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Quantum-critical scaling properties of the two-dimensional random-singlet state
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Using quantum Monte Carlo simulations, we study effects of disorder on the S = 1/2 Heisenberg model
with exchange constant J on the square lattice supplemented by multispin interactions Q. It was found recently
[L. Liu et al., Phys. Rev. X 8, 041040 (2018)] that the ground state of this J-Q model with random couplings
undergoes a quantum phase transition from the Néel antiferromagnetic state into a randomness-induced spin-
liquid-like state that is a close analog to the well known random-singlet (RS) state of the Heisenberg chain with
random couplings. This 2D RS state arises from a spontaneously symmetry-broken fourfold degenerate columnar
valence-bond solid that is broken up by the disorder into finite domains, with spinons localized at topological
defects. The interacting spinons form a critical collective many-body state without magnetic long range order
but with the mean spin-spin correlations decaying with distance r as r−2, as in the one-dimensional RS state. The
dynamic exponent z � 2, varying continuously with the model parameters. In this work, we further investigate
the properties of the RS state in the J-Q model with random Q couplings. We study the temperature dependence
of the specific heat and various susceptibilities for large enough systems to reach the thermodynamic limit. We
also analyze the size dependence of the critical magnetic order parameter and its susceptibility in the ground
state. For all these quantities, we find consistency with the conventional quantum-critical scaling laws when the
condition implied by the r−2 form of the spin correlations is imposed. In particular, all the different quantities
can be explained by the same value of the dynamic exponent z at fixed model parameters. We argue that the RS
state identified in the J-Q model corresponds to a generic renormalization group fixed point that can be reached
in many quantum magnets with random couplings and that it has already been observed experimentally.

DOI: 10.1103/PhysRevB.102.054443

I. INTRODUCTION

Effects of disorder and impurities play an important role
in quantum many-body physics, not only because of their
perturbing effects on uniform systems but also because the
interplay of disorder and quantum fluctuations can lead to
completely different states. Prominent examples are Anderson
localization of electrons [1] and its proposed generalization
to many-body localization in interacting systems [2–6]. An-
other interesting and well known state induced by disorder is
the random singlet (RS) state in one-dimensional (1D) spin
chains. The RS state is the fixed point of the simple but pow-
erful strong-disorder renormalization group (SDRG) method
[7–10], where pairs of strongly coupled spins are successively
decimated. The fixed point is an infinite-randomness fixed
point (IRFP), where the effective strength of the randomness
(the width of the coupling distribution on a logarithmic scale)
increases to infinity without bounds under the renormalization
group (RG) flow.

The 1D RS state resulting from the SDRG method for
a system such as the S = 1/2 antiferromagnetic Heisenberg
chain with random couplings is a special ‘frozen’ config-
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uration of random singlet spin pairs (valence bonds), and
this state accurately represents the true ground state, which
is a superposition of valence-bond coverings. The distance
between two spins in a singlet is typically short, but there
are rare instances of very long valence bonds that cause the
mean spin correlations to decay with distance as r−2, while the
typical correlations decay exponentially. A striking property
of the IRFPs is that the dynamic exponent z is infinite, leading
to unconventional dynamical scaling properties. In this paper
we will present a detailed numerical characterization of a
two-dimensional (2D) state of S = 1/2 spins that is in many
respects similar to the 1D RS state, though it has finite, but
large, dynamic exponent.

A. Ground states of 2D random quantum magnets

The 1D RS phase is broadly realized in random spin
chains with different symmetries, not only with the fully
rotationally invariant Heisenberg (XXX) interactions but also
in anisotropic XXZ chains and in the transverse-field Ising
model (TFIM) [9]. In gapless host systems such as the S =
1/2 XXX and XX chains, even infinitesimal randomness
drives the system asymptotically into the RS phase, while in
uniform gapped systems (e.g., the integer-S Heisenberg chains
with Haldane gaps) a critical disorder (width of the coupling
distribution) is required [11]. In spontaneously dimerized
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FIG. 1. Illustration of the terms in the 2D J-Q model studied in
this paper. Sites on the square lattice are shown as blue dots. The light
blue bars represent the J terms while the groups of three connected
red bars represent the products of three singlet projectors constituting
each Q term.

systems with random couplings, such as the frustrated J1-J2

Heisenberg chain [12] or the J-Q chain [13] (a 1D variant of
the model studied in this paper, which is illustrated in Fig. 1),
domain walls with localized spinons form for any disorder
strength and those spinons can form the IRFP-RS state in
some cases [13] (and other states formed by the spinons have
also been proposed [12]).

In two-dimensional (2D) systems, although IRFPs have
been identified in TFIMs [14], no convincing evidence of
such a state has been reported in 2D quantum magnets with
SU(2) invariant interactions [15–19]; only a spurious IRFP
was pointed out in Ref. [20]. Unlike the 1D case, an RS
state is not obtained in the 2D Heisenberg model with bond
randomness if all couplings remain antiferromagnetic (i.e.,
in the absence of frustration), with the Néel ground state
surviving any strength of such disorder [21]. The robustness
of the 2D Néel state is also exemplified by the site diluted
system, which remains ordered all the way to the percolation
point [22]. Interesting quantum states can be observed at the
percolation points in site and bond diluted systems [23–27],
and in some systems with two spins per unit cell in the clean
limit, gapless disordered Griffiths phases have been observed
[28]. SDRG studies of various Heisenberg systems have found
what appear to be finite-randomness fixed points [15–19]. We
note that the SDRG method can be applied generally, but if
the decimation process does not flow to an IRFP, it is not clear
whether the resulting state has any bearing on the true ground
state. In particular, it is not known whether a finite-disorder
fixed point [29] is correctly reproduced by the method.

Some frustrated quantum spin systems with random cou-
plings have been shown to host spin-glass states, where, in
analogy with classical spin models, there is no spatial order
but the individual spin expectation values 〈Si〉 are frozen in
time [30]. However, while some 2D S = 1/2 TFIMs with
short-range interactions definitely exhibit spin glass behavior
[31,32], no convincing case of SU(2) short-range interactions
producing spin glasses have been presented. Analytical cal-
culations with long-range interactions or some extension of
the symmetry group, e.g., SU(N), have demonstrated spin
glasses [30,33,34], but the relevance of such solutions to
short-range interacting SU(2) spins is not clear. Nevertheless,
it has been proposed that models such as the 2D Heisenberg
with random nearest-neighbor couplings (with mixed signs
of the couplings to introduce frustration) can host spin glass

phases, e.g., based on numerical exact diagonalization (ED)
of small systems [35]. Extrapolating the properties based on
ED to the thermodynamic limit is challenging, however, and
other interpretations are also possible.

