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Electron energy relaxation in disordered superconducting NbN films
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We report on the inelastic-scattering rate of electrons on phonons and relaxation of electron energy studied by
means of magnetoconductance, and photoresponse, respectively, in a series of strongly disordered superconduct-
ing NbN films. The studied films with thicknesses in the range from 3 to 33 nm are characterized by different
Ioffe-Regel parameters but an almost constant product qT l (qT is the wave vector of thermal phonons and l is the
elastic mean free path of electrons). In the temperature range 14–30 K, the electron-phonon scattering rates obey
temperature dependencies close to the power law 1/τe-ph ∼ T n with the exponents n ≈ 3.2–3.8. We found that in
this temperature range τe-ph and n of studied films vary weakly with the thickness and square resistance. At 10 K
electron-phonon scattering times are in the range 11.9–17.5 ps. The data extracted from magnetoconductance
measurements were used to describe the experimental photoresponse with the two-temperature model. For thick
films, the photoresponse is reasonably well described without fitting parameters, however, for thinner films, the
fit requires a smaller heat capacity of phonons. We attribute this finding to the reduced density of phonon states
in thin films at low temperatures. We also show that the estimated Debye temperature in the studied NbN films
is noticeably smaller than in bulk material.
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I. INTRODUCTION

Energy relaxation of nonequilibrium electrons plays an
essential role in the physics of superconducting detectors. The
most important relaxation processes are inelastic electron-
phonon scattering and phonon escaping since they determine
directly timing metrics in the performance of practical de-
tectors. Advanced theoretical models, e.g., those of super-
conducting nanowire single-photon detectors (SNSPDs) [1]
or hot-electron bolometers (HEBs) [2,3], involve not only
electron-phonon scattering time τe-ph, and phonon escape time
τesc, but also a few other key parameters: the ratio between
electron and phonon heat capacities ce/cph, the density of
electronic states at the Fermi level, and the diffusivity of elec-
trons. Together with scattering times, they affect the energy
transfer from electrons to surroundings.

Electron-phonon scattering in bulk and clean metals is
thoroughly described theoretically [4] while the acoustic
mismatch model describes the escape of isotropic, three-
dimensional (3D) Debye phonons from metal to dielectric
through a plane boundary [5]. However, practical devices
usually exploit thin and disordered superconducting films.
For instance, the SNSPD with a record detection efficiency
of 94% utilizes NbN film with a normal-state resistivity

5.7 × 103 � nm [6] that is much larger than the resistiv-
ity ≈550 � nm of crystalline stoichiometric NbN films [7].
In clean metals at low temperatures, the rate of electron
phonon-scattering obeys power-law temperature dependence
1/τe-ph ∝ T n with the exponent n = 3. The most advanced
theory of electron-phonon scattering in disordered metals
was developed by Sergeev and Mitin (SM) [8]. It predicts
modification of the electron-phonon scattering by disorder
and impurities that generally makes n temperature dependent.
Around a fixed temperature, n depends on the degree of
disorder and the kind of impurities and may have any value
between 2 and 4. Furthermore, the phonon spectrum in an
ultrathin film necessarily deviates from the Debye spectrum,
which is commonly assumed in theories but is inherent only
in bulk crystalline solids. In thin films at low temperatures,
the mean free path and the wavelength of phonons become
comparable or even larger than the film thickness that destroys
isotropy of the phonon spectrum and reduces phonon density
of states. The reduced density of states affects the strength
of electron-phonon scattering and modifies its temperature
dependence [9,10] while reduced isotropy obstructs phonon
escaping. The degree of phonon anisotropy depends not only
on the phonon wavelength and phonon mean free path but also
on the acoustic mismatch between the film and the substrate
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[5,9,11–13] via the angle of total internal reflection. Attempts
to account explicitly for phonon anisotropy and reduced
density of states were made phenomenologically in Refs. [5],
[14], and [13] and microscopically in Ref. [12]. The author
of Ref. [5] introduced an effective transmission coefficient for
phonons, which is an angle average of the angle-dependent
transmission coefficient. The authors of Ref. [13] divided
phonons into two groups and assigned them different but
constant heat capacities and abilities to leave the film. The
approach is referred to as the three-temperature model. Its
results agree with the prediction of the microscopic model
[12] where the distribution functions of electrons and phonons
were computed. Another approach is called ray tracing [14].
The authors of Ref. [14] took into account breaking of Cooper
pairs by phonons along with phonon scattering at nonpaired
electrons and traced phonons over several scattering events
and reflections from the film surfaces. They showed that
phonon trapping slows down the energy transfer from elec-
trons to the substrate and that for sufficiently thin films the
rate of the energy transfer does not decrease anymore with the
further decrease in the film thickness.

It is important to note that the photoresponse of a detector
is rather described by the relaxation time of electron energy
via electron-phonon interaction, τEP, which is proportional
but not equal to the inelastic (single-particle) electron-phonon
scattering time τe-ph used in the theory [8]. The proportionality
coefficient between these times depends on the exponent n at
a given temperature.

Niobium nitride, a conventional detector material, has been
widely studied by means of various experimental techniques.
However, significant discrepancies are present between data
that have appeared in the literature over the past three decades.
It is not entirely surprising. Over the years, the deposition
regime of NbN films has been optimized that definitely re-
sulted in variations of material parameters [15]. Moreover,
material parameters of films, which are used for practical
devices, can hardly be predicted theoretically. Knowledge of
these parameters has to be acquired experimentally.

Undoubtedly, it is necessary to revise parameters of en-
ergy relaxation in modern thin superconducting NbN film.
To achieve this goal, we first analyzed energy relaxation
rates in NbN films reported in the literature (subsection A
below) as well as the experimental techniques and models
which the authors used to describe their data (subsection
B). Second, employing various experimental techniques, we
measured the scattering and relaxation rates and relevant
parameters in two series of NbN films, which were deposited
with different regimes on different substrates. In Sec. II,
we describe these regimes and properties of specimens used
for our study. Sections III A and III B describe results of
transport and magnetoconductance measurements from which
we extract values of electron-phonon scattering times and
their temperature dependences. Section III C contains data
on energy relaxation rates obtained with the time-domain
photoresponse technique. Energy relaxation rates obtained
from the photoresponse in the frequency domain are described
in Sec. III D. We analyze our data in Sec. IV. Section IV A
contains a comparison between our experimental data and
predictions of the SM theory. Fitting experimental data with
the SM theory allows us to extract the acoustic parameters

of our films. With these parameters we evaluate (Sec. IV B)
transmission coefficients for phonons at the film interfaces and
estimate escape times for phonons in the framework of the
acoustic mismatch model. We further use these times in Sec.
IV C to describe photoresponse data and estimate electron and
phonon heat capacities. We summarize our results in Sec. V.

A. Reported electron-phonon energy relaxation
rates in NbN films

In Table I we present published electron-phonon relax-
ation times, phonon escape times, and heat-capacity ratios
for NbN films with various thicknesses on different dielectric
substrates. The data have been obtained by means of different
experimental techniques. We also include publications report-
ing exclusively on transport parameters that were obtained via
Hall and magnetoconductance measurements.

For all films in Table I, the resistivity RSNd (RSN is the
resistance of the film square, d is the film thickness), is
much larger than the resistivity ≈550 � nm of crystalline
stoichiometric NbN films [7]. Although magnitudes of τe-ph

are close for different films, the exponent n in the temperature
dependence of τe-ph

−1 varies from 1 to 3. Since for reported
films the magnitudes of inelastic (electron-phonon) scattering
time, τe-ph � τ , where τ is the elastic scattering time of
electrons, they are supposed to exhibit the phenomenon of
weak electron localization [34]. The elastic mean free path
l is of the order of the interatomic distance in stoichiometric
NbN (0.44 nm) and the electron diffusivity in the normal state
stays in the range 0.2 � D � 1 cm2/s.

Quantities related to the metal-insulator transition (Ioffe-
Regel parameter kFl) and the impact of disorder on the
electron-phonon coupling fall in the intervals 1.5 � kFl � 7.1
and 0.015 � qTl � 0.54, respectively, where kF is the wave
vector of electrons at the Fermi energy and qT is the wave
vector of the thermal phonon. This classifies the films from
Table I as disordered films (qTl � 1) close to the Anderson
localization limit kFl = 1.

