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Edge current and orbital angular momentum of chiral superfluids revisited
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Cooper pairs in chiral superfluids carry quantized units of relative orbital angular momentum (OAM). Various
predictions of the intrinsic OAM density or the macroscopic OAM of a two-dimensional chiral superfluid differ
by several orders of magnitude, which constitute the so-called angular momentum paradox. Following several
previous studies, we substantiate the semiclassical Bogoliubov–de Gennes theory of the single-particle edge
current and OAM in two-dimensional chiral superfluids in the BCS limit. The analysis provides a simple intuitive
understanding for the vanishing of OAM for a non-p-wave chiral superfluid (such as d + id) confined in a rigid
potential. When generalized to anisotropic chiral superconductors and three-dimensional chiral superfluids, the
theory similarly returns an accurate description. We also present a detailed numerical study of the chiral phases
in the BEC limit. Our study suggests that, in both BCS and BEC phases, the relative OAM of the individual
Cooper pairs contribute to the total OAM additively, and that in both phases the corresponding macroscopic
OAM density distribution is localized at the boundary.
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I. INTRODUCTION

A chiral superfluid is one in which each Cooper pair carries
a quantized relative orbital angular moment (OAM) [1,2],
e.g., Lz = ν h̄, where ν = 1, 2, 3 for chiral p, d , and f waves
in two dimensions (2D). In the Nambu spinor basis ψk =
(ck,↑, c†

−k,↓)T , the Bogoliubov–de Gennes (BdG) Hamiltonian
reads

Hk = ψ
†
k

[
ξk �eiνθk

�e−iνθk −ξ−k

]
ψk, (1)

where ξk = k2/2m − E f is the normal state band dispersion,
θk denotes the direction of the wave vector k, and the gap func-
tion �k = �eiνθk = �(kx + iky)ν/kν encrypts the chirality of
the pairing. Note that the pairing is a spin triplet for ν odd and
a spin singlet for ν even.

One natural question is whether a chiral superfluid exhibits
an overall OAM, and if yes, how such a macroscopic quantity
relates to the relative OAM carried by the individual Cooper
pairs. The question was originally raised for the Anderson-
Brinkman-Morel phase (A phase) of 3He [1–3]—which is a
chiral p-wave superfluid in the BCS limit with |�| � E f , and
it has been a subject of long-standing controversy [2,4]. We
refer to Ref. [4] for a recent thorough review of the theoretical
developments over the past four decades. In short, predictions
of the intrinsic OAM density in the bulk of the superfluid vary
from Ltot

z = (�/E f )2ρ h̄/2 to ρ h̄/2, where ρ is the particle
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density; and likewise for the total OAM carried by a finite
N-particle system by replacing ρ with N [1,2,5–12]. A logical
deduction could be made for non-p-wave chiral superfluids
simply by multiplying the above quantities by a corresponding
ν. Such predictions span over many orders of magnitude,
constituting the celebrated angular momentum paradox [2,4].

A separate, and important, aspect of the theory of the
BCS chiral superfluids is their nontrivial topological property,
which is classified by an integer topological invariant [13]—
the Chern number C, that coincides with the Cooper pair
angular momentum, i.e., C = ν. The same number of chiral
edge dispersion, and therefore spontaneous chiral edge cur-
rent, may emerge at the boundary of the system. This has
been a subject of a certain amount of confusion. In particular,
it had been tempting to (erroneously) relate the edge current
and OAM to the underlying topology.

Multiple pioneering studies on the front of chiral p wave
have appeared since the turn of the century [14–18]. In
particular, on the basis of mean-field BdG calculations, the
total OAM of a system in a confining geometry was found to
coincide with Nh̄/2 [16–18]—the intuitively expected value
obtained by assuming that all particles are involved in Cooper
pairing and that each pair contributes Lz = h̄. Within this for-
malism, the OAM with respect to the center of the geometry
is generated entirely by the spontaneous edge current. In this
regard, the OAM thus obtained is a single-particle quantity:
the spontaneous current originates from single-particle sur-
face scattering, which takes place against the backdrop of a
Cooper pairing with a specific chirality. Spatially, the bulk
of the geometry has no contribution at all. Therefore, this
OAM must be distinguished from the OAM density defined
as a two-particle pair correlation [1,2], which is intrinsically
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sensitive to the pair condensation amplitude and which dis-
tributes uniformly across the bulk of the system. We will not
elaborate their distinction in the present study.

Later, two simultaneous and somewhat differently formu-
lated studies within the BdG framework showed unambigu-
ously that the total edge current and OAM must effectively
vanish for any 2D non-p-wave BCS chiral superfluids in sharp
confining potentials [19,20], despite their nontrivial topolog-
ical ground states, and despite the higher relative OAM each
Cooper pair carries. This seemingly counterintuitive result is
supported by several subsequent studies [21–24]. The remark-
able conclusion also applies to s-wave superfluids carrying
multiple vortices [25]. Within the formulation of Ref. [20],
the total OAM has two distinct origins, one is the relative
OAM between paired fermions (i.e., ν h̄ from each pair), and
the other is the OAM carried by unpaired fermions at the
boundary. Crucial information is encapsulated in the many-
body ground state wave function in the sharp confinement. For
a chiral p-wave superfluid, all particles are involved in Cooper
pairing and thus a total OAM of Nh̄/2 is obtained; for non-p-
wave states, however, some fermions are unpaired and they
carry a net OAM which (in the limit �/E f → 0) essentially
cancels the contribution from the remaining paired particles.
Notably, the presence of unpaired fermions at the boundary of
a finite-size geometry, although only relevant for non-p-wave
states, was not recognized in most previous literature [8,9,12].
On the other hand, although the semiclassical analyses in
Ref. [19] is intuitive and solid, some important details were
not made sufficiently explicit. In this work we substantiate
those analyses for the case of rigid confinement and corrob-
orate with numerical BdG calculations when necessary. Gen-
eralizing these analyses to 3D chiral superfluids also yields
accurate descriptions. These conclusions are all in qualitative
agreement with a phenomenological Ginzburg-Landau theory,
within which the current is predominantly associated with
terms describing the correlations of the spatial variation of the
different order parameter components in orthogonal spatial
directions [15,19,26–28].