Alternatives to spin glass states have been proposed in the
generic context of random frustrated interactions. In long-
range interacting models a “spin fluid” phase with 〈Si〉 =
0 and unusual dynamic properties similar to the marginal
Fermi liquid was proposed [33], but again these properties
do not necessarily carry over to short-range interacting S =
1/2 spins. Numerical studies of S = 1/2 systems with short-
range interactions on various lattices have suggested states
such as the valence-bond glass [36,37] and the randomness-
induced quantum spin liquid [38–46]. The latter series of
works includes also the square-lattice J1-J2 Heisenberg model
[42], for which a spin glass ground state had previously
been proposed [35]. Terms such as “valence-bond glass” and
“randomness-induced spin liquid” do not yet have completely
well defined meanings in terms of unique system properties
related to specific RG fixed points in two space dimensions. It
nevertheless appears that 2D states exist that have no spatial
order, are not spin glasses (i.e., 〈Si〉 = 0), but are gapless
and in some ways similar to the 1D RS state. We will here
characterize such a state in detail, based on a model amenable
to quantum Monte Carlo (QMC) simulations (Fig. 1).

B. Routes to the 2D random-singlet state

Recently, two independent works using different tech-
niques [47,48] pointed out that a state similar to the 1D RS
state can be obtained by starting from a 2D valence-bond solid
(VBS) state, i.e., a gapped state in which lattice symmetries
are spontaneously broken due to the formation of a singlet
pattern. Due to the Imry-Ma argument for disorder in systems
with discrete symmetry breaking [49], extended to quantum
systems, the VBS pattern is destroyed for any finite amount of
coupling disorder, and in such a “broken VBS” topological
defects along with unpaired spins (before interactions are
considered) form localized spinons. These spinons, which are
related to the spinons in clean VBS systems associated with
deconfined quantum-critical points [50,51], are coupled to
each other via effective interactions mediated by the host sys-
tem, and the question is then what kind of magnetic subsystem
they give rise to.

Kimchi et al. [47] argued that a state similar to the 1D
RS state can form if the host system is frustrated, e.g., in
the Heisenberg model on the triangular lattice, though even-
tually, at the lowest energy scales, a spin glass state may
form (though no actual evidence was presented for a spin
glass). They also suggested that an unfrustrated (bipartite)
host system does not support the RS state but leads to anti-
ferromagnetically ordered spinons. In our previous work with
collaborators [48], we considered a “designer” J-Q model,
illustrated in Fig. 1, and demonstrated that its VBS state in the
presence of coupling disorder leads to domains and localized
spinons, but there were no signs of the spinons forming long-
range order. Instead, it was found that the spin correlations
always decay with distance as r−2, as in the 1D RS state,
and quantum-critical scaling properties at finite temperature
T were also identified. All scaling properties were explained
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with a dynamic exponent which takes the value z = 2 at
the transition from the Néel state and grows inside the RS
phase. Values up to z ≈ 7 were found in the J-Q model, and
there is likely no upper bound in principle in an extended
model space. We also presented arguments based on spinon
pairing and domain-wall mediated interactions as to why no
ordering takes place. The identified RS scaling properties
then correspond to an asymptotic RG fixed point. We also
suggested that this RS fixed point found in a system without
traditional frustration (but with other forms of competition
between different interactions) may be the same as the one
identified by Kimchi et al. in frustrated models [47] and which
was also argued to be realized in some materials [52] that
had previously been regarded as quantum spin liquids [53] or
quantum spin glasses [54].

The existence of a generic disorder-induced spin liquid
had previously been argued based on numerical ED studies
by Kawamura and collaborators [38–42]. The method only
allows access to small system sizes, and it is difficult to
interpret the results and extract long-distance and low-energy
properties. ED results had previously been interpreted in terms
of a spin glass [35]. The state studied in these ED works
may actually be equivalent, in the RG sense, to the RS state
discussed in Refs. [47,48]. It was also recently proposed that
the starting point of the randomness-perturbed VBS state,
where there is still substantial short-range VBS correlations
and the spinons form a dilute subsystem, can be regarded as
a weak-disorder variant of the state originating from strong
randomness in frustrated systems [43]. There may potentially
be no phase transition separating the weak and strong disorder
cases, and instead one can think of continuously shrinking the
VBS domains discussed in Refs. [47,48] until the domains
become so small that it would be meaningless to consider
them as domains. Instead the random valence-bond configura-
tions may become more akin to a valence-bond glass [36,37].
The crucial point here is whether the localized spinons of the
weak-disorder regime survive also at strong disorder. Indeed,
also in the ED studies, “orphan spins” were identified that
may be those spinons [38–43], though their role in forming
the RS state was less clear because of the small system
sizes and smaller distance between the orphan spins than
between the spinons in the limit of large VBS domains [48].
Anderson localization of singlets had also been proposed as
the mechanism responsible for the formation of RS state [40].

A very recent study based on a semiclassical approach
gives support to the notion that spin glasses in classical
frustrated systems transform into states akin to the 1D RS
state when strong quantum effects are included [55] and that
the mechanism of starting from the VBS states to understand
such a 2D RS state [47,48] also is valid for systems that are not
VBS ordered in the clean limit, e.g., the frustrated Heisenberg
model on the triangular lattice (which has three-sublattice
antiferromagnetic order for all spin values S).

If the RS state identified in the J-Q model indeed corre-
sponds to the same fixed point as in the frustrated systems, for
which further evidence based on density matrix renormaliza-
tion group (DMRG) calculations has been presented recently
[46], then this fixed point, as well as the phase transition
into the Néel state, can be fully characterized in detail using
QMC simulations. This is the designer Hamiltonian approach

[56] of studying specifically tailored lattice models that do
not necessarily correspond to microscopic descriptions of
specific materials but enables reliable calculations of universal
properties.

C. Paper motivation and outline

The motivation for the present work is to test quantum-
critical scaling laws in the random J-Q model to a higher
degree than what was previously done in Ref. [48]. On the
basis of such results we can make definite predictions for
the RS phase that can be tested also in other models with
different methods, as well as in materials. Because of the
very significant computational efforts required, we focus on a
single point inside the RS phase and study very large systems
down to ultralow temperatures, in order to reliably obtain
the asymptotic temperature dependence of the specific heat
(which was not calculated in our previous work) and various
susceptibilities (for which we report much improved results).
For the same set of model parameters, we also study the
ground state of systems on smaller lattice sizes (lengths) L
and carry out finite-size scaling analysis. The T > 0, L → ∞
scaling properties are fully consistent with the finite-L, T → 0
finite-size behaviors with the same dynamic exponent z ≈ 4.0,
thus supporting a finite-disorder fixed point with formally
conventional scaling behavior but with a large dynamic expo-
nent z and spin correlations decaying universally as r−2 (for
which we also show additional evidence here).

The paper is organized as follows: In Sec. II, we introduce
the random-Q J-Q model. In Sec. III, we present scaling
results for the specific heat, which we obtain by analyzing the
internal energy density. In Sec. IV, we show results for the
temperature dependent local, uniform, and staggered suscep-
tibilities, extracting the asymptotic low-temperature forms in
the thermodynamic limit. In Sec. V we discuss the staggered
structure factor and susceptibility for smaller systems in the
ground state, from which we extract an independent estimate
of the dynamic exponent z. We conclude in Sec. VI with
a discussion of the relevance of our findings to the present
status of the 2D RS state, including possible experimental
realizations.