Numerical simulations have shown that the condition
kFl ≈ 1 converts a superconductor into a granular system
where superconducting grains (islands) are immersed in an
insulating sea and interconnected by Josephson junctions
[35–37]. The granular morphology of thick NbN film was
observed in Ref. [38]. An unusually small value of the electron
diffusion coefficient in thick films reported in Ref. [19] indi-
cates either a presence of defects (vacancies or impurities) or
pronounced granularity [25] that should definitely affect the
inelastic-scattering rate of electrons [39].

From the values of the phonon escape time shown in
Table I, we estimated the product η̄ū = 4d/τesc in the frame-
work of the classical isotropic acoustic mismatch model [5].
Here η̄ is the mean transmission of the film/substrate inter-
face for phonons, and ū is the mean sound velocity in the
film (Sec. IV B). For the NbN/MgO interface we obtained
η̄ū ≈ 0.5 nm/ps, for NbN/Si3N4 η̄ū ≈ 0.17 nm/ps, and for
NbN/Al2O3 η̄ū ≈ 0.3–0.37 nm/ps.

B. Electron energy relaxation: Measuring
techniques and models

There are several experimental methods that allow find-
ing the magnitude and the temperature dependence of the
relaxation rate of the electron energy. We divide all of them
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TABLE I. Reported characteristics of NbN films: Tc transition temperature, d film thickness, RSN resistance of the film square at T > Tc.
Transport parameters of electrons in the normal state are diffusivity D, elastic mean free path l , and elastic scattering time τ . AMAR: absorption
of modulated (amplitude) sub-THz radiation [16]; 2T: two-temperature model for electrons and phonons; MC: magnetoconductance.

d , Tc, RSN, τe-ph (T), τesc, D, l , τ , Experimental technique
nm K � ps n ce/cph(T) ps Substrate cm2/s nm fs and analysis Ref.

15–30 11.0–12.0 200–60 20(10)a 1a Al2O3 AMAR and 2T [17]
5 8.5 450 115 Si/Si3N4 time domain and 2T [18]
200–300 10.3 34–20 7.2(10)b 1.64 Si/SiO2 0.2 MC [19]
2.5–10 1000–70 32.5–130 Al2O3 AMAR and 2T [20]
20 8.2 360 17(8)c 0.3(8) 160 MgO time domain and 2T [21]
7 11.0 500 12(7)a 1.6a Al2O3 0.4 0.1 AMAR and 2T [22]
3.5 10.6 400–500 10(10)c 38 Al2O3 time domain and 2T [23]
3.2–14.4 9.9–15.3 831–81 Al2O3 0.51–0.66 0.58–0.83 2.16–3.86 ellipsometry [24]
12 14.96 85 Al2O3 0.83 0.2 Hall measurements [25]
2.16–15 6.7–15.0 2377–107 Al2O3 tunneling spectroscopy [26]
>50 9.99–16.11 189.2–76.6 MgO 0.207–0.396 Hall and transport [27]

measurements
6 12.63 431 0.544 [28]
2–20.5 2.6–15.0 1200–40 MgO 1.04–0.76 0.13–0.27 0.1 MC [29]
5.2 11.15 257.7 3 MgO 0.9 MC [30], [31]
5.5 13.51 280 MgO 0.92 Hall and transport [32]

measurements
7 7.71 803 Si/SiO2 0.47
5.5 7.84 800 0.7(8) Si/SiO2 0.35 resistive thermometry [33]

and 2T

aThe authors identified measured decay times of the photoresponse τε with the electron-phonon energy relaxation time τEP. The exponent n
relates to the temperature dependence of the photoresponse time.
bThe inelastic electron-phonon scattering time τe-ph.
cThe electron-phonon energy relaxation time τEP.

into two distinct groups, magnetoconductance (MC) [34] and
photoresponse methods, according to whether the method
does not imply or does imply electron heating. Depending on
whether the intensity of radiation is modulated periodically
or by forming short pulses, the photoresponse is measured in
the time domain or the frequency domain, respectively. Cor-
responding experimental techniques are usually referred to as
photoresponse either in the frequency domain to amplitude-
modulated radiation (FDAM) in the spectral range from sub-
THz (AMAR) [16] to optics [40] or in the time domain to
pulses (TDP) of radiation.

It is worth mentioning here assumptions that FDAM and
TDP techniques imply. The measurements rely on a radiation-
induced change in the resistance, which deals with either the
concentration of free vortices (occurring in the BKT theory) or
the size of a normal domain along the current path, but the re-
sponse is described in terms of quasiparticles and Cooper pairs
(the theory of nonequilibrium superconductivity). The FDAM
and TDP techniques are applied under similar operating con-
ditions, i.e., the current-carrying microbridge is kept at the
superconducting transition and is illuminated by electromag-
netic radiation with varying intensity. The intensity of incident
electromagnetic radiation is modulated either periodically
(FDAM) or by forming pulses (TDPs). The measured quantity
is the voltage drop over the current path in the microbridge
that changes when the resistance of the microbridge changes.
The change in resistance is caused by variation in the absorbed

power of electromagnetic radiation. Absorbed energy is partly
accumulated by electrons and increases their temperature, but
it doesn’t change the resistance. The resistance is determined
by the density of free vortices or by the size of the normal
domain. It is assumed that the vortex density or the size of the
domain instantly follows the electron temperature, which in its
turn is controlled by the rate of absorption of electromagnetic
energy and the rate of relaxation of electron energy. Crucial
to these techniques is small absorbed energy that ensures the
linearity of the photoresponse and exponential relaxation of
the electron energy.

The MC technique allows finding the phase-breaking rate
of the electron wave function for conductors in the quan-
tum diffusive regime when electrons undergo multiple elastic
(phase preserving) scattering events before the coherence
(phase) of the wave function is randomized due to any
inelastic (phase breaking) scattering event. In this regime,
conducting electrons experience quantum interference leading
to an enhanced probability for backscattering (returning to
the initial position after several elastic-scattering events). This
quantum phenomenon is called weak localization (WL) and
results in a negative correction to the normal Drude conduc-
tivity. The magnitude of this correction increases when the
temperature decreases. In the presence of magnetic field, wave
functions (corresponding to clockwise and counterclockwise
trajectories along the same loop) acquire different phase shifts
and interfere at the initial point destructively. Hence, magnetic
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TABLE II. Parameters of studied NbN films. R300 K/R20 K is the ratio of the resistances at 300 and 20 K, N(0) is the total density of states
for electrons at the Fermi energy.

d TC RSN D N(0)
Sample (nm) (K) (�/sq) (10−4 m2/s) (eV−1 m−3) R300K/R20K

M-2259 5.0 10.74 529.5 0.474 4.98 × 1028 0.793
M-A853 6.4 8.35 954.0 0.339 3.02 × 1028 0.709
M-A854 7.5 10.84 387.9 0.453 4.74 × 1028 0.809
M-A855 9.5 10.94 330.6 0.418 4.75 × 1028 0.788
K-1 3.2 12.70 0.83
K-2 4.2 12.90 450 0.53 6.5 × 1028 0.90
K-3 5.8 14.60
K-4 7.5 14.80 1.000
K-5 8.6 15.35
K-6 9.9 10.80 90 1.025
K-7 14.9 16.00
K-8 21.6 16.35 1.023
K-9 33.2 16.35

field destroys the enhanced backscattering. Since the maxi-
mum length of trajectories contributing to WL is limited to
the inelastic-scattering length, this length can be evaluated by
measuring the field that suppresses WL. The corresponding
phase-breaking rate is a sum of rates of all inelastic-scattering
processes. Electron-phonon scattering dominates in phase
breaking at temperatures well above Tc. In the vicinity of
Tc, phase breaking and the correction to the conductivity
are additionally affected by superconducting fluctuations (see
details in Sec. III B).

With respect to e-ph scattering, the phase-breaking rate is
identical to the inelastic single-particle e-ph scattering rate at
the Fermi energy [41], τ−1

e-ph, which is considered in the SM
theory. Because the photoresponse technique implies electron
heating, the e-ph energy relaxation rate τ−1

EP extracted by
means of this technique differs from the single-particle scat-
tering rate. The energy relaxation rate is just an average of the
single-particle scattering rate over the range of electron states
∼ kBT . The relationship between these rates was obtained in
[42] as follows:

τ−1
EP = 3(n + 2)�(n + 2)ς (n + 2)

2π2(2 − 21−n)�(n)ς (n)
τ−1

e-ph, (1)

where �(n) is the gamma function, n is the exponent in the
temperature dependence of the scattering rate τ−1

e-ph ∝ T n, and
ς (n) is the Riemann zeta function.

