0 f1/g0 from Eq. (B5), we obtain the
solutions

f1 = − ivα f0Pα

2ωn + 2�0
f0

g0
+ f 2

0
g0

(
1
τ−

− 1
τα+

) + g0
(

1
τ+

− 1
τα−

) , (B8)

g1 = f 2
0

g0

ivαPα

2ωn + 2�0
f0

g0
+ f 2

0
g0

(
1
τ−

− 1
τα+

) + g0
(

1
τ+

− 1
τα−

) . (B9)

We can rewrite the scattering-rate differences here in terms of
scattering and transport times as

1

τ−
− 1

τα+
= 1

τ tr
− 2

τm
+ 1

τ tr
m

,

1

τ+
− 1

τα−
= 1

τ tr
+ 2

τm
− 1

τ tr
m

.

We use a standard parametrization for the unperturbed
Green’s function components

f0 = 1√
1 + u2

, g0 = u√
1 + u2

.

The parameter u obeys the Abrikosov-Gor’kov equation [1,3]

u

(
1 − 1

τm�
√

1 + u2

)
= ωn

�
(B10)

and determines the gap via equation

� ln
Tc0

T
= 2πT

∑
ωn>0

(
�

ωn
− 1√

1 + u2

)
. (B11)

We proceed with the derivation of the current response
using Eq. (B3). Rewriting g1 in Eq. (B9) in terms of the
parameter u

g1 = ivαPα

(1 + u2)
(
2�

√
1 + u2 + 1

τ tr−

) − 2
τα

m
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and substituting it into Eq. (B3), we obtain the linear current
response as

jα = 4πeνT
∑
ωn>0

〈
v2

α

〉
(1 + u2)

(
2�

√
1 + u2 + 1

τ tr−

) − 2
τα

m

Pα.

(B12)
Using the definition 4π jα/c = −λ−2

α Aα and Pα = 2π Aα/φ0,
we finally obtain the result for λ−2

α ,

λ−2
α = 16π3|e|ν〈v2

α

〉
cφ0

T
∑
ωn>0

1

(1 + u2)
(
�

√
1 + u2 + 1

2τ tr−

) − 1
τα

m

.

(B13)

This result can be used for self-consistent evaluation of the
London penetration depth of arbitrary scattering. Note that it
is different from the similar result in Ref. [2] by the sign in
front of 1

τα
m

in the denominator.

1. Small-scattering-rate expansion

For comparison with the results in the main text, we
derive small correction to λ−2

α in the case of weak scattering.
Expanding the parameter u in Eq. (B10), u = ωn

�
+ um, we

obtain

um ≈ ωn

τm�
√

ω2
n + �2

.

Substituting this expansion into the gap equation, Eq. (B11),
we derive the correction to the gap, � = �0 + �̃,

�̃ = − 2πT

τm�0

∑
ωn>0

ω2
n(

�2
0 + ω2

n

)2

[
2πT

∑
ωn>0

1(
�2

0 + ω2
)3/2

]−1

.

(B14)

In the reduced form, this correction is identical to Eq. (38).
To derive the correction to λ−2

α , we expand the fraction in
Eq. (B13)

1

(1 + u2)
(
�

√
1 + u2 + 1

2τ tr−

)
− 1

τα
m

≈ �2(
�2 + ω2

n

)3/2

(
1 − 3ω2

n − �2

τm
(
�2 + ω2

n

)3/2

+ ω2
n − �2

2τ tr
m

(
�2 + ω2

n

)3/2 − 1

2τ tr
√

�2 + ω2
n

)

and also separate the contribution from the gap correction

�2(
�2 + ω2

n

)3/2 ≈ �2
0(

�2
0 + ω2

n

)3/2 + �0�̃
(
2ω2

n − �2
0

)
(
�2

0 + ω2
n

)5/2 .

This gives the correction to λ−2
α ,

λ−2
α ≈ λ−2

0α + λ−2
1α ,

λ−2
0α = 16π4ν

〈
v2

α

〉
φ2

0

T
∑
ωn>0

�2
0(

�2
0 + ω2

n

)3/2 ,

λ−2
1α = 16π4ν

〈
v2

α

〉
φ2

0

T
∑
ωn>0

[
�0�̃

(
2ω2

n − �2
0

)
(
�2

0 + ω2
n

)5/2

− �2
0

(
3ω2

n − �2
0

)
τm

(
�2

0 + ω2
n

)3 + �2
0

(
ω2

n − �2
0

)
2τ tr

m

(
�2

0 + ω2
n

)3

− �2
0

2τ tr
(
�2

0 + ω2
n

)2

]
. (B15)

We see that, in contrast to the potential scattering, which
only influences the London penetration depth via the transport
time, the magnetic-scattering contribution to λ−2

1α also has
contributions proportional to the total scattering rate 1/τm,
both direct and via the gap correction. This pair-breaking
contribution, however, vanishes at zero temperature. For nu-
merical convenience, we can rewrite the correction in the
following reduced form

λ−2
1α (T ) = − λ−2

0α (T )

[
1

τm�0
Vλ,m

(
2πT

�0

)

+ 1

τ tr
m�0

V tr
λ,m

(
2πT

�0

)
+ 1

τ tr�0
V tr

λ

(
2πT

�0

)]
,

(B16)

with

Vλ,m(T̃ ) = [D(T̃ )]−1T̃
∞∑

n=0

[
2ω̃2

n − 1(
1 + ω̃2

n

)5/2 V�(T̃ ) + 3ω̃2
n − 1(

1 + ω̃2
n

)3

]
,

V tr
λ,m(T̃ ) = 1

2

[
D(T̃ )

]−1
T̃

∞∑
n=0

1 − ω̃2
n(

1 + ω̃2
n

)3 ,

V tr
λ (T̃ ) = 1

2
[D(T̃ )]−1T̃

∞∑
n=0

1(
1 + ω̃2

n

)2 ,

where ω̃n ≡ T̃ (n + 1
2 ), D(T̃ ) is defined in Eq. (36c), and

V�(T̃ ) in the formula for Vλ,m(T̃ ) is defined in Eq. (37b). For
zero temperature, we derive the following result for the gap
correction

λ−2
1α (0) = −π

8
λ−2

0α

(
1

2τ tr
m�0

+ 1

τ tr�0

)
(B17)

with λ−2
0α = 8π3ν〈v2

α〉/φ2
0 . Therefore, the correction to the

London penetration depth at T = 0 in the clean case is
proportional to transport scattering rates for both scattering
channels.
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