The relation to topology was also further elucidated in
Refs. [29,30]. In essence, due to U (1) symmetry breaking,
the spontaneous current and the OAM are not topologically
protected quantities and thus are not directly related to the
Chern number, a fact which should have already been antici-
pated by accounting for the lack of a genuine Chern-Simons
action [13,15,16,29]. This paves the way for explaining the ab-
sence or smallness of the edge current [31–33] in the putative
time-reversal symmetry breaking superconductor Sr2RuO4 by
invoking gap anisotropy and/or surface disorder [28–30,34–
37].

Finally, in contrast to the BCS limit where the average
Cooper pair size is much larger than the interparticle spac-
ing, the BEC limit with E f < 0 is routinely portrayed as
a macroscopic coherent state of tightly bound Cooper pair
molecules (see Fig. 1). Besides this, BEC chiral superfluids
are topologically trivial with C = 0. As such, one prevailing
understanding has been that their total OAM should be νNh̄/2
and that it should be uniformly distributed across the system.
Numerical BdG calculations indeed obtained the expected
OAM [20]. In this study we investigate the real space distri-
bution of the edge current and the associated OAM. We find

FIG. 1. Illustration of 2D BCS and BEC chiral superfluids. The
average Cooper pair size in a BCS superfluid is much larger than the
interparticle spacing, hence such superfluids are typically pictorially
depicted as strongly overlapping Cooper pairs. By contrast, the BEC
limit is routinely portrayed as tightly bound Cooper pair molecules
spread evenly across the system. A central quest of the angular
momentum paradox is the total OAM carried by the chiral superfluids
confined in a disk.

again that they arise only at the boundary, as oppose to the
expectation stated above.

The rest of the paper is organized as follows. In Sec. II
we revisit the semiclassical analysis of the edge current and
the OAM in the BCS limit and in the presence of rigid
confining potentials, supplementing rigorous derivations for
some important details. The same analysis is extended to 2D
chiral superconductors on a lattice, and then in Sec. III to 3D
chiral superfluids, along with extensive numerical BdG calcu-
lations in support of the conclusions. In Secs. II C and II D
we comment on two parallel theories, i.e., the Gingzburg-
Landau theories of the spontaneous current and the spectral
flow argument for the OAM, and briefly discuss the scenario
with soft confining potential and comment on the significance
of the nontopological Chern-Simons-like action. Going to the
BEC limit in Sec. IV, numerical calculations show that the
OAM is also confined to the boundary as in the BCS limit,
which runs contrary to common beliefs. The paper is briefly
summarized in Sec. V.

II. 2D CHIRAL SUPERFLUIDS IN BCS LIMIT

In this section we revisit a semiclassical analysis which
intuitively explains the vanishing of edge current and OAM
in non-p-wave chiral superfluids and the suppression thereof
in anisotropic chiral p-wave superconductors. Spirits of
what follows have appeared in a number of previous litera-
ture [15,16,19,23,29], in particular Refs. [19,23] for non-p-
wave chiral states. We shall substantiate the relevant argu-
ments with more rigorous derivations and state them in more
explicit languages. Later we shall comment on parallel ap-
proaches, i.e., the Gingzburg-Landau theory and the spectral
flow argument [20,21,38].

A. Semiclassical theory in continuum limit

In the following derivation it turns out beneficial to remove
the k dependence in the denominator of the gap function
in Eq. (1). We hence take �k = �(kx + iky)ν/kν

f , where k f

represents the Fermi wave vector. Although this changes the
gap amplitude, the global topological nature of the pairing,
henceforth the essential properties of the chiral edge modes,
are retained so long as the relation �/E f � 1 is satisfied, as
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FIG. 2. Sketch of chiral edge modes (red) in the BCS limit (a) chiral p-wave, (b) chiral d-wave, and (c) chiral f -wave states in a half-infinite
plane with a boundary parallel to the y axis. The thickened segments correspond to negative-energy edge modes that are occupied in the ground
state. In chiral d- and f -wave models, there are more than one chiral edge branch, however, the current carried by the multiple branches of
occupied edge modes cancel each other in the limit �/Ef → 0.

has been demonstrated in previous literature [16,18]. Hence
the choice of k f is not special but contingent.

In a half-infinite geometry with an ideal sharp boundary
parallel to the y axis, the edge dispersion, e.g., for chiral p and
d waves, acquires the following form (see Appendix A and
Fig. 2):

p wave : Eky = �ky/k f ,

d wave : Eky =
{

�
(
k2

f − 2k2
y

)
/k2

f , ky ∈ (−k f , 0),

−�
(
k2

f − 2k2
y

)
/k2

f , ky ∈ (0, k f ),

(2)

with the wave function given by

φky (x, y) = 1

N

(
uky

vky

)
sin(k f xx)e

− �
v f

x
eik f yy. (3)

Here N is a normalization factor, k f = (k f x, k f y ) is the
Fermi wave vector, v f = k f /m, and importantly (uky , vky )T =
(1,−i)T /

√
2 for p wave and (uky , vky )T = (1,±1)T /

√
2 for

d wave where the plus and minus signs are associated, re-
spectively, with its two chiral branches. As we elaborate in
Appendix A, the equal-weight particle and hole composition
of the edge modes in chiral p wave is a consequence of
a chiral symmetry. The non-p-wave superfluids, however,
lacks such a symmetry, and uky ’s and vky ’s typically exhibit a
correction of order O(�/E f ) (Appendix A). In the BCS limit
with �/E f � 0, these edge states, described by operators
γky = (uky cky,s + vky c

†
−ky,s′ ), are nonetheless essentially charge

neutral (importantly, they nevertheless carry a finite amount
of current, see below).