II. 2D RANDOM J-Q MODEL AND SIMULATION METHOD

The J-Q model on a 2D square lattice has nearest-neighbor
antiferromagnetic exchange J along with multispin interac-
tions of strength Q [57] expressed using products of singlet
projectors. We here study the variant in which the Q terms
are products of three singlet projectors, also called the J-Q3

model [58], with the Hamiltonian defined as

H = −J
∑
〈i j〉

Pi j − Q
∑

〈i jklmn〉
Pi jPkl Pmn, (1)

where Pi j is the singlet projector for two S = 1/2 spins at sites
i and j,

Pi j = 1
4 − Si · S j . (2)

In the Hamiltonian Eq. (1), 〈i j〉 indicates nearest-neighbor
sites, and the index pairs i j, kl , and mn in 〈i jklmn〉 form three
parallel bonds on horizontal or vertical stacks, as illustrated in
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Fig. 1. The summations are over all nearest neighbors for the J
terms and all translations of the vertical and horizontal stacks
for the Q terms, so that the Hamiltonian does not break any
lattice symmetries.

In the clean system, the J and Q terms compete with each
other, individually having different ground states, leading to a
phase transition from the standard Néel ordered ground state
for small Q/J to the spontaneously dimerized columnar VBS
state for large Q/J [51,57,58]. Such a Néel–VBS transition
appears to realize the deconfined quantum criticality (DQC)
scenario [59,60], a continuous order–order transition beyond
the conventional Landau-Ginzburg-Wilson paradigm accord-
ing to which the transition should be generically first order.
While we will not discuss the quantum phase transition in the
present work, the Néel–VBS transition may be considered the
clean limit of the transition between the Néel state and the RS
state forming due to disorder in either the J or Q terms [48].

To study effects of disorder, we here introduce randomness
in the Q terms, choosing the strength of each of them to be
either 0 or 2Q at random with equal probability for the two
cases; then the mean strength Q̄ of these interactions is still Q,
which we take as our tuning parameter. We define the energy
unit with J = 1. For this random-Q model, in our previous
work we detected a quantum phase transition from the Néel
phase to the RS phase upon increasing Q [48], with the critical
point located at Qc ≈ 1.2. At the critical point, a dynamic
exponent consistent with z = 2 was found. The entire RS
phase is a critical state without magnetic long range order,
with the mean spin-spin correlations decaying with distance r
as r−2. We confirmed this behavior for several points inside
the RS phase, not only for the model with random bimodal Q
but also with bimodal J and with continuous distributions of
the couplings. We found consistently that z ≈ 2 on the AFM–
RS phase boundary (most likely z = 2 exactly), and z grows
monotonically on moving deeper into the RS phase. Thus,
while z can become large, this RS state does not correspond
to an IFRP as the 1D variant [7–9]. In Sec. VI we will further
discuss why the term RS state is still an appropriate way to
characterize the state.

Our main aim here is to study several different quantities
at high statistical precision, in order to test quantum-critical
scaling laws in which the exponent z appears. In some quanti-
ties z is the only exponent controlling the asymptotic behavior,
while in other quantities the exponent governing the decay
of the spin correlation function also enters. By testing for
consistent scaling to high precision among several differ-
ent quantities, we will solidify the claim that conventional
quantum-critical scaling applies, with a single well-defined
parameter-dependent dynamic exponent and with a universal
r−2 form of the spin correlations. These calculations are very
demanding of computational resources, and we therefore only
focus on a single point, Q = 2, in the phase diagram of the
bimodal random-Q J-Q model. This point is well away from
the phase boundary to the Néel phase and should represent the
generic behavior with only z varying as we move throughout
the RS phase.

We use the stochastic series expansion (SSE) QMC method
with efficient loop updates [61,62], which produces exact re-
sults within statistical errors. We average all results over more
than 104 disorder realizations for the final production runs. In

the calculations of finite-T properties, reported below in Secs.
III and IV, we start at a relatively high temperature, where the
simulation equilibrates easily, and gradually lower T , keeping
the disorder realization fixed and continuing the simulation
from the last configuration generated at the previous tempera-
ture. We accumulate averages of the observables of interest at
each temperature on the chosen T grid (in some cases with a
varying distance between the T points, as will be described
further below). The number of SSE configuration updates
performed at each step is large enough to ensure that the
system stays in equilibrium and that sufficient statistics can
be collected for each disorder realization at each T . Typically
we use 103 steps for equilibration and 103 for accumulating
averages at each T . As we will see, the statistical fluctuations
of the final disorder-averaged quantities are dominated by the
intrinsic sample-to-sample variations, even with this rather
modest number of steps per temperature.

To obtain results representing the thermodynamic limit at
low temperatures, we need to use very large system sizes, up
to L = 256, and we anneal down to temperatures as low as
T0/J = 1/150 for the largest system size. In the calculations
aimed at ground state properties, the temperature has to be
much lower in order to avoid finite-temperature effects, and
we have only gone up to size L = 48 in these calculations.

III. SPECIFIC HEAT

The specific heat C plays an important role in experimental
studies of quantum magnetism, providing thermodynamic in-
formation about the system. In QMC simulations, the specific
heat at low temperatures is in general difficult to compute
precisely, as the relative error bars grow when C decreases.
We did not consider C in our previous work on the random
J-Q model, though it has been computed recently for other
variants of the J-Q model and provided experimentally useful
benchmark results [63].

To analyze the asymptotic low-T behavior, we have found
it better to not compute C directly in the simulations, but to
instead analyze the internal energy E (T ), which is produced
by the SSE method with very high precision even at low T .
By fitting a suitable function to E (T ), we can deduce the low-
temperature properties of the specific heat in the RS phase.

At a quantum-critical point, the specific heat in general
scales with temperature as [64]

C(T ) ∝ T D/z, (3)

where D is the spatial dimensionality of the system; here
D = 2. Our hypothesis is that this form, as well as other
standard quantum-critical scaling laws [64], holds also inside
the RS phase. As already mentioned, our previous work on
other quantities showed that z � 2 varies.

From the definition of the specific heat, C(T ) =
∂E (T )/∂T , we obtain the expected scaling form of the in-
ternal energy E (T ) per spin according to Eq. (3),

E (T ) = E0 + AT D/z+1, (4)

where E0 is the ground state energy density. We show SSE
results for E (T ) in Fig. 2(a) for three different system sizes,
L = 32, 64, and 128. The annealing process used in the simu-
lations started at T = 0.4, where the system equilibrates easily
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FIG. 2. Internal energy density vs temperature for system sizes
L = 32, 64, and 128, averaged over 103 disorder realizations. The
raw data are shown in (a) and the results normalized by E (T0), with
T0 = 0.01, are shown in (b). The insets show magnified graphs of
the low-T data. In (a) we do not show the error bars for L = 64 in
order to avoid clutter (the size of these errors is between those for
L = 32 and L = 124). In the inset of (b), we have marked the lowest
and highest points on the vertical axis by y1 = 0.99994 and y2 =
1.00004.

(recall that we set J = 1 and report all quantities in units of
energy with this convention, and the mean of the bimodal
Q value is Q̄ = 2). Within the error bars we do not observe
any finite-size effects, though certainly we do expect some. It
can be seen clearly that the errors are highly correlated, with
the points for each L forming a curve that is much smoother
than what would be expected with independent statistical
errors with standard deviation given by the error bars. Clearly,
this substantial covariance is due to the fact that the same
randomness realizations are used at all temperatures, and
the overall fluctuations are primarily due to sample-sample
fluctuations.