Data analysis in AMAR, FDAM, and TDP methods is
based on the two-temperature (2T) model [43], which is an
extension of the Rothwarf-Taylor model [44] for temperatures
close to Tc. The 2T model implies that electrons and phonons
are instantly in the internal equilibrium and are described
by their equilibrium distribution functions with two different
effective temperatures, which are slightly larger than the am-
bient temperature. The evolution of the effective temperatures
caused by external excitation is described by a system of two
coupled time-dependent equations. It is assumed that the rate
of the decay of the excess phonon energy is a sum of rates
τ−1

esc and τ−1
PE associated with escaping of phonons from the

film into the substrate and with phonon-electron scattering,
respectively. The 2T model accounts for phonon trapping,

i.e., the angle of total internal reflection of phonons at the
film/substrate interface, θmax, by assigning to all phonons
the same escape rate τ−1

esc . This mean escape rate is less than
the escape rate for phonons hitting the interface at angles θ <

θmax. The principle of detailed balance [44] requires that in
equilibrium the energy flow from electrons to phonons equals
the backward flow. This equality relates the heat capacity
ratio to the ratio of energy relaxation times for electron and
phonons as ce/cph = τEP/τPE [43].

II. SPECIMENS AND PARAMETERS

We studied thin NbN films with different thicknesses and
different degrees of disorder. The specimens are listed in
Table II. Films of the M series (2559, A853, A854, and A855)
were magnetron-sputtered onto silicon substrates on top of
a thermally prepared layer of silicon oxide with a thickness
of 250 nm. Magnetoconductance measurements (Sec. III B)
were carried out with nonstructured approximately squared
1 × 1 cm2 NbN films. TDP measurements (Sec. III C) were
carried out with the same films, which were shaped in the
form of microbridges. The lengths of microbridges varied
from 3.6 to 7 μm, and the widths from 0.615 to 0.69 μm.
The sizes were chosen in order to match the normal square
resistance of each microbridge to the electrical impedance
of the readout circuit (Z0 = 50 �). FDAM measurements
(Sec. III D) were carried out with NbN microbridges of K
series on sapphire substrates (K-1–K-9). They had thicknesses
in the range from 3.2 to 33.2 nm. Films of K series were also
magnetron sputtered. The sputtering regime was optimized
for the largest Tc. The fabrication process of these K films
is described in detail in Refs. [40] and [15]. Measurements
of the density of electronic states, transition temperature, and
diffusivity are described below in Sec. III A.

As seen from Table II, the films of similar thicknesses
M-2259, M-A853, and K-2 are characterized by different
degrees of disorder in terms of the Ioffe-Regel criterion [45].
For the film K-2, kFl = 3Dme/h̄ ≈ 1.37, while for films of
the M series kFl varies from 0.88 to 1.22 (t). To compute
Ioffe-Regel parameter, we use hereafter the free electron mass,
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FIG. 1. Temperature variation of the square resistance for four
exemplary films with different thicknesses around their supercon-
ducting transitions. Solid lines represent the best fits obtained with
Eq. (2) in the vicinity of Tc and extrapolated to 30 K. The inset shows
resistances in the broader temperature range up to 300 K.

me, and the experimental values of the diffusion coefficient; h̄
is the reduced Plank constant. Values of the electron mean free
path are evaluated independently in Sec. IV A. Furthermore,
the diffusion coefficient, the transition temperature, and the
total density of electronic states, N(0), of the film K-2 are
larger while the square resistance, RSN, is lower than these
parameters of the films from the M series. The numbers
indicate, see Ref. [46] and Chap. 3 in Ref. [15], that the com-
position NbNx of the film K-2 is characterized by x ≈ 1.04
and a higher content of niobium than the composition of films
of the M series with x ≈ 1.18. Stoichiometric composition
corresponds to x = 1. Films M-2259, M-A854, M-A855 have
close values of the electron diffusion coefficient, electron
density of states, and transition temperature. These parameters
are noticeably smaller for the film M-A853, while its square
resistance and resistivity (RSNd) are much larger as compared
to others. Correspondingly, among films of the M series, the
film M-A853 has the largest degree of disorder, kFl = 0.88.
It is close to the superconductor-insulator transition [35] and
may additionally have an enhanced degree of granularity (see
Sec. IV A). We have to note here that the parameters of the
films of the K series are close to those reported for similar
films in Ref. [24].

III. EXPERIMENT AND RESULTS

A. DC transport and superconducting properties

Transport measurements were carried out by the standard
four-probe technique in a Physical Property Measurement
System (PPMS) manufactured by Quantum Design. Applied
bias currents were less than 100 μA. The square resistance
RS was measured with the van der Pauw method that elimi-
nates the effect of the planar geometry for 2D specimens. In
Fig. 1 we show RS(T ) dependencies for four NbN films of
M series with different thicknesses. As seen in the inset, for
each film RS increases with the decrease in temperature from
300 K down to approximately 20 K that is most likely due to
Anderson localization. At lower temperatures, the RS(T ) de-

pendencies flatten, the square resistance of each film reaches
a plateau, and then goes down to zero value within a finite
transition region caused by superconducting fluctuations.

We fit our experimental RS(T ) data with the theory of
fluctuation conductivity of Aslamazov and Larkin (AL) [47]
and Maki and Thompson (MT) [48,49]. For two-dimensional
films, the theory predicts

RS(T ) = RSN

1 + RSNϒ 1
16

e2

h̄

( Tc
T −Tc

) , (2)

ϒ is the numerical factor, e is the elementary charge, Tc is
the BCS mean-field transition temperature, and RSN is the
normal-state square resistance at a temperature right above the
superconducting transition.

We used Tc, RSN, and ϒ as fitting parameters to fit exper-
imental data in a very narrow temperature range for which
the inequality ln(T/Tc) � 1 holds. Best-fit values of Tc and
RSN are listed in Table II. Normal-state resistances extracted
from the fits are slightly larger than the measured at 20 K. The
fitting parameter ϒ varies between 1.9 and 2.6 for all films.
The presence of two types of excitation, topological (mag-
netic vortices) and electronic (quasiparticles), complicates the
definition of the superconducting transition temperature in
two-dimensional (2D) films. It turns out that highly resistive
2D superconducting films exhibit two transition temperatures.
One of them, TBKT (Berezinskii-Kosterlitz-Thouless), controls
unbinding of vortex-antivortex pairs that provides emergence
and an exponential rise of the resistance with increasing
density of free vortices. The other controls the energy gap.
It is known as the mean-field transition temperature and
doesn’t cause the emergence of the resistance. In Ref. [28] it
was reported that for NbN film with RSN = 431 �/sq these
temperatures are related as TBKT = 0.85Tc. Anyway, right
above the superconducting transition, our experimental RS(T )
dependencies are well described by AL and MT fluctuations.

Applying external magnetic field perpendicularly to the
film surface, we measured RS(T ) dependences for a set of
magnetic fields. The preset field was taken as the second
critical field at the temperature which corresponds to the
midpoint of the transition, i.e., RS = RSN/2. This procedure
gives the second critical magnetic field, BC2, as a function of
temperature for the temperature range below Tc. For all our
films, we found almost linear behavior of BC2 vs T in the range
Tc/2 < T < Tc and used the slope for computing the electron
diffusion coefficient as [50]

D = 4kB

πe

(
dBc2

dT

)−1

. (3)

The values of D are listed in Table II along with the total
electron density of states at the Fermi energy N(0), which we
computed using Einstein relation N (0) = 1/(e2RSNdD).

B. Magnetoconductance

Films of M series represent disordered 2D systems suitable
for the MC method. We use the same PPMS apparatus as
for DC measurements, to acquire square resistance RS(B, T )
at different fixed temperatures in the range from Tc to 3Tc

by varying magnetic field in the range from 0 to 9 T. The
dimensionless change in the conductance per sample square
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FIG. 2. Field induced change in the conductance [Eq. (3)] for
the film M-2259 vs magnetic field. Different colors correspond to
different temperatures. Solid black curves are fits with Eqs. (4)–(7).

induced by the field at the fixed temperature T was determined
according to

δσ (B, T ) = 2π2h̄

e2

[
1

RS(B, T )
− 1

RS(0, T )

]
.