We note that the matrix in Eq. (1) has the same mathe-
matical structure as that of a Chern insulator (CI), which is
characterized by the same topological invariant and therefore
the same edge dispersion. However, the two topological states
differ in important ways. Unlike a CI which preserves the
charge U (1) symmetry, the low-energy effective action of the
chiral superfluid lacks a real Chern-Simons term that embod-
ies a protected quantized particle current at the boundary of
the system [16]. Hence the edge current of a topological chiral
superfluid is bona fide nontopological [20,29]. Formally, this

distinction manifests in their velocity operators, i.e., V̂k =
∂kξkσ0 for chiral superfluids and V̂k = ∂kHk for CIs, which
foretells profound consequences. In particular, the current
carried by an individual Bogoliubov quasiparticle is entirely
unrelated to its group velocity!

Focusing on the chiral edge states, at zero temperature the
particle current carried by an individual occupied edge state
with characteristic momentum ky is given by

jky = |uky |2∂kyξk = ky

2m
. (4)

Lattice generalization of this expression is separately verified
in our numerical BdG calculations on both chiral p- and
d-wave models, up to a O(�/E f ) correction when it is present
(see Appendix B). We checked that the correction (when
present) has nothing to do with the group velocity of the
edge mode, but is purely a consequence of the above stated
correction to the quasiparticle wave function (uky , vky )T .

The particle current generates a mass current, i.e., linear
momentum, of ky/2. It is straightforward to evaluate the total
edge state contribution (per spin species, same hereafter)
Je = 1

2π

∫ ′ jky dky, where the prime indicates integration over
the occupied edge modes. Inspection of the edge dispersion
in Fig. 2(a) reveals that Je is always positive (or negative)
in the p-wave case. However, the peculiar momentum-space
distribution of the edge dispersion in chiral d wave [Fig. 2(b)]
implies that contributions from the two chiral branches flow
in opposite directions. It can in fact be further shown that the
spatially integrated current carried by the multiple chiral edge
branches perfectly cancel [19], not only for d wave, but also
for f wave and all other non-p-wave chiral superfluids in two
spatial dimensions. The continuum states may also carry a net
particle current Je localized to the boundary, and the total edge
current follows as Jtot = Je + Jc. Spatially, the currents Je, Jc,
and thus Jtot are all localized at the boundary over superfluid
coherence length scales. However, except in the p-wave case
where the continuum contribution is half of Je and in opposite
direction [16] [which also holds for simple lattice models
below, such as shown in Figs. 3(a) and 3(d)], Jc vanishes
identically for all non-p-wave states [19]. In other words,
these states have Jtot = Je = Jc = 0. This signifies, rather
strikingly, vanishing total OAM for any non-p-wave chiral
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FIG. 3. (a)–(c) Low-energy dispersion of three 2D chiral p-wave
models on a square lattice in a cylindrical geometry with open bound-
aries in the x direction. The model contains only nearest-neighbor
hopping t : ξk = −2t (cos kx + cos ky ) − μ with μ = −1. The gap
function takes the following forms: (a) �k = �(sin kx + i sin ky );
(b) �k = �(sin kx cos ky + i cos kx sin ky ); and (c) �k = �(sin 2kx +
i sin 2ky ); and � = 0.1t . The Chern number in each case is displayed
in boxes. The chiral edge modes on one of the edges are marked in
red, and the thickened segments denote the occupied edge states in
the ground state. (d) The edge current distribution jy for the three
cases in (a)–(c). Note that the currents are expressed in units of t
(same in other figures). The black dashed curve shows the current
carried by the occupied edge states in (a). The net edge state contri-
bution is twice as much as the total current. The sign of jy is inverted
for (b) and (c) to make a comparison with (a) more transparent. It is
worth noting that for anisotropic p waves, some portions of the edge
dispersion almost merge with the bulk continuum.

superfluid placed on a disk much larger than the coherence
length [19,20]! While for chiral p wave [16,18],

Je = k2
f

8πm
= ρ

2m
and Jc = − ρ

4m
, (5)

where ρ represents the particle density (per unit area),
which remains constant throughout the system except for
some inessential short-wavelength Friedel oscillations near
the boundary. The total edge current is then given by

Jtot = ρ

4m
. (6)

In a disk geometry with large radius R, such edge current
generates a net OAM [16,18],

Ltot
z = mJtotR2πR = Nh̄

2
, (7)

where N = πR2ρ is the total number of particles in the disk.
This result coincides with the intuitive expectation for chiral
p-wave superfluids.

Noteworthily, although the spatially integrated current van-
ishes for non-p-wave states, counter flowing local currents
distribute within a region comparable to a coherence length
from the edge [23,24,39]. Furthermore, in typical numeri-
cal calculations, additional superconducting order parameters
may emerge due to symmetry breaking at the edge, resulting

in small nonvanishing integrated current [24]. As a final note,
in a CI the current of an individual mode is set by ∂ky Eky ,
and is therefore intimately tied to the chirality, i.e., the Chern
number, hence the topological protection.

B. Lattice models

The same line of argument also explains why anisotropic
chiral p-wave superconductors on lattices, when exhibiting
multiple accidental zero crossings in the edge spectrum,
may support a much reduced current compared to that of
a simple isotropic p-wave superconductor. This is demon-
strated in Fig. 3 for calculations on a square lattice with
only nearest-neighbor hopping, using three different p-wave
gap functions that increase in levels of gap anisotropy from
Figs. 3(a) to 3(c). The details of the calculation are presented
in Appendix B. At the indicated chemical potential, only
one chiral dispersion appears for �k ∝ sin kx + i sin ky and
sin kx cos ky + i cos kx sin ky, where the Chern number C = 1.
For an edge parallel to the y axis, the chiral edge dispersion
is related to the y component of the gap function by |Ek| =
|�ky| (see Appendix A). Notably, the latter state possesses
additional zero crossings away from ky = 0. The number of
chiral branches increases to 3 for �k ∼ sin 2kx + i sin 2ky,
where C = −3. Since each edge mode carries a current jky =
∂kyξk/2 = t sin ky, the multiple zero crossings in anisotropic
pairings lead to partial cancellation between the current car-
ried by different occupied edge states. As a result, the total
edge current, including the continuum-state contributions, is
in general reduced for anisotropic pairings [28,29,36] [see
Fig. 3(d)].