Since we are only interested in the exponent governing the
asymptotic low-temperature form, we write the expected low-
T form Eq. (4) as

E (T ) = E (T0) + A
(
T α − T α

0

)
, (5)

where T0 is the lowest temperature studied for a given system
size and we have defined the exponent α = 2/z + 1. We can
then study the behavior of the ratio E (T )/E (T0), for which we
expect the asymptotic form

E (T )

E (T0)
= 1 + A0

(
T α − T α

0

)
, (6)

where now we only have two free parameters; the important
exponent α and the unimportant factor A0. Having eliminated
the constant E0 present before the normalization in Eq. (5)
helps to stabilize the results for α in data fits. Moreover, as
shown in Fig. 2(b), the error bars of the normalized ratio
(computed using bootstrapping) are much smaller, by orders
of magnitude, than those of the raw data, and the remaining
fluctuations have very little covariance. By definition, the
size dependence now should also be much smaller, since
all values E (T )/E (T0) = 1 at T = T0 if we use the same
T0 for all system sizes. We do not see any size dependence
within the error bars in the temperature window considered in
Fig. 2(b), and the remaining error bars after the normalization
are smaller for the largest system, due to self-averaging. The
number of disorder samples (103) and the number of SSE
updates for each temperature (103 for equilibration and the
same number for evaluating expectation values) were identical
for all the system sizes in this figure.

In order to confidently study even lower temperatures,
for our final analysis we simulated more than 104 disorder
realizations for system size L = 256 down to T0 = 1/150.
In order to be able to reach such low temperatures on a
fine T grid, while keeping the total time of annealing from
the highest to lowest T reasonable, we take the following
strategy: After equilibrating a simulation for a given disorder
realization at the highest T (here T = 1), we decrease T by
a constant step �T and continue the simulation from the last
SSE configuration of the previous temperature. After reaching
a certain low T (here T = 0.1) where it becomes necessary to
decrease the step size, in order to have sufficient resolution
to investigate the low-T behavior and also to make sure that
equilibrium is properly maintained, we modify the annealing
procedure and start to increase the inverse temperature β by a
constant step �β. We thus obtain enough points in the low-T
region and the results are reliable.

Based on the above tests for smaller systems with T0 =
1/100, we are confident that the larger system size with the
modified annealing procedure gives us results valid as the
thermodynamic limit. Normalized results are presented in
Fig. 3, with all results up to T = 1 shown in Fig. 3(a) and
with Fig. 3(b) focusing on the lower temperatures, where,
as we will see below, the asymptotic behavior holds without
detectable corrections. The error bars are further reduced be-
cause of the larger system size and larger number of disorder
samples; 104 versus 103.

When fitting to Eq. (6), the first assumption of course is
that T0 is sufficiently low for the asymptotic behavior to have
set in with very small corrections. Even if T0 is sufficiently
low, the corrections will be important above some higher
temperature. We therefore carry out fits with data up to a
maximum temperature Tmax and monitor the goodness of the
fit defined as χ2 per degree of freedom. Figure 4 shows the
resulting exponent α versus Tmax and also the χ2 values of the
fits. We can clearly observe how the fit gradually improves
as Tmax is reduced, finally becoming statistically acceptable at
Tmax ≈ 0.1. The exponent α = 2/z + 1 converges to a value
close to 1.5, i.e., the specific heat exponent 2/z ≈ 0.5 in
Eq. (3) and z ≈ 4.0. In the next section we will discuss the
scaling behaviors of the uniform susceptibility χu and the
local susceptibility χloc, which both should scale with the
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FIG. 3. Normalized energy E (T )/E (T0) obtained by averaging
over more than 104 disorder realizations with L = 256 and T0 =
1/150. The blue curves show a fit of the data up to Tmax = 0.1 to
Eq. (6). The exponent α is graphed versus Tmax in Fig. 4. Panel
(a) shows the whole range of date and (b) focuses on the results for
T up to 0.05.

exponent 2/z − 1. The value of α = 2/z + 1 obtained from
these quantities is consistent with the value from the specific
heat and has smaller error bars, α = 1.503(6). We show this
value as the blue line in Fig. 4.

FIG. 4. Exponent α = 2/z + 1 in the power law fit, Eq. (6),
of the normalized energy as a function of the highest temperature
Tmax included. The data are from Fig. 3. Based on the value of
the reduced χ 2 values, which are shown in the inset, the fits are
statistically acceptable for Tmax � 0.1. The result α = 1.503(6) from
the susceptibility fits in Sec. IV is shown as the blue line.

IV. SUSCEPTIBILITIES AT FINITE TEMPERATURE

In this section, we focus on the temperature dependence
of three different susceptibilities in the thermodynamic limit.
As in the previous section, we have studied several different
system sizes and in the final analysis used the largest size, L =
256, for which our convergence tests show that the results are
free from finite-size effects down to the lowest temperatures
in the simulations. The data to be presented below are from
the same simulations as the energy results in Fig. 3.

The uniform magnetic susceptibility is defined as

χu = 1

T N

〈
m2

z

〉
, (7)

with the total magnetization

mz =
N∑

i=1

Sz
i . (8)

The local susceptibility at location x is defined by the Kubo
integral

χloc(x) =
∫ 1/T

0
dτ

〈
Sz

x(τ )Sz
x(0)

〉
, (9)

where Sz
x(τ ) is the standard imaginary-time dependent spin

accessible in QMC simulations. In Ref. [48] we showed
examples of the local variations in χloc(x) and how regions
of large response correlate to the presence of spinons and
domain walls. Here we will just study the average over x and
refer to this quantity as χloc. We also calculate the staggered
susceptibility defined by the Kubo integral

χs = 1

N

∫ 1/T

0
dτ 〈ms(τ )ms(0)〉, (10)

where ms is the staggered magnetization,

ms =
N∑

i=1

(−1)xi+yi Sz
i . (11)

In a quantum critical system in the thermodynamic limit,
the low-temperature scaling properties of these observables
depend on the dynamic exponent z, and χloc and χs also de-
pend on the exponent η governing the asymptotic correlation
function. Following Refs. [64,65], the uniform susceptibility
should take the form

χu ∝ T D/z−1, (12)

with D = 2. We note that this form is identical to the form of
C/T according to Eq. (3).

The local susceptibility, Eq. (9), is the integral of the spin
correlation in the imaginary time direction. Translating the
results for disordered boson systems by Fisher et al. [64] to
spins, the mean spin-spin correlations in imaginary time at
zero spatial separation should follow the scaling law〈

Sz
x(τ )Sz

x(0)
〉 ∝ τ−(D+z−2+η)/z. (13)

Making use of the previous result [48] that the equal-time cor-
relation function C(r) = 〈Sz(0)Sz(r)〉 scales with distance as
r−2, the general critical form |C(r)| ∝ r−(D+z−2+η) implies the
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relationship η = 2 − z for the RS state. The time dependence
in Eq. (13) then takes the simpler form〈

Sz
x(τ )Sz

x(0)
〉 ∝ τ−2/z. (14)

The local susceptibility Eq. (9) should then take the following
forms depending on the value of z;

χloc =
{

a + b ln (1/T ), for z = 2,

cT 2/z−1, for z > 2,
(15)

with nonuniversal constants a, b, and c. For z > 2, this is
exactly the same as the common asymptotic form for χu and
C/T . Note again that this form relied on the constraint im-
posed by the spin correlations decaying as r−2, which can thus
be implicitly tested by the local susceptibility. In Ref. [48] we
demonstrated the logarithmic z = 2 form of Eq. (15) at the
phase transition between the Néel and RS states. For the point
inside the RS phase studied here, we should only expect the
z > 2 form.