Experimental data are shown in Fig. 2. Since dependen-
cies δσ (B, T ) are monotonous and look pretty similar for
all studied specimens, we plot in Fig. 2 data for only one
representative film.

The contribution to the magnetoconductance δσ (B, T ) due
to the effect of weak localization has the form [51]

δσ WL(B, T ) = 3

2
ψ

(
1

2
+ B2

B

)
− 1

2
ψ

(
1

2
+ Bi

B

)
+ 3

2
ln

(
B

B2

)
− 1

2
ln

(
B

Bi

)
, (4)

where ψ (x) is the digamma function, Bi = h̄/(4eDτϕ ) is
the inelastic magnetic fields, τϕ is the phase-breaking time,
B2 = Bi + 4

3 Bs.o., Bs.o. = h̄/(4eDτs.o.), and τs.o. is the spin-
orbit scattering time. The WL correction provides a positive
contribution to δσ (B, T ); its magnitude increases with the
increase of magnetic field.

Superconducting fluctuations (stochastic formation of
Cooper pair) decrease the time that electrons remain normal,
i.e., decrease their mean concentration and increase effective
conductance. This causes the broadening of the supercon-
ducting RS(T ) transition at T > Tc. Since the increase in
conductivity due to fluctuations is reduced by the external
magnetic field, fluctuations provide a negative contribution to
δσ (B, T ). The effect is commonly denoted as the Aslamazov-
Larkin correction to magnetoconductance. In the 2D limit and
in the immediate vicinity of Tc, where the AL contribution
dominates δσ (B, T ), it has the form [47,52]

δσ AL(B, T ) = − π2

8 ln
(

T
Tc

)[
8

(
B̃C

B

)2{
ψ

(
1

2
+ B̃C

B

)

−ψ

(
1 + B̃c

B

)
+ B

2B̃C

}
− 1

]
. (5)

Here B̃C is the characteristic field defined by the relation
B̃C = CkBT /(πeD)ln(T/Tc). In different publications, the nu-
merical factor C was assigned values from 2 to 6 [53–57].

The Maki-Thompson correction to magnetoconductance
accounts for stochastic, for a time shorter than τϕ , pairing
of two electrons, which are about to simultaneously (coher-
ently) scatter at the same scattering center. Paring eliminates
scattering that effectively increases the electron mean free
path and weakens the effect of localization. Since in the
2D limit localization causes correction to conductance δσ ∝
−ln(Lϕ/l ), where Lϕ = (Dτϕ )1/2 is the phase-breaking length,
such events give a negative contribution to δσ (B, T ). The MT
correction [48,49] for the 2D limit was elaborated by Larkin
[58]. The contribution is given by

δσ MT
(∗) (B, T ) = −βL(T )

[
ψ

(
1

2
+ Bi

B

)
+ ln

(
B

Bi

)]
, (6)

where βL(T ) = π2/[4 ln(T/Tc)] at ln(T/Tc) � 1. The MT
contribution was further modified by Lopes dos Santos and
Abrahams (LSA) for the temperatures close to Tc (ln(T/Tc) �
1) [59] as

δσ MT
(mod)(B, T ) = − βLSA(T, δ)

[
ψ

(
1

2
+ Bi

B

)
− ψ

(
1

2
+ B̃C

B

)
− ln

(
B̃C

Bi

)]
, (7)

where βLSA(T, δ) = π2/{4 [ln(T/Tc) − δ]} and δ =
πeDBi/(2kBT ) is the MT pair-breaking parameter [60–62].

At the first stage, we fit experimental data in Fig. 2 with
a sum of WL contribution and contributions due to MT and
AL fluctuations as σ (B, T ) = δσ WL(B, T ) + δσ AL(B, T ) +
δσ MT(B, T ). Although βLSA is defined via Bi, we used βLSA,
Bs.o., and Bi as independent fitting parameters. This was
done in order to account for possible contribution from DOS
(density of electronic states) fluctuations [63,64]. From the
best-fit values of Bi we found τϕ = h̄/(4eDBi ) for a set of
fixed temperatures. The electron diffusion coefficient was
taken from the magnetotransport measurements. In Fig. 3(a)
we show 1/τϕ as a function of temperature.

The total phase-breaking rate extracted from magneto-
conductance measurements is the sum of rates affiliated
with independent inelastic interactions in which electrons are
involved. They are electron-electron interaction (e-e) [65],
electron-phonon interaction (e-ph), and electron-fluctuation
interaction (e-fl) [66]. Although phase breaking occurs due
to inelastic scattering, the phase-breaking rate may differ
from the inelastic-scattering rate. The difference is most pro-
nounced for scattering processes in which the change in the
electron energy is smaller than thermal energy. The phase-
breaking rate due to electron-electron scattering is dominated
at low temperatures by Nyquist noise, i.e., scattering with
small energy transfer. In the two-dimensional case, both rates
have the same temperature dependence ∝ T but different
magnitudes [65,67]. For our quasi-two-dimensional films, the
phase-breaking rate is one to two orders of magnitude larger
than the electron-electron scattering rate with small energy
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7.31 Tphe ∝−
−

FIG. 3. (a) Phase-breaking rate vs temperature (symbols) extracted from magnetoconductance measurements in the double logarithmic
scale. Solid lines are fits made with the sum of all three terms in Eq. (8). The inset shows the best-fitting curve for the film M-A855 (thick
green line) and separately all three terms (thin black lines). (b) e-ph scattering time vs temperature extracted from magnetoconductance
measurements (symbols) in the double logarithmic scale. Solid lines are fits obtained with the second term in Eq. (8). Fitting parameters are
listed in Table III.

transfer. At temperatures larger than the crossover temperature
h̄/(kBτ ) [68], where τ is the elastic-scattering time, the phase-
breaking rate is dominated by Landau scattering, i.e., the
electron-electron scattering with large energy transfer. In this
latter case the phase-breaking rate equals the electron-electron
scattering rate τ−1

e-e ∝ T 2ln(T −1) [69]. For our strongly disor-
dered NbN films τ < 5 fs [24] and the crossover is expected
to occur at temperatures larger than 103 K. Furthermore, at
the upper boundary of our temperature range the magnitudes
of τ−1

ϕ due to Nyquist noise and due to Landau scattering
differ by two orders of magnitude. Therefore in Eq. (8) we
retain only one contribution to the phase-breaking rate which
is affiliated with Nyquist noise. For e-ph interaction, the
electron-phonon scattering rate and the phase-breaking rate
due to this interaction are identical [41].

Phase breaking via electron fluctuations is associated with
the loss of the electron energy and phase coherence due to
recombination of electrons into superconducting pairs [66].
Hence, the total phase-breaking rate is given by τϕ

−1 =
τ−1

(e-e) + τ−1
e-ph + τ−1

(e-fl). Brackets are used to stress the difference
between electron scattering rates and respective contributions

to the phase-breaking rate. The contributing rates are

τ−1
(e-e) = kBT

h̄

1

2C1
ln (C1)

τ−1
e-ph = C2(T/Tc)n

τ−1
(e-fl) = kBT

h̄

1

2C1

2 ln(2)

ln(T/Tc) + C3
(8)

where C1 = π h̄/(RSNe2) and C3 = 4 ln(2)/
[
√

ln(C1)2 + 128C1/π − ln(C1)] [66].
At the second stage, we fit the temperature dependence of

the experimental phase-breaking rate τϕ
−1(T ) with the sum

of contributions [Eq. (8)] of different scattering processes.
We assume arbitrary but temperature-independent n and use
C2 and n as fitting parameters. As has been noted in other
publications [30,31], it is not possible to fit experimental
data for τϕ

−1(T ) at temperatures close to the superconducting
transition. The reason is not clear and goes beyond the scope
of our study. To circumvent the problem, we included in the
fitting procedure only the data obtained at temperatures above

TABLE III. Parameters of NbN on Si/SiO2 substrate. Heat-capacity ratios refer to the transition temperatures.