We stress that the reduction of the spontaneous current is
not solely determined by the Chern number, as it can happen
even for the case of C = 1 in Fig. 3(b). In fact, the sign of
the Chern number is equally unimportant. Simply inverting
the normal state band dispersion ξk → −ξk in the continuum
model or setting μ → −μ in the lattice model above (while
keeping �k unchanged), changes the sign of C and inverts
the chirality of the edge dispersion. However, exactly the
same edge current (sign and magnitude) follows from our
analyses [29]. These underscore again the nontopological
nature of the spontaneous current. Nonetheless, it generally
takes a fine-tuned pairing function to make the total current
vanish [29].

C. Alternative theories

As is well understood within the phenomenological
Ginzburg-Landau theory [15,19,26,27,40,41], the sponta-
neous current is closely related to the distinct textures ac-
quired by the different chiral order parameter components
near the boundary. Take chiral p-wave superfluid as an ex-
ample, by symmetry the two components in the gap func-
tion �k = �1k + i�2k = �1kx + i�2ky shall develop differ-
ent textures at a generic boundary [42]. For instance, since a
reflection perpendicular to the x direction takes �1 to −�1,
this component must drop to zero over certain healing length
near an edge parallel to y. The leading order contribution
to the local current is given by jy(x) ∼ Kxy[(∂x�1)�2 −
�1(∂x�2)]. The phenomenological coefficient Kxy sets the
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scale of this contribution. Following a standard free en-
ergy gradient expansion, Kxy ∝ 〈∂kx ξk∂kyξk�1k�2k〉FS where
〈· · · 〉FS designates an average over the Fermi surface. The
coefficient therefore is determined by both the microscopic
details of the gap function and the underlying band struc-
ture [19,28,29]. In particular, it can be checked that Kxy = 0
for any non-p-wave 2D chiral superfluids [19]. The same
analysis applies to the 3D models in Sec. III.

A parallel spectral flow argument focuses on the general-
ized angular momentum [20,38] defined as Q̂ ≡ L̂tot

z − ν
2 N̂ h̄.

Despite L̂tot
z and N̂ individually not commuting with the BdG

Hamiltonian in Eq. (1) due to U (1) symmetry breaking, Q̂
does. A detailed analysis finds the ground state expectation
value of Q̂ (〈Q〉) to be zero for any BEC chiral superfluid,
suggesting that Ltot

z = νNh̄/2. In the BCS regime, however,
〈Q〉 = 0 holds only for chiral p wave, and 〈Q〉 � −νN/2 for
any non-p-wave states up to a O(�/E f ) correction. In other
words, while a chiral p-wave superfluid has Ltot

z = Nh̄/2, any
non-p-wave BCS chiral superfluid has an OAM which greatly
reduces to N × O(�/E f ). Such a fundamental difference
originates from the spectral flow, brought about by the pres-
ence of multiple zero crossings in the edge dispersion—which
coincides with the presence of unpaired fermions in the many-
body BCS ground state wave function [20]. Interestingly,
within this description, the relative OAM each individual
Cooper pair carries, ν h̄, coincides with the very OAM this
pair generates with respect to the center of the disk geometry.

D. Soft boundary conditions

Following Refs. [19,29], we shall remark on the case of
soft boundary potentials. Although a genuine Chern-Simons
action is absent, a nontopological Chern-Simons-like
term emerges in the phenomenological hydrodynamic
action [10,13,15,16,43–46], LCS-like = C̃/(8π )ε0i jA0∂iA j ,
where C̃ = C[1 + O(�/E f )2]. Note that, in comparison to
the standard Chern-Simons action, this action lacks the term
εi0 jAi∂0Aj . It nevertheless generates a Hall-like spontaneous
current perpendicular to the direction of spatial scalar
potential variation,

j(r) � − C

8π
ẑ × ∇A0(r) = C

4
ẑ × ∇ρ(r), (8)

where A0(r) is the confining potential. In the second equation,
the gradient of the scalar potential has been translated to that
of the particle density, which is valid in 2D models. The action
therefore effectively describes a current-density correlation,
unlike the Chern-Simons action which is associated with
a current-current correlation. A semiquantized OAM Ltot

z =
νNh̄/2 is then recovered for a chiral superfluid confined by
a circularly symmetric soft potential [19,29]. Equation (8)
can be intuitively interpreted as follows. While the circulating
current carried by the individual and strongly overlapping
Cooper pairs cancel each other in a uniform macroscopic BCS
coherent state, a residual overall current arises in the presence
of a spatial density inhomogeneity. It then naturally follows
that such a current depends on both the Cooper pair OAM
and the particle density gradient, as in Eq. (8). An alternative
explanation rests upon the spectral flow induced as the edge

FIG. 4. Left: Sketch of the 3D Fermi surface and constant kz

planes intersecting the Fermi surface. Right: Total edge current as
a function of carrier density ρ in the low-density (continuum) limit,
obtained from numerical BdG calculations of a cubic lattice with
open boundary condition in one direction and periodic boundary
conditions in other directions. We assume only nearest-neighbor
hopping t on the lattice, with chiral p wave �k = �(sin kx + i sin ky )
where � = 0.1t , and with chiral d-wave pairing �k = �(sin kx +
i sin ky ) sin kz where � = 0.2t . The density ρ is measured in the
bulk, as the edge exhibits Fridel oscillations. The black dashed
curve shows the expectation based on Eq. (10), where we have
substituted the particle mass by its lattice approximation m � 1/(2t )
at low filling. Note that calculations of the present chiral d-wave
model always suffer from finite size effect due to the presence of
nodal quasiparticle excitations. Aside from this, its net edge current
approaches that of the chiral p-wave model.

potential is softened from the rigid confinement limit. We refer
to Refs. [22,37] for more details.