The staggered susceptibility χs is the space-time integral of
the staggered correlation function. The often used finite-size
scaling version, which we will study in Sec. V, is χs ∝ L2−η,
which with the RS relationship η = 2 − z becomes χs ∝ Lz.
At T > 0 in the thermodynamic limit, the integration cutoff
is given by the size β = 1/T of the system in the time
dimension. Since distances in space (r) and imaginary time
(τ ) are related to each other in scaling theory by τ ∝ rz, Lz in
the finite-size scaling form should be replaced by β when the
space dimensions have been effectively taken to infinity. We
thus expect

χs ∝ T −1 (16)

for the asymptotic form of the staggered susceptibility cal-
culated on a sufficiently large lattice. Thus, because of the
specifics of the RS state, this temperature dependent quantity
does not allow for an independent test of z, though it implicitly
provides a nice way of checking the relationship η = 2 − z.

We first discuss results for the uniform and local sus-
ceptibilities, which both should diverge asymptotically as
T −(1−2/z), with z > 2. As already noted in Ref. [48], the
corrections to the asymptotic form are much larger in χloc

than in χu. In both quantities, good fits require the use
of appropriate scaling corrections, and it was found that a
constant added to the divergent form works well with both
quantities. We now have data at lower temperatures, and the
statistical error are also much improved. The results for the
largest system size, L = 256, are shown in Fig. 5. Using the
form f (T ) = a + bT −c to independently fit the two data sets
and including only the data points for β = 1/T � 20 in the
case of χu and β � 40 in the case of χloc, we obtain the
exponents c = 1 − 2/z = 0.51(2) and 0.48(2) for χu and χloc,
respectively. These values are consistent with each other and
also with the exponent α = 2/z + 1 ≈ 1.5 obtained from the
specific heat fits in Fig. 4.

To further test the stability of the exponents obtained
above, we next include a second correction term in the fitting
function, f (T ) = a + bT −c + dT e, with which we can obtain
statistically sound fits to the two susceptibilities in a much
larger range of temperatures; up to the highest temperature
T = 1 simulated. The fits are shown with red and blue curves
in Figs. 5(a) and 5(b), respectively. Even though we now have

FIG. 5. Temperature dependence of the disorder-averaged uni-
form (a) and local (b) susceptibility for systems of size L = 256. The
red and blue curves are fits to the form f (T ) = a + bT −c + dT e,
where c = 1 − 2/z > 0 controls the leading (divergent) behavior.
The values of the leading exponents are c = 0.494(9) for χu and c =
0.500(8) for χloc. In the correction term the exponent e is positive,
with e = 0.97(6) for χu and e = 0.60(2) for χloc. The black solid
curves show the fitted functions without the second power laws, and
the dashed curves show only the leading term bT −c. The error bars
on the QMC data are smaller than the graph symbols.

two more free parameters, the larger T range has a net positive
effect on the statistical precision of the leading power law in
the fit. The exponents obtained are c = 1 − 2/z = 0.494(9)
for χu and 0.500(8) for χloc, which gives us high confidence
in the exponents really being the same, and, therefore, that the
form r−2 of the spin correlation used to constrain the scaling
form for χloc is correct. The correction term ∝T e has a positive
exponent e (given in the caption of Fig. 5) for both quantities.

In Fig. 5 we also show the fitted functions with one or
both correction term excluded (i.e., these curves are not from
separate fits, but we keep the parameters obtained in the fit
to the full function with three terms and just exclude one or
two terms). The second power law has only minor effects for
β � 10, while the constant term has a very large effect in χloc.
Significant constant contributions can be expected on account
of the picture of the RS state consisting of essentially inert
VBS domains separated by domain walls and with spinons
forming where four domains meet [48]. The constant contri-
butions may stem primarily from the domain walls, while the
divergent behavior should originate from the spinons.

Since there is not much statistical covariance between the
two susceptibilities in the simulations, we take the average
value of the two exponents as the final exponent estimate;
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FIG. 6. Dependence of the staggered susceptibility on the inverse
temperature for system sizes L = 128 and 256. The predicted linear
form, Eq. (16), is fully consistent with the data starting from β ≈ 50,
as shown with the fitted line.

1 − 2/z = 0.497(6). Then the exponent governing the internal
energy, discussed in the previous section, is α = 2/z + 1 =
1.503(6), and this value is indicated with the blue line in
Fig. 4. We also note here the data for smaller systems (L = 64)
and higher temperatures in the previous work [48] gave 1 −
2/z = 0.60(8) from the scaling of the uniform susceptibility,
which also agrees with our new estimate, though the error
bar of the old result is much larger. Our best estimate of α

corresponds to the value z = 3.98(5) of the dynamic exponent
for the present model parameters.

In Fig. 6 we test the predicted linear form (16) of the
staggered susceptibility. We show results for two different
system sizes, L = 128 and L = 256, to illustrate the absence
of significant finite size effects up to β = 100, where we have
data for both systems. The further results for L = 256 up to
β = 150 continue with the same linear trend and there is no
reason to suspect significant size effects here. The results from
β = 50 to 150 are fully consistent with the linear form. This
perfect agreement with the predicted form strongly supports
the relationship η = 2 − z and the r−2 form of the equal-time
correlation function.

V. GROUND STATE FINITE-SIZE SCALING

It is also useful to study systems at sufficiently low tem-
peratures for computed quantities to have converged to their
ground state values. The dynamic exponent z ≈ 4.0 estimated
from the scaling behaviors analyzed in the previous sections
also controls the finite-size excitation gaps in the system; we
expect the smallest gap to scale as � ∝ L−z. Asymptotically,
for large systems we therefore have to reach down to temper-
atures of order L−z to converge to the ground state. However,
as we will show below, the gaps also have corrections that
corresponds to an effective, size-dependent dynamic exponent
zeff that is smaller than z for small systems (and we will
extrapolate for the asymptotic value z). Moreover, in principle
we can use temperatures of the form T (L) = aL−b with any
exponent b > 0 and still reach the ground state up to some
system size if the proportionality factor a is small enough.

We have carried out simulations at T = aL−2 with different
prefactors a to test the convergence and found that all results
are well converged to the ground state with a = 1 up to L =
48. Our aim here is to use the size dependence of appropriate
ground state quantities to obtain an independent estimate of
the dynamic exponent and also to further test the r−2 form of
the spin correlation function.