Transport measurements MC technique TD technique
(Sec. III A) (Sec. III B) (Sec. III C)

Sample d (nm) Tc (K) RSN (�/sq) D(10−4 m2/s) N (0) (eV−1 m−3) τe-ph
a (10 K) (ps) nτe-ph

−1 ∼ T n τEP
b (Tc) (ps) τesc

c (ps) ce/cph (Tc)

M-2259 5.0 10.74 529.5 0.474 4.98 × 1028 11.9 3.53 1.4 25.9 0.83 ± 0.18
M-A853 6.4 8.35 954.0 0.339 3.02 × 1028 12.4 3.21 4.2 39.0 0.25 ± 0.03
M-A854 7.5 10.84 387.9 0.453 4.74 × 1028 15.9 3.75 1.5 39.0 0.35 ± 0.05
M-A855 9.5 10.94 330.6 0.418 4.75 × 1028 17.5 3.77 1.6 51.3 0.11 ± 0.03

aThe phase-breaking time due to e-ph scattering is identical with the single-particle e-ph scattering time [41].
bThe e-ph energy relaxation time [Eq. (1)].
cThe phonon escape time is derived in Sec. IV B.
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TABLE IV. Best-fit values of the parameters in the SM theory.

l ρ ut

Sample (nm) (g/cm3) (m/s)

M-2259 0.13 7.8 2.42 × 103

M-A853 5.2 2.2 × 103

M-A854 0.14 7.5 2.4 × 103

M-A855 0.12 7.5 2.37 × 103

14 K. The result is shown in Fig. 3(a) for four different films.
The best-fit values of n are listed in Table III and C2 are
10.8 × 1010, 4.6 × 1010, 8.48 × 1010, and 8.02 × 1010 s−1 for
M-2259, M-A853, M-A854, and M-A855, respectively. The
inset in Fig. 3(a) shows the total rate 1/τϕ (T ) for the film
A855 (thick green curve) and all three contributions separately
(black thin curves). It is clearly seen that at T � Tc the term
τ−1

e-ph dominates and defines both the temperature dependence
and the magnitude of the total scattering rate. Contrarily,
close to Tc the term τ−1

(e-fl) dominates and controls the up-
turn in the τϕ

−1(T ) dependence. Subtracting (e-e) and (e-fl)
contributions [Eq. (8] from the experimental phase-breaking
rate, we obtained the electron-phonon scattering rate τ−1

e-ph for
each specimen. Figure 3(b) shows corresponding values of
τe-ph in the temperature range from 14 to 30 K. Solid lines
represent temperature dependencies predicted by the second
term in Eq. (8) with the best-fit values of C2 and n for each
specimen. The values of τe-ph extrapolated to 10 K according
to Eq. (8) are listed in Table III. Data in Table III show that
the magnitude of τe-ph and the exponent n in its temperature
dependence extracted with the MC technique slightly vary
with the film thickness and the sheet resistance.

As it was mentioned above, the e-ph scattering time ob-
tained by means of the MC technique can be directly com-
pared with the e-ph scattering time predicted by the SM
theory. We apply this theory to independently fit experimental
data shown in Fig. 3(b) and to extract acoustic parameters
for each film of the M series. The SM theory predicts e-
ph scattering time τe-ph(u, ρ, l, N (0), T ) as a function of
temperature and four material parameters. Among them, u and
ρ are the sound velocity and the mass density, respectively.
Mathematical details are presented in Sec. IV A along with the
best-fit values of u, ρ, and l (Table IV). The variation of the
exponents n obtained with the SM theory in the temperature
range of Fig. 3(b) is less than 1% while the mean values
coincide with the best-fit values obtained with Eq. (8). We,
therefore, do not explicitly show the best-fit curves obtained
in the framework of the SM theory.

We use acoustic parameters, along with the phonon veloc-
ities in substrates, to compute transmission coefficients and
escape times for phonons at studied film-substrate interfaces
(Sec. IV B). The thus obtained escape times are used in the
next two sections as seed values for modeling the photore-
sponse of our films in the frameworks of the 2T model.

C. Photoresponse in the time-domain

We studied photoresponse of superconducting micro-
bridges to subpicosecond pulses with a wavelength of 800

nm at a repetition rate of 80 MHz. Microbridges were made
from films of the M series listed in Table II. They were
mounted in a continuous flow cryostat with optical access
through a quartz window. Microbridges were kept in the
resistive state at an ambient temperature T � Tc and biased
by small DC current. The photoresponse of the bridge in the
form of a voltage transient was amplified within a limited fre-
quency band 0.1–5 GHz and recorded with a sampling scope.
Figure 4 shows voltage transients recorded by the oscillo-
scope. Transients delivered by microbridges with different
thicknesses look similar. They all exhibit identical rising
times. Obviously, this time is limited to the bandwidth of
the readout, while the falling parts of the transients still
contain valuable information. Impedance matching between
the microbridge and the readout is not perfect. Mismatch
causes multiple reflections (signal ringing), which are poorly
seen in Fig. 4(a). In Fig. 4(b), we plot the transients in the
logarithmic scale that emphasizes the ringing. We found the
ringing period of approximately 250 ps that corresponds to
the propagation time of the transient over a 2.5-cm electrical
path between the microbridge and the first SMA connector at
the microbridge holder.

In order to extract intrinsic relaxation times, we apply
equations of the two-temperature model with pulse excita-
tion [21]. This approach is commonly used to describe the
nonequilibrium state created by an optical pulse in a resistive
or superconducting film [23]. With dimensionless units for
time and energy, equations of the 2T model look as follows:

dTe(ξ )

dξ
= −�1[Te(ξ ) − Tph(ξ )] + τ0

d ce
PRF(ξ ) + τ0

ce
PDC

dTph(ξ )

dξ
= �2[Te(ξ ) − Tph(ξ )] − �3[Tph(ξ ) − T0], (9)

where Te and Tph are temperatures of the electron and phonon
subsystems, T0 is the bath temperature, �1 = τ0/τEP, �2 =
�1ce/cph, �3 = τ0/τesc, ξ = t/τ0 is the dimensionless time
PRF(t ) = m3ξ 2e−mξ E0/τ0 is an analytical expression describ-
ing instantaneous power of the excitation pulse. For m = 3.4,
τ0 represents the full width at half maximum, and E0 is the
total pulse energy absorbed by the unit area of the film. PDC is
the Joule power dissipated in the unit volume of the film. The
magnitude of PDC was extremely small in our measurements,
and therefore we neglected it. Solving Eqs. (9), we obtain
time-dependent Te(ξ ) and Tph(ξ ) in the form

Te(ξ ) − T0

T0
= A1

(χ1 + �2 + �3)

�2
eχ1ξ + A2

(χ2 + �2 + �3)

�2

× eχ2ξ + Q1(ξ )e−mξ ,

Tph(ξ ) − T0

T0
= A1eχ1ξ + A2eχ2ξ + Q2(ξ )e−mξ (10)

with parameters given by

χ1,2 = −1

2

⎛⎜⎝ 3∑
i=1

�i ∓

√√√√(
3∑

i=1

�i

)2

− 4�1�3

⎞⎟⎠,

A1,2 = ±�2E0m3

d ceT0

1

(χ1 − χ2)(m + χ1,2)3 ,
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FIG. 4. (a) Voltage transient for the microbridge M-2259 in the linear scale. (b) Voltage transients for NbN microbridges with four
different thicknesses in the semilogarithmic scale. Black curves are best fits according to Eqs. (9)–(13) with parameters: for M-2259
ce/cph = 0.83 ± 0.18, τesc = 25.9 ps; for M-A853 ce/cph = 0.25 ± 0.03, τesc = 39 ps; for M-A854 ce/cph = 0.35 ± 0.05, τesc = 39 ps; and
for M-A855 ce/cph = 0.11 ± 0.03, τesc = 51.3 ps, for each bridge τEP was fixed at the value obtained for original film from MC measurements
and further averaged according to Eq. (1). Legends specify film from Table II.