Some caution is needed here. The Chern-Simons-like ac-
tion is applicable only in the strict long-wavelength limit
where the confining potential, equivalently the particle den-
sity, varies slowly on a length scale much longer than the
Cooper pair coherence length. Notably, this term represents
a contribution distinct from the one generated by the order
parameter textures [15,29] mentioned above. These two con-
tributions shall in general coexist near the boundary of a soft
confinement. As such, Ltot

z may still deviate from the semi-
quantized value [22], except for the chiral p-wave superfluid
where a lack of spectral flow forbids any change in Ltot

z as the
edge potential is deformed [20,21,29] (although local current
distribution will still modify during the process).

III. 3D CHIRAL SUPERFLUIDS IN THE BCS LIMIT

Following the above semiclassical analyses, we now turn
to 3D chiral superfluids. For convenience, we dissect the
3D Brillouin zone into individual kz planes, as sketched in
Fig. 4(a). The Hamiltonian at each kz plane now constitutes
a problem of 2D chiral pairing with an effective kz-dependent
Fermi energy E ′

f = E f − k2
z /2m. To set the stage, we consider

a sharp yz surface. The spontaneous current, if any, shall flow
along y. Following the above analyses, the edge states carry a
total current,

Je =
∫ k f

−k f

∫ √
k2

f −k2
z

0

ky

2m

dky

2π

dkz

2π
= k3

f

12mπ2
. (9)
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FIG. 5. Left: Fermi surface contours of the model at two different
filling fractions. Right: Total edge current as a function of carrier
density ρ for the same chiral p- and d-wave pairings as in Fig. 4, on
a 3D tetragonal lattice with out-of-plane nearest-neighbor hopping tz

differing from the in-plane ones, tz = 0.2t . As in Fig. 4, the black
dashed line shows the expectation derived from Eq. (10), where the
particle mass is replaced by its lattice approximation m � 1/(2t ).

Note the kz integration is restricted to |kz| � k f , because
beyond this regime no Fermi surface cross section exists
and hence contribution from those kz planes is negligible in
comparison. Employing the conclusion that the bulk state
contribution satisfies Jc = −Je/2, we obtain the total current,

Jtot = k3
f

24mπ2
= ρ

4m
, (10)

where ρ = k3
f /(6π2) is the particle density (per unit vol-

ume). This is consistent with our lattice BdG calculations
when approaching the continuum limit, as we demonstrate
in Fig. 4(b). Consider now confining this superfluid in a
cylindrical container with radius R and height L much greater
than the superfluid coherence length, the total OAM carried
by the edge current is then

Ltot
z = 1

2
ρπR2L = N

2
, (11)

where N = ρπR2L is the total number of particles in the
cylinder. This is the same as that obtained for a 2D chiral p
wave. We note that, by contrast, the thermal Hall conductivity
does not follow such a simple generalization going from 2D
to 3D [47].

Finally, so far as the current and the OAM are concerned,
the result depends only on the projection of the Cooper pair
relative OAM Lz. That is to say, for instance, at T = 0 a 3D
chiral d-wave pairing with �k = �(kx + iky)kz shall exhibit
the same edge current as a chiral p wave with �k = �(kx +
iky), as is verified in Fig. 4 (barring some finite size effects in
the calculation). This could be understood by noting that, at
each kz plane, the former semiclassically behaves as a chiral
p wave with gap amplitude �kz, and that, in the BCS limit,
the edge current is independent of the sign and amplitude of
the pairing. Meanwhile, any 3D chiral superfluid with Lz > h̄
shall exhibit vanishing OAM, just like their 2D counterparts.
These conclusions also apply to models with anisotropic band
dispersion, such as in a lattice model with anisotropic hopping
parameters in Fig. 5. This holds special significance, given

the recent speculation of 3D (kx + iky)kz-like chiral d-wave
pairing in Sr2RuO4 [48,49]. If we take the absence of edge
current as a given [31–33], such a 3D chiral d-wave state is
an equally unlikely candidate as the traditionally conceived
2D chiral p-wave pairing. The same goes for anisotropic 3D
chiral p-wave models with horizontal line nodes [50]. As
a side remark, in 3D models exhibiting nodal quasiparticle
excitations, the current and the OAM could be more strongly
suppressed at finite temperatures.

IV. 2D CHIRAL SUPERFLUIDS IN BEC LIMIT

Since Cooper pairs in BEC superfluids are usually con-
ceived as tightly bound molecules (Fig. 1), it is natural to
assume a uniform OAM density distribution in the bulk of a
BEC chiral superfluid. The absence of chiral edge modes as
well as the absence of unpaired particles in a finite geome-
try [20] would seem to corroborate this assumption. Thus a
total OAM of νNh̄/2 is often expected for such a superfluid
confined in a finite 2D disk, as was indeed confirmed in
Ref. [20]. On the other hand, in the single-particle perspective
that we have taken for this work, the OAM is exclusively gen-
erated by spontaneous current—which would have vanished
in the absence of translation symmetry breaking. We are thus
left to conjecture that the OAM in such a superfluid must again
arise from boundary effects. This was indeed found to be
true in an earlier study of the BEC chiral p-wave phase [51].
Therefore, the pictorial description in Fig. 1 is somewhat
misleading, and the OAM density shall vanish in the bulk.
Here we extend the study to higher-order chiral states.