An often used method to test the scaling of the gap without
accessing any excited states directly is to compute the static
structure factor S(q) and the corresponding static susceptibil-
ity χ (q) at the wave vector q of interest. The ratio �∗(q) =
2S(q)/χ (q) is an upper bound to the true gap, �(q) � �∗(q).
The bound is derived from sum rules for the dynamic structure
factor and is exact for a single mode. In general, the bound
may not be very good quantitatively, but for a critical mode �∗
is expected to have the same asymptotic scaling properties as
the gap. We refer to Ref. [27] for more details on this approach
and an application to another disordered spin system. We
will investigate the scaling properties of the ratio χ (Q)/S(Q),
where Q is the antiferromagnetic wave vector.

The static structure factor is just the Fourier transform of
the spin correlation function,

S(q) =
∑

r

e−iq·r〈Sz(0)Sz(r)〉. (17)

We set q = (π, π ) and name this structure factor S(π ). If the
spin correlations decay as r−2 in the RS state, we expect the
asymptotic size dependence to be

S(π ) = a + b ln(L). (18)

The corresponding staggered susceptibility χs = χ (Q) was
already defined in Eq. (10) and we mentioned its expected
finite-size scaling form when the relationship η = 2 − z is
imposed;

χs ∝ Lz. (19)

As mentioned above, for a critical mode χ (Q)/S(Q) is nor-
mally expected to scale as Lz, but in the case at hand here
there is a logarithmic correction, due to Eq. (18) because
of the r−2 decay in two dimensions. We will nevertheless
investigate the ratio χs/S(π ) and attempt to extract z from its
leading asymptotic Lz form. In addition, we can also extract
z from just the divergence of χs, which is not affected by the
logarithmic correction.

In Fig. 7 we graph the size dependence of S(π ), χs, and
χs/S(π ) on a log-log scale. In the case of S(π ), the behavior
looks almost constant in the main graph, but when zooming
in (the inset of Fig. 7) and graphing on a log-linear scale,
the expected logarithmic divergence is apparent. Both χs and
χs/S(π ) diverge strongly, but we do not observe any clear
power-law behaviors. The upward curvature on the log-log
plot implies that the effective dynamic exponent zeff increases
with increasing system size, and corrections to scaling must
be considered for the available system sizes in order to extract
the asymptotic value zeff (L → ∞) → z. Fitting to two power
laws (the curves shown in Fig. 7) give z = 3.7(3) from χs

and z = 3.5(4) from χs/S(π ) from the leading terms ∝Lz.
Here the result from χs should be more reliable, because of
the logarithmic corrections expected in the ratio χs/S(π ).
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FIG. 7. Log-log plot showing the size dependence of S(π ), χs,
and χs/S(π ) for system sizes up to L = 48. The blue and black
curves show fits to the form Y = aLz + bLc. The inset shows a
log-linear plot of S(π ), making clear the logarithmic divergence of
the form Eq. (18), shown by the fitted line.

Because of the relatively large error bars, it is not possible
to explicitly observe the multiplicative logarithm in the ratio,
though we see it in S(π ) when analyzed separately.

We also can define an effective dynamic exponent zeff for a
pair of systems with sizes L and 2L,

zeff (Leff ) = 1

ln(2)
[ln(Y2L ) − ln(YL )], (20)

where the effective system size can be defined as Leff =
(2L2)1/2 (though we could also just use L as the size). Y stands
for one of the two observables; χs or χs/S(π ). As shown
in Fig. 8, both of these two effective exponents converge to

FIG. 8. Effective dynamic exponent defined using two system
sizes, L and 2L, according to Eq. (20) for the quantities χs (red
symbols) and χs/S(π ) (blue symbols). The effective system size is
defined as Leff = (2L2)1/2. The solid lines show linear fits in 1/Leff

giving the estimates of the extrapolated exponents z = zeff (L →
∞) = 3.96(17) from χs and z = 3.94(14) from χs/S(π ) the text. The
dashed curves are obtained from the direct fits of the size dependent
quantities in Fig. 7 to a form with two power laws, which were
subsequently used in Eq. (20). The resulting extrapolated dynamic
exponent with error bars are indicated close to 1/Leff = 0.

the same value, z ≈ 4, approximately linearly with 1/Leff as
system size grows. Linear fits of the form zeff = z + c/Leff

with the data starting from Leff > 16 (below which there
are clearly large corrections) give z = 3.96(17) from χs and
z = 3.94(14) from χs/S(π ), both in full agreement with our
best determination of the dynamic exponent, z = 3.98(5), in
the previous section. The results also agree with those from
the direct fits to the size dependent quantities in Fig. 7, but the
latter have much larger error bars. Clearly, the smaller errors
when fitting to zeff is due to the assumed linear behavior when
fitting the data in Fig. 8. The inferred size dependent zeff based
on the fits in Fig. 7 is also shown in Fig. 8. The shapes of the
curves here are not certain, as is also reflected in the large
error bars on the extrapolated z values, because of the large
uncertainty in the correction exponent in the two-power fits in
Fig. 7.

VI. CONCLUSION AND DISCUSSION

We have studied the properties of the RS state in the 2D
random-Q J-Q model, using large-scale QMC simulations to
test low-temperature critical scaling forms in the thermody-
namic limit as well as finite-size scaling forms in the ground
state. A salient feature of the RS state is that the spin-spin
correlations at T = 0 decay with distance as r−2. Formally,
the exponent 2 implies the relationship η = 2 − z in standard
quantum-critical scaling forms. Quantities that do not involve
η, such as the uniform and local susceptibilities, exhibit low-
temperature behaviors expected in critical systems [64] with
a common value of the dynamic exponent z. Quantities with
scaling forms involving η are fully consistent with η = 2 − z
with the same z as that extracted from the other quantities. The
high-precision calculations reported here for a single point
inside the RS phase, in combination with the less precise
results for several points in Ref. [48], establish beyond a
reasonable doubt that the RS phase in the J-Q model corre-
sponds to a finite-disorder critical RG fixed point, with uni-
versal r−2 decay of the spin correlations and varying dynamic
exponent z � 2.

Below, in Sec. VI A we provide some further comments on
the term “2D RS state” as it compares to the well known 1D
counterpart. In Sec. VI B we discuss the possible generality
of the RS state characterized here and how our findings fit
into related scenarios for randomness-induced states proposed
within other approaches. In Sec. VI C we discuss potential
experimental realizations of RS states and promising avenues
to further investigate candidate materials.

A. On the RS state terminology

The 1D RS state is an IRFP, and one may then ask whether
the term 2D RS state is even appropriate for the finite-disorder
fixed point we have established here. Presumably, the RS
term was coined to describe the end result of the SDRG
method, which is a single valence-bond configuration with
a characteristic distribution of the length of the bonds [7,8].
This single configuration is of course only a caricature of
the actual superposition ground state of a system such as the
S = 1/2 Heisenberg chain with random couplings, but it still
captures the asymptotic properties correctly in one dimension
[9] (perhaps up to logarithmic corrections that have been
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discussed recently [13]). In other words, the SDRG method
produces a typical valence bond configuration drawn from the
true ground state.