Q2 = �2 E0m3

d ceT0
(a ξ 2 + b ξ + c),

χ1,2 = −1

2

⎛⎜⎝ 3∑
i=1

�i ∓

√√√√(
3∑

i=1

�i

)2

− 4�1�3

⎞⎟⎠,

A1,2 = ±�2E0m3

d ceT0

1

(χ1 − χ2)(m + χ1,2)3 ,

Q2 = �2 E0m3

d ceT0
(a ξ 2 + b ξ + c),

Q1 = E0m3

d ceT0
[(�2 + �3 − m)(a ξ 2 + b ξ + c) + 2 a ξ + b],

a = 1

2 γ1 γ2
; b = (γ1 + γ2)

(γ1 γ2)2 ;

c =
(
γ1

2 + γ1 γ2 + γ2
2
)

(γ1 γ2)3 ; γ1,2 = m + χ1,2. (11)

Here in the case of double sign ∓ or ±, the first index
corresponds to the upper sign and the second to the lower.

The photoresponse Vin(ξ ) is proportional to Te(ξ ) − T0

[Eq. (10)], the steepness of the superconducting transition at
the operation point, and the bias current. This initial transient
is modified by the readout electronics (cables, bias T, am-
plifiers, and sampling oscilloscope) with the finite bandpass.
A transient characteristic of the readout, which is the output
voltage transient in response to the unit vertical voltage step
at the input, can be sufficiently well described as

h(ξ ) = (
1 − e−2

√
2 fCτ0ξ

)
e−2

√
2 fSτ0ξ , (12)

where fS and fC are the lower and the upper frequencies of
the bandpass. Knowing Vin(ξ ), one can compute the voltage

transient at the oscilloscope with the Duhamel integral as

Vout (ξ ) =
∫ ξ

0
V̇in(ξ ′)h(ξ − ξ ′)dξ ′. (13)

We used the formalism described by Eqs. (9)–(13) to fit
voltage transients recorded by the oscilloscope. The ringing
was simulated by adding a series of equidistant identically
shaped pulses with decreasing magnitudes. The best-fit curves
are shown in Fig. 4 with solid lines. There are four inde-
pendent parameters: the heat-capacity ratio ce/cph, the e-ph
energy relaxation time, τEP, the phonon escape time, τesc, and
the normalized pulse energy P0/ce. The latter changes only
the magnitude of the transient and does not affect its shape.
For each bridge, we fixed τEP at the value resulted from aver-
aging over the electron states [Eq. (1)] of the e-ph scattering
rate, which was obtained by MC measurements (Table III).
We also fixed phonon escape times at the values computed
for each bridge in the framework of the acoustic mismatch
model (for details see Sec. IV B). This leaves only one fitting
parameter ce/cph. The best-fit values of ce/cph together with
computed values of τesc are listed in Table III. Heat-capacity
ratios ce/cph scatter in the range of 0.1–0.83. These values
agree reasonably well with the previously reported data. In
Sec. III C, we compare the best-fit values of ce/cph with
predictions of the Debye and Drude models.

D. Photoresponse in the frequency domain

Frequency-domain measurements were done for K series
of NbN microbridges on sapphire substrates (Table II samples
K-1–K-9). Film thickness varied from 3.2 to 33.2 nm. Data
obtained with the frequency domain technique were partly
reported in Refs. [15] and [40]. The technique in detail
was described in Ref. [15]. Shortly, the microbridge was
cooled down to an operating temperature within the resistive
transition and biased by a small DC current. Beams of two
continuous-wave near-infrared lasers (wavelength 850 nm)
with the controllable difference between radiation frequencies
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FIG. 5. Response time τε vs thickness for NbN microbridges on
sapphire substrates (symbols). The black line represents the linear fit
τε = 11.5d that corresponds to the computed phonon escape time
vs film thickness. The inset shows a representative experimental
δP( f ) curve (symbols) for the sample K-8. The black curve is the
fit described in the text.

were overlapped on the microbridge. The power of radiation
that is absorbed by the microbridge alternates periodically
at the beating frequency f (the difference between frequen-
cies of two lasers) and causes sinusoidal modulation of the
electron temperature with the amplitude δTe( f ). This leads to
periodic sinusoidal variations in the photoresponse with the
amplitude δU ( f ) ∼ δTe( f ). Oscillations in the photoresponse
are amplified and controlled with a spectrum analyzer in
the range of beating frequencies from 10 MHz to 10 GHz.
Below we refer to the squared amplitude of these oscillations
as the photoresponse magnitude δP( f ) ∼ δU 2( f ) which is
expressed in decibels. A similar approach (AMAR) described
in Ref. [32] differs only in radiation frequencies, which were
in the sub-THz frequency range. The roll-off frequency f0

in the dependence of the photoresponse magnitude on the
beating frequency is the frequency at which the magnitude
decreases to one-half of its value at small frequencies 1

2δP(0).
In the inset in Fig. 5 we show representative experimental data
δP( f ) for the microbridge K-8 with the thickness 21.6 nm
(open symbols) and the best fit (solid curve) obtained with
the expression δP( f ) = δP(0)/(1 + f 2/ f 2

0 ). For each mi-
crobridge operated at T ≈ Tc, the roll-off frequencies were
obtained from the best fit, and the response times were found
as τε = (2π f0)−1. In Fig. 5 we plot the response time τε as
a function of the film thickness. The response time varies
from 124 ps for the thinnest film to 421 ps for the thickest
film. Generally, τε decreases when d decreases. However, the
rate of the decrease is noticeably less for microbridges with
smaller thicknesses.

To obtain heat-capacity ratios in the framework of the
FDAM technique, we describe experimental response times
τε with the 2T model. We use Eq. (9) where we neglect
dissipated Joule power and substitute periodic excitation in the
form PRF(t ) = P0e− j2π f t ( j = √−1) for the pulse excitation.

Here P0 is the radiation power absorbed per unit area of the
film. The solution for periodic excitation in the frequency
domain was obtained by Perrin and Vanneste [16] and is given
by

δTe( f ) = P0
1

d ce

τ2τ3

τ1

∣∣∣∣ (1 + j2π f τ1)

(1 + j2π f τ2)(1 + j2π f τ3)

∣∣∣∣, (14)

where characteristic times are τ1 = (�2 + �3)−1 and
τ2,3 = χ1,2

−1 as defined in Eqs. (11) with �1 = τEP
−1, �2 =

�1ce/cph, and �3 = τesc
−1. The spectrum of the photoresponse

[Eq. (14)] crucially depends on the heat-capacity ratio ce/cph.
For instance, if ce � cph or τEP � τesc inclusively, Eq. (14)
reduces to δTe( f ) ≈ P0τ2(d ce )−1[1 + (2π f )2τ2

2]−1/2,
with τ2 ≈ τEP + (ce/cph )τesc. Exactly this limiting case
is valid for thin Nb films [70]. It was also used for
thin NbN films in several works [20,22]. However, for
NbN the required inequalities are not satisfied. Indeed,
the ratio ce/cph estimated from our measurements
(Sec. III C) as well as the ratios obtained in Ref. [33]
(for 5.5 nm NbN film at TC) and in Ref. [21] all give ce < cph.
At the same time, even for the thinnest films τEP � τesc.
This is why we used the full solution [Eq. (14)] to fit our
experimental data.

As it follows from MC measurements (Sec. III B, Table III)
for films of the M series, τe-ph as well as the exponent n do
not vary much with the degree of disorder. For films K-1–K-9
having a slightly less degree of disorder than films of the
M series we therefore expect close values of n and close
values of τe-ph at 10 K. We assigned to all films of the K
series the mean values of the mass density (ρ = 7.5 g/cm3),
the phonon velocity (ut = 2.4 × 103 m/s), and the electron
mean free path (l = 0.13 nm) found for films of the M series
except the most disordered film M-A853 (Tables III and IV).
Applying the SM formalism (Sec. IV A), we computed values
of τe-ph at the actual transition temperatures for each film
of the K series. The values of τe-ph were further averaged
according to Eq. (1) for the mean value n = 3.85. These
averaged values, τEP(TC), fall into the range 0.33–0.13 ps. To
get the theoretical dependence δTe( f ), we used these fixed
values of τEP(TC) and set escape times at the values τesc(ps) =
11.5d (nm) computed in the framework of the acoustic mis-
match model [5] (computational details for τesc are presented
in Sec. IV B). We obtained the theoretical response times
τr within the 2T model [Eq. (9)] from Eq. (14) using the
relation δT 2

e (2π/τr ) = 1
2δT 2

e (0). This approach leaves us the
only one fitting parameter ce/cph. The best-fit values of ce/cph,
i.e., those providing the theoretical response times equal to
the experimental response times (τr = τε), vary monotonously
from 0.1 for the thickest film with d = 33.2 nm to 2.15 for the
thinnest film with d = 3.2 nm. We cross checked these results
by applying the three-temperature (3T) model [13]. Although
the 3T model differently accounts for phonon trapping as
compared to the 2T model, the best-fit values of ce/cph were
found to be very close to those provided by the 2T model.