The BEC phase is acquired by setting E f < 0 in Eq. (1).
We follow the numerical BdG calculations employed in
Ref. [20] for BEC chiral superfluids on a 2D circular disk.
The circular symmetry allows for the use of a convenient
free particle basis with angular momentum quantum numbers
l . Some modest modifications are made here in order to
obtain a converging spatial profile of the physical quantities
such as particle density and spontaneous current (see also
Appendix C). Specifically, instead of using the unregulated
gap function �k = �(kx + iky)ν in Ref. [20] which diverges
at ultraviolet, we divide this pair potential by a term effectively
of order kν to model the regulated gap function in Eq. (1).

Main results of some representative calculations for chiral
p- and d-wave models are presented in Figs. 6 and 7. Despite
the absence of chiral edge modes, thanks to the chirality
of the Cooper pairing, the scattering of quasiparticles at the
boundary induces an overall spontaneous current. One most
important observation in Fig. 6 is that spontaneous current
emerges only at the boundary. The OAM distribution, given
by Lz(r) = 2πmr2 j(r), is necessarily also confined to the
boundary.

Note that, within the above formulation, the OAM each
Cooper pair generates with respect to the disk center equals
the relative OAM this pair carries. Since the relation Ltot

z =∫ R
0 Lz(r)dr = νNh̄/2 is exactly satisfied (see Fig. 7), and

since all fermions are paired in BEC [20], it is reasonable to
conclude that the macroscopic OAM originates solely from
the Cooper pair relative OAM. This contrasts with the BCS
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FIG. 6. Spontaneous current and OAM in the BEC limit. (a) The
distribution of azimuthal mass current, and (b) OAM density for
chiral p-wave and d-wave superfluids in a 2D disk. The mass
current and density gradient for the two states are plotted in (c) and
(d) for comparison, with μ = −0.025E0, k0� = 0.005E0 for p wave
and k2

0� = 0.005E0 for d-wave superfluids, where E0 = k2
0/(2m) is

taken as a fundamental unit of energy.

limit where some unpaired fermions exist at the edge and
contribute a net OAM pointing in the opposite direction [20].

Importantly, unlike in the BCS limit where the particle
density remains roughly constant at the boundary while the
spontaneous current decays over several coherence lengths,
the BEC limit sees the particle density and the edge current
varying over comparable length scales. More interestingly,
in contrast to that in non-p-wave pairings, the current in
chiral p wave appears to follow the gradient of the par-
ticle density ∂rρ(r)/4 as indicated in Figs. 6(c) and 6(d).
Given that the Chern-Simon-like action is not operative in
the BEC limit, the striking similarity to Eq. (8) is puzzling
and it lacks a formal explanation. As a final remark, our
mean-field BdG calculations cannot account for the bosonic
collective excitations which could have become the dominant

FIG. 7. Total OAM of BEC chiral p- and d-wave superfluids on
a circular disk as a function of the particle number N . Variation of
N is achieved by varying � or μ. For example, the black data points
are obtained by varying � whiling keeping μ = −0.25E0.

source of fluctuations in the BEC superfluid—effectively a
boson system. Such fluctuations, unable to be captured in our
BdG, induce a phase-coherence length scale distinct from the
Cooper pair size [52–54]. While it goes beyond the scope of
the present study, the influence of these fluctuations to the
spontaneous current and the OAM is a problem worthy of
further investigation.

V. SUMMARY

Based on the semiclassical BdG theory, we studied the
spontaneous edge current and OAM of chiral superfluids in
finite geometry. Within this theory, the spontaneous current
and OAM are both single-particle quantities closely tied to
the quasiparticle scattering at the system boundary. Following
several previous studies, we substantiated the semiclassical
analysis which provides an intuitive explanation for the van-
ishing of OAM in 2D non-p-wave BCS chiral superfluids. The
same analysis also describes well the physics in anisotropic
chiral superconductors as well as 3D chiral superfluids and
superconductors. Going to the BEC limit, the current and
OAM density are also found to be confined to the boundary,
in contrast to the naive expectation for uniformly distributed
tightly bound Cooper pair molecules. In brief, our study brings
new understanding of the enigmatic angular momentum para-
dox in chiral superfluids.
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APPENDIX A: EDGE STATE SOLUTION IN BCS LIMIT

In this Appendix we illustrate the derivation of the edge
states in 2D chiral p- and d-wave states. We begin with the
following BdG equation:

⎡
⎣− ∂2

2m − E f �
( i∂x+∂y

k f

)ν

�
( i∂x−∂y

k f

)ν ∂2

2m + E f

⎤
⎦[

u0(r)

v0(r)

]
= ε

[
u0(r)

v0(r)

]
. (A1)
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Note that we have removed the k dependence in the denomi-
nator of the gap function by replacing k with k f . As we note in
the main text, this modification simplifies our analysis while
keeping the essential property of the edge states unaltered.
The short-wavelength component in the wave function can be
integrated out by taking [u0(r), v0(r)]T = eik f ·r[u′(r), v′(r)]T .
Keeping only the leading order terms in each matrix element
on the left-hand side of Eq. (A1), we arrive at the Andreev
equation,[ −iv f · ∂ �

( k f x+ik f y

k f

)ν

�
( k f x−ik f y

k f

)ν
iv f · ∂

][
u′(r)

v′(r)

]
= ε

[
u′(r)

v′(r)

]
, (A2)

where v f = k f /m and k f = (k f x, k f y ). Note that the terms car-
rying ∂2 in the diagonal elements and those carrying ∂x/y in the
off-diagonal elements are dropped to a good approximation,
because both u′(r) and v′(r) contain only long-wavelength
components which vary at length scales much longer than
k−1

f . We stress that this approximation is valid as long as the

superconducting coherence length is much larger than k−1
f ,

i.e., when �/E f � 1.
In a half-infinite geometry with an ideal sharp edge parallel

to y axis, the translation symmetry along y allows us to write
[u′(r), v′(r)]T = φ(x)T = [u(x), v(x)]T , therefore