The typicality aspect of the SDRG method and the RS state
is closely connected to the IRFP nature of the fixed point.
Conversely, one might not expect the SDRG method applied
to 2D systems with finite-disorder fixed points to produce
completely representative results of the true ground state,
which is just another way of saying that the SDRG method is
reliable only when it flows to an IRFP. It has still been argued
that useful approximations can be obtained. For instance, in
the early work by Bhatt and Lee [10], the logarithmic width
of the coupling distribution was found to not grow under the
SDRG procedure in the case of 2D dilute randomly located
moments, and the susceptibility was found to diverge as T −α

with α < 1. These are not signatures of an IRFP, and the latter
behavior can be interpreted as a finite value of the dynamic
exponent z according to Eq. (12). Nevertheless, the SDRG
method produced a set of frozen singlets, e.g., an RS state,
and the results are believed to capture the essential physics of
the system studied.

We have here not discussed the microscopic mechanisms
underlying the RS state, which were described in detail in
Ref. [48], and also within a different theoretical framework
in Ref. [47]. The essence is that the mechanism of interacting
spinons in a background of VBS domains is a close analogy
to the 1D case. The analogy is the closest when the 1D RS
state is constructed starting from a spontaneously dimerized
system (e.g., the J-Q chain for large Q/J) [13], instead of
a critical system like the standard Heisenberg chain. Then
one can really identify out-of-phase dimerized chain segments
separated by localized spinons, and these spinons produce an
RS state through interactions mediated by the gapped host
segments. Similarly, when starting from the VBS ordered 2D
J-Q model, localized spinons induced by randomness can be
identified which appear pairwise and interact with each other
mainly through the domain walls [48] and form a critical state.
It is not clear why the spin correlations in this state decay as
r−2, which is also the form in the 1D RS state, but a power-law
decay in any case is a manifestation of physics similar to the
1D RS state.

In the system studied in the present paper, the dynamic
exponent z ≈ 4 and it was previously shown that it can grow
much larger—up to z ≈ 7 was found at points deeper inside
the RS phase in Ref. [48] (and there is likely no upper
bound in principle if other suitable interactions are consid-
ered). Thus, the system can exhibit slow dynamics. With the
imposed exponent relation η = 2 − z, we found that the onsite
(imaginary time) dynamic spin-spin correlation function takes
the asymptotic form 〈Si(τ )Si(0)〉 ∝ τ−2/z, representing a slow
decay when z becomes large. Here it should be noted that the
slow dynamics should correspond to weak effective couplings
between spins in long valence bonds, in analogy with the 1D
RS state where the logarithmic form of the asymptotic decay
of the correlations originates from rare very long bonds. Thus,
while the finite-z 2D state does not have the extreme slow dy-
namics of the 1D RS system, it can still approach that behavior
when z becomes large, and for the same physical reasons.

Given all the above reasoning, the term 2D RS state for the
critical phase in the random J-Q model appears appropriate,

despite the fact that it does not correspond to an IRFP. It is not
even clear whether an IRFP exists in SU(2) spin models with
realistic short-range interactions, given the many negative
results based on the SDRG method [10,15–20,52]. These
studies have also found finite-disorder fixed points, though
they were not characterized in the kind of detail achieved here,
e.g., as regards the r−2 form of the spin correlations.

Finally, with regards to terminology, we note that Griffiths
phases [66] are gapless phases of random systems appearing
in the neighborhood of transitions into ordered phases. How-
ever, physics involved in the formation of a quantum Griffiths
phase is quite different from the mechanisms underlying the
RS state. The gapless behaviors arise from rare, arbitrarily
large ordered clusters within an otherwise gapped bulk. Such
ordered clusters do not appear in the RS phase, where the
critical properties are intrinsic to the network of interacting
spinons. The differences are well illustrated by dilute mag-
netic semiconductors, where random antiferromagnetic inter-
actions lead to RS physics [10], and there is not necessarily
any ordered phase close by which spawns the RS state. In
contrast, in the neighborhood of a ferromagnetic transition,
a Griffiths phase with completely different properties arises
[67] due to the presence of large ferromagnetic clusters. The
properties of Griffiths phases in general depend sensitively on
the nearby phases which it is a mixture of. A quantum Griffiths
phase has been discussed in the content of spin ice, where the
classical ice state changes character in the presence of strong
quantum fluctuations and becomes a Griffiths phase (referred
to as a disorder-induced spin liquid), located in parameter
space between a paramagnetic phase and a Coulomb spin
liquid [68]. Again, this Griffiths phase is very different from
the RS phase. The RS state with very specific properties
discussed here should not be confused with a generic Griffiths
state.

B. Generality of the 2D RS state

While we have not proved that the RS state studied here
is also generic beyond the “designer” interactions of the J-Q
model, there is mounting evidence for this being the case.
Recently, a DMRG study [46] of the square-lattice S = 1/2
Heisenberg model with random frustrated bonds detected
spin correlation functions apparently decaying with the same
power-law r−2 as in the random J-Q model. The systems ac-
cessible with DMRG, beyond the very small lattice accessible
with the ED method [35,38–45], are still not very large and
the associated finite-T properties of the system have not been
studied yet. It should be possible to reach larger systems with
the DMRG method in the future, and progress has also been
made on T > 0 properties [69].

From the physical perspective, Kimchi et al. [47] also
proposed that the mechanism causing the RS state in frustrated
quantum magnets should be VBS domains with topological
defects carrying spinons, exactly as found in the random J-Q
model [48]. If indeed the physical ingredients are the same,
and the spinons in the J-Q model do not form antiferromag-
netic long-range order (which was proposed [47] but has not
been observed), then there is no strong reason why frustrated
interactions (in the conventional sense of inability to satisfy
antiferromagnetic spin orientations along any loop on the
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lattice) should cause a low-energy state different from that
resulting from the different forms of competing interactions
of the J-Q model. In a recent work, Dey and Vojta [55]
also made a similar remark in the context of a semiclassical
analysis of spin glasses in weakly frustrated 2D systems,
suggesting that strong quantum effects should induce local
VBS formation and transform the quasiclassical spin glass
into the proposed RS state [47,48]. This picture as well does
not appear to depend on what microscopic interactions cause
the VBS domains.

Kimchi et al. [47] also speculated that the RS state in
the frustrated systems may only be an intermediate-energy
state, which could be unstable to formation of a spin glass
at the lowest energies. As we discussed in Sec. I A, to our
knowledge there are no concrete reliable calculations showing
that a spin glass state is even possible in 2D S = 1/2 systems
with short-range interactions. Instead, the RS state may be
what generically replaces a classical or semiclassical spin
glass when the quantum fluctuations are strong—this is also
the picture discussed by Dey and Vojta [55].

Numerically we can in principle not completely rule out
that the RS state we have characterized is unstable to anti-
ferromagnetic order at even lower temperatures than we have
reached. However, the ordering scenario appears implausible
based on the consistent power-law scaling observed for all the
quantities studied, down to what already is a very low tem-
perature scale (of the order 10−2 of the microscopic coupling
scale). In contrast, Kimchi et al. [47] did not even discuss
the possibility of an intermediate RS flow in systems without
conventional frustration, implicitly assuming that the ordering
tendency is strong unless frustrated interactions are present.
At the very least, it is now clear that the RS state we have
characterized exists over a vast range of length and energy
scales, and it must correspond to an RG fixed point of random
2D quantum magnets.