It is worth mentioning here that the accuracy of extracting
best-fit values is different for FDAM and TDP techniques.
For the range of fitting parameters typical for NbN, the same
variation in the fitting parameters results in similar changes
in fitting curves. However, in the TDP transients this change
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is more pronounced in the area with the lowest noise around
the peak, while in the FDAM spectra changes occur mostly
beyond the roll-off frequency in the area with largest noise.

IV. DATA ANALYSIS

Our results contain two important findings. First, the in-
elastic electron-phonon scattering rate depends on temper-
ature as 1/τe-ph ∝ T n with a weakly varying exponent n ≈
3.2–3.8. In the next subsection, we analyze experimental
τe-ph(T ) dependencies with the SM theory of electron-phonon
interaction in dirty metal films [8]. Second, in the framework
of the 2T model, we obtained the best-fit values for the ratio
ce/cph for films with thicknesses in the range 3.2–33.2 nm. In
Sec. IV C, we compare these values with the predictions of the
Drude and Debye models.

A. Inelastic electron-phonon scattering time

According to the SM theory [8] the impact of disorder
on the electron-phonon coupling is controlled by the product
qTl , where qT = kBT/(h̄u) is the wave vector of the thermal
phonon and u is the sound velocity. In a strongly disordered
metal with qTl � 1, the exponent n in the temperature de-
pendence of the electron-phonon scattering rate τ−1

e-ph ∝ T n is
itself temperature dependent and can take any value between
2 and 4, depending on the degree of disorder and the property
of elastic scatterers.

The inelastic-scattering rate of an electron at the Fermi sur-
face due to the interaction with longitudinal phonons (we use
indices l and t to denote values associated with longitudinal
and transverse phonon modes) is given by [8]

τ−1
e-ph(l) = 7πς (3)

2h̄

βl(kBT )3

(pF ul )2 Fl
(
qT(l)l

)
. (15)

In the expression above, ς (n) is the Riemann zeta function
and β is the dimensionless coupling constant. For both phonon
modes it is given by βl,t = (2EF/3)2[N (0)/(2ρu2

l,t )]. Here
EF = pF

2/(2me ) is the Fermi energy, pF = N (0)π2h̄3/me is
the Fermi momentum, me is the electron mass, ρ is the mass
density, and ul,t is the phonon velocity for a particular mode.
The effect of disorder on the scattering rate is controlled
by the integral Fl (z) = 2

7ς (3) ∫Al
0 dx �l (xz)[N (x) + f (x)]x2,

where N(x) and f (x) are Bose and Fermi distribution func-
tions, and �l (y) = 2

π
{y arctan(x)/[y − arctan(x)] − 3k/y} is

the Pippard function. The upper limit of the integral Fl (z) is
Al, t = (6π2)1/3(l/a)/z, where a is the size of the unit cell
which is assumed for all films to be the same and equal to
0.44 nm. The parameter 1 � k � 0 reveals the character of
electron scatterers; k = 1 corresponds to scatterers vibrating
together with the host lattice, k = 0 corresponds to the static
(i.e., “nonvibrating”) scatterers such as heavy impurities and
rigid boundaries. The inelastic electron scattering rate of an
electron at the Fermi surface due to the interaction with
transverse phonons is given by

τ−1
e-ph(t) = 3π2 βt (kBT )2

(pFut )(pFl )
kFt

(
qT(t) l

)
, (16)

where Ft (z) = 4
π2 ∫At

0 dx �t (xz)[N (x) + f (x)]x, and the Pip-
pard function �t (x) = 1 + k[3x − 3(x2 + 1)arctan(x)]/(2x3).
The apparent electron-phonon scattering rate is the sum of the
two rates τ−1

e-ph = τ−1
e-ph(l) + τ−1

e-ph(t).
We fit our MC data (Sec. III B) using Eqs. (15) and (16).

It turned out that the observed exponent in the temperature
dependence of the scattering rate could only be reproduced
with k = 1 for samples M-2559, M-A854, and M-A855. In
the temperature range where our MC data were acquired, the
scattering rate of electrons via transverse phonons dominates,
and the parameter ul does not affect the result of simulations.
We, therefore, excluded ul from the set of fit parameters
and took it instantly twice as large as ut . The relation ul =
2ut is approximately valid for a large variety of materials.
The remaining fit parameters are l , ρ, and ut . Their best-fit
values are listed in Table IV. We used the density of electron
states computed from the data of transport measurements
(Sec. III A) and the free-electron mass (see Ref. [27] for
verification) to obtain Fermi momentum and energy.

For all samples, the values of the electron mean free path
l are by a factor of 2 smaller than the values obtained by
different groups [25,27,29] from Hall-effect measurements,
and by a factor of 4 to 6 smaller than the values reported in
Ref. [24] where they were computed as (3Dτ )1/2 from the
measured diffusion constant and the elastic-scattering time.
The latter was obtained by means of spectral ellipsometry.
The best-fit values of the velocity of transverse phonons and
the mass density deviate from those reported in Ref. [71]
where for bulk hexagonal NbN these parameters were found
4.5 × 103 m/s and 8.5 g/cm3, respectively. Diversely, ρ and
ut obtained as fitting parameters for NbN are similar to those
for TaN [72]. This finding correlates with remarkable similar-
ity in the superconducting properties of these two materials
[73,74]. A smaller mass density correlates with the excess
nitrogen content with respect to the optimal stoichiometry
while reduced sound velocity is most probably the result of
granularity. For all films of the M series, the product qTl � 1.
It can be presented as qTl = α T where the coefficient α

falls into the range 0.075 ± 0.005 K−1. Hence, the films of
the M series are strongly disordered with a very close degree
of disorder.

Fitting the data for the film M-A853 with k = 1 gives an
enormously large electron mean free path l = 0.31 nm that
contradicts to other parameters (D and RSN). Although the
exact reason is not clear, we have to note that using k ≈ 0.9
results in a reasonably small l . In the SM theory, k < 1
corresponds to the presence of static scatterers. Since the
grain boundaries are a kind of static, nonvibrating scatterer,
experimental data can be qualitatively related to the enhanced
granularity of the film M-A853 as compared to other films
of the M series. The Ioffe-Regel parameter estimated for this
film is kFl � 1 that may also indicate enhanced granularity
[35–37].

B. Phonon escape time

We use the acoustic mismatch model by Kaplan [5] to
compute phonon transmission coefficients for metal/substrate
interfaces NbN/SiO2 and NbN/Al2O3. The model describes
acoustic plane waves associated with different phonon modes,
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which propagate through the interface between two isotropic
semi-infinite media with zero attenuation, and takes into ac-
count mode conversion and total reflection at the interface.
For instance, an incident longitudinal phonon (wave) is re-
flected and transmitted as pairs of longitudinal and transverse
phonons (waves). Reflection and transmission coefficients
depend on the angle of incidence θ , propagation velocities
of the modes in both media, and the difference between their
acoustic impedances Z1,2, i = u1,2,i ρ1,2 which are the prod-
ucts of the mass density of the medium and the propagation
velocity of the particular mode in this medium. Here indices
1 and 2 refer to the film and the substrate, the index i denotes
the mode. Applying boundary conditions, which require con-
tinuity of the mechanical strain and stress at the interface, we
found ratios of amplitudes of reflected and transmitted waves
to the amplitude of the incident wave. Angle dependent trans-
mission coefficients were defined separately for longitudinal,
ηθ l, and two transverse, ηθ ts and ηθ tp, modes as the ratio of
the total energy flux of all transmitted modes to the energy
flux of the incident mode Pi = ω2Z1iA2

i cos θ/2 where Ai is
the amplitude of the incident mode. Phonon escape time was
defined for a flux of phonons propagating within a narrow
solid angle at an incident angle θ and undergoing multiple
sequential specular reflections at interfaces with the substrate
and vacuum at the other side of the film. We define escape time
for the mode as τesc(θ )i = P(t )[dP(t )/dt ]−1 where P(t ) is the
phonon flux remaining in the film. Right before the reflection
with the number q the relative amount of P(t ) is (1 − ηθ i )q−1

and decreases after the reflection by the factor 1 − ηθ i. The
time between two sequential reflections equals 2 d/(ui cos θ )
that results in the dimensionless rate of the decrease in the
photon flux τesc(θ )i