(Ĥ⊥ + Ĥ‖)φ(x) = εφ(x), (A3)

where, for chiral p wave,

Ĥ⊥ = −iv f x∂xσ3 + �k f x/k f σ1,

Ĥ‖ = −�k f y/k f σ2. (A4)

and for chiral d wave,

Ĥ⊥ = −iv f x∂xσ3 − 2�k f xk f y/k2
f σ2,

Ĥ‖ = −�
(
k2

f x − k2
f y

)
/k2

f σ1. (A5)

At each ky ≡ k f y, Ĥ⊥ in Eq. (A4) [and separately in Eq. (A5)]
constitutes an effective 1D Dirac domain wall problem [16],
in which scenario the opposite momenta k f x and −k f x of
the respective incident and reflected waves lead to opposite
masses on the two sides of the fictitious domain wall, such
as �k f x/k f and −�k f x/k f in the p-wave model. This domain
wall binds a zero-energy mode according to the Jackiw-Rebbi
theory [55,56]. Furthermore, since in each case Ĥ⊥ exhibits
a chiral symmetry and since Ĥ‖ happens to be proportional
to the corresponding chiral operator, the bound state solution
of Ĥ⊥ must correspond to an eigenstate of Ĥ‖. For chiral p
wave, the eigenvector is (1,−i)T /

√
2 with energy dispersion

Eky = �k f y/k f , and the approximate full solution for Eq. (A1)
at ν = 1 can be shown to take the following form:

φky (x, y) ∝
(

1
−i

)
sin(k f xx)e

− �
v f

x
eik f yy. (A6)

Note that the choice of a particular eigenstate of Ĥ‖ has to
comply with the boundary condition, or alternatively, with
the Chern number of the chiral pairing as manifest in the
number and chirality of chiral branches. For chiral d wave,
the eigenvector is (1,±1)T /

√
2 with energy dispersion Eky =

±�(k2
f x − k2

f y)/k2
f for the two chiral branches in Fig. 2(b).

For completeness we write down directly the chiral edge
dispersion in the chiral f -wave state as follows [Fig. 2(c)]:

Eky =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�
3k2

f ky−4k3
y

k3
f

, ky ∈ ( − k f ,− k f

2

]
,

�
3k2

f ky−4k3
y

k3
f

, ky ∈ ( − k f

2 ,
k f

2

]
,

−�
3k2

f ky−4k3
y

k3
f

, ky ∈ ( k f

2 , k f
]
.

(A7)

We see from above that the bound states are charge neutral
with equal-amplitude particle and hole composition. How-
ever, since the bound state solutions were obtained under the
approximation �/E f → 0, it is not obvious that the charge
neutrality is protected by symmetry. To this end, we turn back
to Eq. (A1) to look for exact properties. It is instructive to
perform a partial Fourier transformation along the y direction,
which yields the following matrix:⎡

⎣− ∂2
x

2m − E f − k2
y

2m �
(−i∂x+iky

k f

)ν

�
(−i∂x−iky

k f

)ν ∂2
x

2m + E f + k2
y

2m

⎤
⎦. (A8)

In the case of ν = 1, the matrix can be similarly decomposed
into Ĥ⊥ and Ĥ‖, which anticommute with each other and
where Ĥ‖ = −�

ky

k f
σ2 has no x dependence. Hence the solution

of the chiral edge modes in a chiral p-wave superfluid is given
by an eigenvector of σ2, and the charge neutrality is thus
protected by an exact chiral symmetry. By contrast, for ν > 1,
the corresponding Ĥ⊥ generically does not exhibit any chiral
symmetry and it does not anticommute with the x-independent
Ĥ‖, thus the charge neutrality of the bound states we obtained
above is not exact. The correction turns out to be order �/E f

as one may infer from our preceding approximation. The same
conclusion applies to all higher chirality pairings. Following
the same analyses, in the lattice chiral p-wave models where
each of the individual component has both kx and ky de-
pendence, such as �k ∼ sin kx cos ky + i cos kx sin ky, the edge
modes similarly receive some order �/E f corrections, as we
verify in the next section.

APPENDIX B: LATTICE BDG CALCULATIONS

In this Appendix we present our numerical BdG calcula-
tions on 2D square lattice models. Calculations on the 3D
cubic lattice models can be generalized straightforwardly. The
BdG Hamiltonian is a sum of kinetic and pairing terms,

H = Ht + H�. (B1)

The kinetic term is given by

Ht = −
∑

m,n,σ

tmnc†
m,σ cn,σ − μ

∑
m,σ

c†
m,σ cm,σ , (B2)

where σ denote the spin species and tmn is the hopping
between site m and site n. If only nearest-neighbor
hopping t is considered, this term in momentum
space follows as ξk = −2t (cos kx + cos ky) − μ. The
pairing term must acquire the kx + iky symmetry in
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FIG. 8. Results of the BdG calculations on a stripe geometry for
a square lattice chiral p-wave models with only nearest-neighbor
hopping t . Shown in (a) and (b) are the low energy spectra at
� = 0.1t , where the states marked in red represent the chiral modes
localized at one of the edges. The pairing function acquires the
form �k = �(sin kx − i sin ky ) in (a) and �k = �(sin kx cos ky +
i cos kx sin ky ) in (b). The chemical potential is set at μ = −t . The
open hexagon in (a) and open square in (b) represent mark edge
states at the same wave vector ky = 0.316π . (c) The � dependence of
weight of one of the Nambu spinor components of the edge state with
wave vector ky = 0.316π . (d) The � dependence of the total current
carried by the edge state with ky = 0.316π . The red dot denotes
the theoretical prediction in the limit �/t → 0 based on the lattice
version of Eq. (4).