To better connect the picture of the frustrated RS state to
SDRG calculations and the prototypical RS state of the J-Q
model, it would be useful to study the dynamic exponent
within the SDRG scheme. Normally, the results of SDRG
calculations are expressed in terms of an exponent γ , which
controls the low-temperature specific heat C/T and suscep-
tibility χu; they both scale as T −γ with γ < 1 [10,52]. In
our picture, where the scaling is conventional quantum-critical
scaling with the constraint η = 2 − z (which is important
when considering the local susceptibility χloc, which attains
the same divergence as χu and C/T only if η = 2 − z), the
exponent is expressed as γ = 1 − 2/z. It would be interesting
to extract the dynamic exponent in the SDRG procedure and
test this relationship (which we believe must apply). It would
of course also be interesting to check the decay form of
the spin-spin correlations within the SDRG framework, but
unfortunately it is difficult to extract real-space information
from the decimation procedure in more than one dimension.
As far as we are aware, this has never been done.

C. Experiments

Many of the quantities we have studied here can be tested
experimentally. The perhaps most fundamental and definite
aspect of the RS state characterized here is the r−2 decay

of the spin correlations in the ground state. In principle this
form can be tested by inelastic neutron scattering through
the associated logarithmic divergence of the static structure
factor S(q) in the limit q → (π, π ). The static structure
factor is obtained by integrating the dynamic structure factor
S(q, ω) over ω, but clearly the logarithmic divergence will
not be easy to detect, given typical experimental resolution,
temperature effects, and impurity effects not corresponding
solely to random couplings. Nevertheless, it may be useful to
look for a possible anomalous shape of the peak of S(q) versus
q in candidate RS materials. The predicted linear dependence
on T −1 of the staggered susceptibility, Eq. (16), may be
more practical for tests with inelastic neutron scattering than
S(π, π ); it can be obtained from the ω−1-weighted frequency
integral of S(q, ω) at q = (π, π ).

The specific heat and the uniform magnetic susceptibility
are more easily accessible than dynamic quantities, but both
may also be sensitive to effects beyond the disorder giving rise
to the RS state. In particular, impurity moments in addition
to random couplings should lead to other contributions to the
susceptibility, though anomalous, non-Curie behaviors may
still apply [70].

In our previous work [48], we pointed out that
Sr2CuTe1−xWxO6, which for x = 0 is a good realization of the
square-lattice S = 1/2 Heisenberg model [71,72], is a promis-
ing candidate for RS physics. For W fractions 0 < x < 1, the
system is randomly frustrated, with first- and second-neighbor
Heisenberg couplings mediated by plaquette-centered Te or W
ions, respectively. The system has columnar antiferromagnetic
order for x � 0.7 [73,74] but no order for 0.1 � x � 0.7
[75,76]. Though a Curie tail was reported in the susceptibility
[76], the data at low temperatures can actually be better fitted
to a power law χu ∝ T −γ with γ ≈ 0.7 (weakly dependent
on x in the range where there is no magnetic order) [48].
On one hand this behavior may indicate an RS phase, but
on the other hand the specific heat does not show the same
power law C/T ∝ T −γ that we have demonstrated here (and
which holds also within the SDRG method [52]); instead a
shoulder anomaly is present in C/T near 1.2 K, followed at
lower temperatures by a drop more rapid than the expected
power law [76]. It is not clear, however, what role subtrac-
tion of claimed impurity contributions play here, as those
“impurities” may at least partially be the spinons of the RS
state. Thus, the baby may have been thrown out with the bath
water. Further specific heat studies will be important.

Kimchi et al. suggested that YbMgGaO4 is a likely RS
system [47]. This material had previously been regarded as
quantum spin liquid [53] and later as a spin glass [54]. Indeed
the material exhibits a power-law decay of the specific heat
and a divergent susceptibility [53,54]. While the former is
natural under some scenarios in spin liquids, the divergent sus-
ceptibility is not. The divergent susceptibility was previously
attributed to magnetic impurities not part of the collective
bulk state [77]. It would be interesting to further analyze
the exponents and test whether the specific heat and the
susceptibility are mutually consistent in the way tested here
for the J-Q model.

A strong case for RS physics in LiZn2Mo3O8 and related
materials was made by Kimchi et al. [52], primarily based
on the behavior of the system in a magnetic field and scaling
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forms obtained from the SDRG scheme and related consider-
ations. We have not yet studied the random J-Q model in a
magnetic field, but such calculations are possible [78,79] and
would be interesting to carry out in the future. LiZn2Mo3O8

had previously been proposed to realize a VBS state with
1/3 of the spins remaining paramagnetic and subject to weak
antiferromagnetic couplings [80]. Kimchi et al. [52] also
proposed that H3LiIr2O6 may realize the RS phase. At zero
field, both C/T and χu have a low-temperature form T −γ

with γ ≈ 0.5 [81], and this behavior was originally attributed
to a low density of spin defects in a bulk quantum spin
liquid. A complication with LiZn2Mo3O8 and H3LiIr2O6 is
strong Dzyaloshinskii-Moriya interactions, which was taken
into account in the treatment by Kimchi et al. [52]. It is
not clear whether the RS state as realized in the J-Q model
can capture all aspects of random quantum magnets when
additional effects, e.g., Dzyaloshinskii-Moriya interactions,
are important. However, if the system still remains critical
with finite dynamic exponent the general scaling laws tested
here should still hold, though not necessarily with the η =
2 − z constraint.

Finally, we mention α-Ru1−xIrxCl3, which recently has
attracted attention as a possible randomness-induced spin
liquid [82–84] or RS state [85] when x slightly exceeds 0.2.
While various power-law behaviors have been observed, the
exponents governing χu and C/T are distinctly different,
and therefore the state appears to be quite different from
the conventional RS state. One possible explanation for the
violations is that the system has both bond disorder and spin
vacancies. In the J-Q model, vacancies induce long-range
antiferromagnetic order because the spinon pairing imposed
by the topological defects can no longer be strictly maintained
when the moments associated with vacancies are completely
randomly distributed [48]. It is possible that some power-law
scaling can still be observed in some range of temperatures,

and in principle this can be tested within the J-Q model, for
which the previous work only established that some long-
range order is induced by vacancies. This long-range order
can in principle be destroyed in the presence of frustrated
interactions, and then an RS state may still form. The effects
of vacancies in a frustrated triangular-lattice quantum magnet
were theoretically studied by Riedl et al. [70], but no concrete
predictions for thermodynamics were presented. It would be
interesting to further study the interplay of vacancies and
coupling disorder.

Note added. In a recent collaboration with experimental
groups using neutron diffraction and μSR techniques on
Sr2CuTe1−xWxO6 [86], we have demonstrated that the Néel
order in this material vanishes already at x ≈ 0.03 (i.e., well
below the previously estimated critical W fraction x ≈ 0.1
[75,76]) and that the properties of the disordered phase agree
with our RS scenario. The dynamic exponent extracted from
the μSR relaxation rate slightly exceeds the lower RS bound
z = 2 at x = 0.05 (close to the transition from the Néel
state) and grows to a value z > 3 at x = 0.1 (deeper inside
the RS phase). The neutron diffraction measurements show
significant short-range Néel-type spin correlations throughout
the disordered phase, as expected on account of the 1/r2

staggered spin correlations in the RS phase.
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