−1 = uiηθ i cos θ/(2d ). Integration over
the solid angle gives the escape time per mode τesc,i

−1 =
ui ηi/(4d ) with the angle-averaged transmission coefficient
for a particular mode ηi = 2 ∫θmax,i

0 ηθ i sin θ cos θdθ , where
θmax,i = arcsin(u1,i/u2,i ) is the critical angle of total internal
reflection for this mode. Since the decay rate of the photon
energy through the particular mode is proportional to the heat
capacity of the mode, which in turn is inversely proportional to
the cube of the mode velocity, we found total weighted escape
rate τesc

−1 = ηu/4d and ηu = ∑
i u−2

i ηi/
∑

i u−3
i . Weighted

values for the transmission coefficient and mode velocities
were obtained in a similar way as η̄ = ∑

i u−3
i ηi/

∑
i u−3

i

and ū = ∑
i u−2

i /
∑

i u−3
i . We have to note here that although

ηu �= η̄ ū, the difference between two sides of this inequality
for studied interfaces remains less than 10%. Values of mass
densities and sound velocities for substrates we took from Ref.
[5]. For NbN we used values obtained via fitting procedure
in the framework of the SM theory (Sec. IV A) and retained
the assumption that the velocity of longitudinal phonons is
twice as large as that of transverse phonons. We found for
NbN/SiO2 interface η̄ = 0.28, ū1 = 2.54 × 103 m/s, ū2 =
4.35 × 103 m/s and for NbN/Al2O3 interface η̄ = 0.12, ū2 =
6.87 × 103 m/s. For NbN/SiO2 we obtained τesc(ps) = 5.2d
nm and for NbN/Al2O3 τesc (ps) = 11.5d (nm); these values
of phonon escape times are used in Sec. III C, respectively.

Computations including all three modes showed that for
both studied interfaces the energy is dominantly transferred
via transverse modes ηθ ≈ ηθ ts + ηθ tp and that ηθ decreases

FIG. 6. Phonon heat capacities vs film thickness for films of the
M series (left graph) and the K series (right graph) in the semiloga-
rithmic scale. Values cph, Debye (open symbols) were computed with
the 3D Debye model and phonon velocities found in Sec. IV A.
Values cph,2-TM were extracted from the best-fit ratios ce/cph with
values of ce predicted by the Drude model. Error bars in the right
graph show the impact of variations in N(0) and the exponent n
between films of the K series. Error bars in the left graph correspond
to uncertainties in the best-fit values of ce/cph.

very slowly with the angle until the mean angle of total
internal reflection θ̄max = arcsin(ū1/ū2).

C. Discussion

When compared at the same temperatures, the best-fit
values of the heat-capacity ratios for thinnest films of K series
is approximately 25% larger than the ratios obtained for films
of M series. This observation agrees with the Drude and
the Debye models for electrons and phonons, respectively,
if one takes into account temperature dependencies of heat
capacities, ce ∝ N (0) T and cph ∝ T 3, and the difference
between densities of electron states (Table II) for films of the
K and M series.

Let us now compare the absolute values of heat-capacity
ratios predicted by the Drude and Debye models with the
ratios obtained experimentally as best fits in the frame-
work of the 2T model. The Drude model predicts for elec-
trons the heat capacity ce = π2k2

BN (0) T/3. For phonons,
the 3D Debye model predicts the heat capacity cph =
1

15 2π2kB(kB T /h̄)3[2(u1t )−3 + (u1l )−3]. Taking N (0) from
Table II, and u1t = u1l/2 = 2.4 × 103 m sec−1 (Table IV) we
obtained ce and cph at the actual critical temperatures of each
studied sample. Computed model ratios ce/cph for very thin
films are less than the values obtained via best fits of FDAM
and TDP data. Let us assume that the electron heat capacity
is described quantitatively well by the Drude model. Then
the phonon heat capacity in thin films is less than the Debye
model predicts. The values of cph computed with the Debye
model are shown in Fig. 6, together with the best-fit values.
To obtain the best-fit values for cph, we assigned to films of
the K series averaged values of N(0) and n. However, as it is
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seen in Table III and Ref. [24], these parameters vary with the
thickness. Error bars in the right graph of Fig. 6 show expected
uncertainties in the phonon heat capacities. With the decrease
of the film thickness, the difference between the values of cph

obtained via best fits in the framework of the 2T model and
the values predicted by the Debye model increases.

We further estimate the Debye temperature of our films
in the framework of the three-dimensional Debye model
as TD = h̄(6π2)1/3ū1/(kBa). Assuming a = 0.44 and ū1 =
2.54 × 103 m/s (Sec. IV B), we found TD = 172 K. Such
value is typical for Debye temperatures reported for similar
films [27] and is a few times less than the values reported
for bulk NbN. The reduction of the Debye temperature is
usually denoted as “phonon softening” caused by granularity
and weakening of ion bonds on film surfaces [75].

The differences between phonon heat capacities obtained
as the best fits with the 2T model and computed in the frame-
work of the Debye model is most pronounced for thin films.
We attribute this difference to changes in the phonon spec-
trum. There are at least two effects that may cause a decrease
in the phonon heat capacity in thin films. One is the depletion
of the transverse phonon modes in thin films specifically
for the mode with polarization along the normal to the film
[75]. Another one is an increase in the phonon wavelength
at low temperatures. As a consequence, in thin films at low
temperatures, the phonon wavelength becomes comparable
or even larger than the film thickness. This effect eliminates
low-energy phonons propagating at small angles θ and hence
destroys isotropy of the phonon spectrum and reduces phonon
density of states. Using the 3D density of states from the
Debye model and the average kinematic velocity for phonons
u = 4u1t/3 we arrive at λ ≈ 2π h̄u/(kBT ) ≈ 12 nm at 13 K.
This value is four times the thickness of the thinnest film in
the K series. The condition λ � d restricts available directions
of the phonon wave vectors most efficiently within the cone
with plane angle θ̄max around the normal to the interface where
ηθ > 0 and where phonons can only escape from the film. The
reduction in the phonon spectrum emitted perpendicularly
to the film/substrate interface with the decrease of the film
thickness was observed and modeled in [76]. The authors
showed that in the restricted direction, the phonon spectrum is
modified. Phonon states with small frequencies are forbidden
that resulted in discrete, sharp steps in the number of excited
phonons.

V. CONCLUSION

We have studied inelastic scattering and energy relaxation
of electrons by means of magnetoconductance and photore-
sponse, respectively, in a series of superconducting NbN films
on Si/SiO2 and Al2O3 substrates with thicknesses in the range
from 3 to 33 nm. Our main results are as follows:

(a) In studied NbN films in the temperature range from 10
to 30 K, the inelastic electron-phonon scattering rate defined
by magnetoconductance technique depends on temperature as
1/τe-ph ∝ T n with the exponent n ≈ 3.2–3.8. The magnitude
of τe-ph at 10 K falls into the range 11.9–17.5 ps. In this
temperature range, the films are strongly disordered. They are
characterized by close values of the product qTl = α T � 1,
which controls the impact of disorder on the electron-phonon
coupling. The coefficient α falls into the range 0.075 ±
0.005 K−1, while the Ioffe-Regel parameter kFl varies in the
range from 0.88 to 1.22.

(b) The Debye temperature in our films is noticeably
smaller than the Debye temperature of bulk NbN material.
We attribute this to phonon softening caused by granularity
and weakening of ion bonds at film surfaces.

(c) Experimental photoresponse data for thicker films are
described reasonably well in the framework of the 3D Debye
model and the 2T model with the film parameters extracted
from magnetoconductance measurements. Photoresponse of
thinner films can only be described with a heat capacity of
phonons smaller than the Debye model predicts. We attribute
this finding to the reduced density of phonon states in thin
films with thicknesses comparable or smaller than the wave-
length of thermal phonons.
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