FIG. 9. Results of the BdG calculations on a stripe geometry for
a square lattice chiral d-wave pairing with only nearest-neighbor
hopping t and �k = �(cos kx − cos ky + 2i sin kx sin ky ). The chemi-
cal potential is set at μ = −t . (a) Low energy spectra (with � = 0.1t)
where the states marked in red represent the chiral edge modes at
one of the edges. The open circle highlights an edge state with wave
vector ky = 0.324π . (b) The � dependence of weight of the particle
and hole components of the edge state with ky = 0.324π . (c) The
� dependence of the total current carried by the edge state with
ky = 0.324π . The red dot denotes the theoretical prediction in the
limit �/t → 0 based on the lattice version of Eq. (4).
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chiral p-wave and k2
x − k2

y + 2ikxky in the chiral d-wave
model, etc. For example, in the simplest chiral p-wave model
with �k = �0(sin kx + i sin ky), it is realized by

H� = i�0

∑
m

(cm,↑cm+x̂,↓ − cm+x̂,↑cm,↓) + H.c.

+�0

∑
m

(cm,↑cm+ŷ,↓ − cm+ŷ,↑cm,↓) + H.c., (B3)

where x̂ and ŷ are vectors of unit length in the x and y
directions. In this expression the phase factor i is responsible
for the π/2 phase difference between the x and y components
of the p-wave pairing.

The particle current of the spin-σ fermion flowing from site
n to site m is given by [29]

Jmn,σ = idmntmn(c†
m,σ cn,σ − c†

n,σ cm,σ ), (B4)

where dmn is the length of the bond connecting m and n. Notice
this current operator can be obtained from a standard Peierls
substitution.

The actual calculation is performed on a cylindrical geom-
etry with open boundaries in the x direction and a periodic
boundary condition in y direction. Hence momentum ky is a
good quantum number. We hence perform a Fourier transfor-
mation in the y direction and keep the real space site indices
along x. The BdG Hamiltonian and the current operator can
then be written for each value of ky. We numerically diagonal-
ize the Hamiltonian at each ky and compute the expectation
value of the current. The current carried by any individual
Bogoliubov quasiparticle mode can also be evaluated.

Figures 8 and 9 show the representative results of our
numerical calculations for chiral p-wave and chiral d-wave
models, respectively. In the simple chiral p wave �k ∼
sin kx − i sin ky, we see that the edge states are exactly
charge neutral with particle (or hole) amplitude of |uky | =
0.5 [Fig. 8(c)]. For the anisotropic p-wave pairing �k ∼
sin kx cos ky + i cos kx sin ky where each component has both
kx and ky dependence, the particle (or hole) amplitude and the
current carried by the edge mode exhibit linear-� corrections
[Figs. 8(c) and 8(d)]. Nevertheless, in the limit �/t → 0,
the edge states approach charge neutrality and the current
approaches the predicted value given by the lattice version of
Eq. (4): jky = ∂kyξk/2 where ξk = −2t (cos kx + cos ky) − μ

in the present calculation, independent of the detailed struc-
ture of the p-wave pairing function or the edge dispersion.
Notice that the highlighted edge states in Figs. 8(a) and 8(b)

have the same wave vector ky but are characterized by distinct
group velocities. Furthermore, we checked that at finite �

the correction in the current carried by an individual mode
in anisotropic p wave originates purely from the correction in
the particle (or hole) amplitude of the wave function, and that
it has nothing to do with the group velocity of the edge mode.
The edge states in the chiral d-wave model exhibit similar
behavior as those in the above anisotropic p-wave model, as
can be seen in Fig. 9.

APPENDIX C: BDG CALCULATIONS IN THE BEC LIMIT

We consider the two-dimensional chiral superfluids
confined in a circular well with a specular wall, in the
framework of BdG Hamiltonian. The d vector has no
variation near the boundary and takes the form d = (0, 0, dz )
everywhere. We consider the mean-field Hamiltonian Ĥ =∫

d2 xψ†
σ [(p2

x + p2
y )/2m + V − μ]ψσ + ∫

d2xψ†
↑ � (px +

ipy)ν/|p|νψ†
↓ + (H.c.), where p j = −i∂/∂x j , m is the

fermion mass, and μ is the chemical potential. The
confining potential V (r) is chosen to be V (r < R) = 0
and V (r > R) = ∞ with a radius R for infinite circular well.

The circular geometry allows for an expansion of the
field operators in the angular momentum basis ψσ (r) =∑

nl cnlσ ϕnl (r) where ϕ(r) is a solution of the equation [(p2
x +

p2
y )/2m + V (r) − μ]ϕnl (r) = εnlϕnl (r). Then the Hamilto-

nian becomes

Ĥ =
∑

l

∑
nn′

[
c†

n,l+ν,↑
cn,−l,↓

]T

w

×
[
εn,l+νδnn′ �

(l )
nn′

�
(l )∗
n′n −εn,−lδnn′

][
cn′,l+ν,↑

c†
n′,−l,↓

]
, (C1)

where �
(l )
nn′ = ∫

ϕ∗
n,l+ν�(px + ipy)ν/|p|νϕ∗

n′,−l , where |p|ν is
introduced for converging spatial profile within a reasonable
cutoff.

We evaluate the ground state expectations of the phys-
ical quantities. The particle density is given by ρ(r) =
〈ψ†(r)ψ (r)〉, and the particle current by j = 〈[ψ†(−i∇ψ ) +
(i∇ψ†)ψ]〉/2m. Note that the continuity equation ∂ρ/∂t +
∇ · j = 0 is satisfied. Since no current flows in the radial
direction in a disk geometry, the current can be reexpressed
as jθ (r) = 〈[ψ†(−ih̄ ∂

∂θ
ψ ) + (ih̄ ∂

∂θ
ψ†)ψ]〉/(2mr). The distri-

bution of the orbital angular momentum is given by L(r) =
〈ψ†(r)(−ih̄ ∂

∂θ
)ψ (r)〉, which implies L(r) = mr jθ (r). In other

words, the OAM originates entirely from the spontaneous
current.
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