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Current fluctuations driven by ferromagnetic and antiferromagnetic resonance
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We consider electron transport in ferromagnets or antiferromagnets sandwiched between metals. When spins
in the magnetic materials precess, they emit currents into the surrounding conductors. Generally, adiabatic
pumping in mesoscopic systems also enhances current fluctuations. We generalize the description of current
fluctuations driven by spin dynamics in three ways using scattering theory. First, our theory describes a
general junction with any given electron scattering properties. Second, we consider antiferromagnets as well
as ferromagnets. Third, we treat multiterminal devices. Using shot noise-induced current fluctuations to reveal
antiferromagnetic resonance appears to be easier than using them to reveal ferromagnetic resonance. The origin
of this result is that the associated energies are much higher as compared to the thermal energy. The thermal
energy governs the Johnson-Nyquist noise that is independent of the spin dynamics. We give results for various
junctions, such as ballistic and disordered contacts. Finally, we discuss experimental consequences.
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I. INTRODUCTION

In conductors, a bias voltage generates a net current.
However, the current also fluctuates. Noise exists even at
equilibrium when the bias voltage is zero. At equilibrium,
the current fluctuations are related to the conductance via
the fluctuation-dissipation theorem as Johnson-Nyquist noise
[1,2]. When there are nonzero bias voltages comparable to
or larger than the thermal energy, the fluctuation-dissipation
theorem does not apply. Instead, the current fluctuates due
to shot noise since the electron flow is in discrete quanta of
the elementary charge −e. The shot noise reveals quantum
transport features in nanostructures [3].

In electron transport, at low temperatures, the transmis-
sion probabilities of waveguide eigenmodes {Tn} determine
the shot noise of phase-coherent conductors biased by a
voltage V :

S = 2e2

h
eV

∑
n

Tn(1 − Tn) . (1)

The shot noise expression (1) is general and captures the
nature of many contacts, such as diffusive, ballistic, and tunnel
junctions. The factor 1 − Tn arises from the Pauli exclusion
principle; two electrons cannot simultaneously occupy the
same waveguide mode. The sum is over the waveguide modes
labeled by n.

Ferromagnets have intriguing transport properties caused
by the coupling between electric currents, electron spin
currents, and localized spin dynamics. Currents can induce
spin dynamics by spin-transfer torques [4–10] and spin-orbit
torques [11–18]. The magnetization direction can be switched
or magnetic oscillations can be induced. These phenomena
are of a fundamental importance and might be utilized in
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magnetic random access memories, spin-torque oscillators, or
spin-logic devices. These developments have been reviewed
in Refs. [19–22]. The phenomenon reciprocal to spin-transfer
torque is spin pumping, the emission of spin currents into met-
als induced by spin excitations in adjacent magnets [23–29].
Spin pumping exposes details of the transport properties and
spin dynamics.

Recently, antiferromagnetic spintronics has attracted con-
siderable interest because of the intrinsic high frequencies,
new features in spin dynamics, and robustness with respect
to external magnetic field disturbances [30–36]. Many of the
phenomena in ferromagnets have similar or richer behavior in
antiferromagnets. For instance, currents can switch the spin
configurations [31,37,38], and antiferromagnetic resonance
excitations can pump spin currents [35,36,39–41].

Usually, bias voltages induce electric currents and shot
noise as in Eq. (1). However, out-of-equilibrium currents can
be sustained by other methods using temporal external or in-
ternal drivers that modify the conductor properties. Oscillating
electric and magnetic fields can induce net currents. Such
drivers also enhance the electric current noise. In magnetic
systems, dynamical spin excitations produce spin currents
[23–29,35,36,39–41].

Spin pumping also causes additional magnetization dissi-
pation [27,42–45]. Through the fluctuation-dissipation the-
orem, this implies that fluctuating spin currents associated
with spin pumping and spin transfer as well exist [46]. In a
recent study, Ref. [47] obtained an expression for the electric
(charge) current noise caused by ferromagnetic resonance ex-
citations in ferromagnetic-normal metal-ferromagnetic double
tunnel barrier systems. The particularly nice feature is that the
mechanism does not require spin-orbit-induced spin-to-charge
conversion such as the spin Hall and inverse spin Hall effects.
It is also a new channel for detecting and characterizing
ferromagnetic resonance and electron transport in magnetic
conductors.
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Theoretically, scattering matrices capture electron trans-
port in nanostructures well [48]. They can also describe
current-induced torques [49–54]. Scattering matrices also
capture effects due to temporal external or internal drivers. To
the lowest order in the driver frequency, the pumped current
is related to the stationary scattering properties [55]. This
feature considerably simplifies the description of adiabatic
pumping such as spin pumping [27,56,57]. In general, scatter-
ing properties can also describe the enhanced electric current
noise due to periodic drivers. For the case when only one
waveguide mode is linked to each reservoir, Ref. [58] obtained
an expression for the current noise in terms of the dynamical
scattering properties of the device.

We consider a magnet that is in contact with normal metal
leads. Our purpose is to obtain a general expression for how
spin excitations in ferromagnetic and antiferromagnetic struc-
tures generate the thermal and shot noise of the electric cur-
rent. To this end, we generalize the results of Ref. [47] in three
ways: (1) the formalism is valid for arbitrary junctions, (2) the
theory applies to spin dynamics in ferromagnets and antifer-
romagnets, and (3) multiterminal devices are treated. In this
way, we obtain general results for electric current noise driven
by spin dynamics in magnetic materials in arbitrary junctions.
We will find that, when spin angular momentum is conserved,
the noise vanishes when the magnet is insulating. Our results
are therefore most relevant for conducting systems.

In the limited case of two-terminal double-barrier tunnel
ferromagnetic junctions, our general results agree with the
results of Ref. [47] by taking into account random disorder in
our formulation. Since we use an entirely different approach,
this agreement establishes the consistency of both treatments
in this limit. We discuss the fact that other junctions have
different behaviors in ferromagnets. In antiferromagnets, the
properties of the junctions differ, except in limited cases.

We have organized the presentation as follows. Our paper
first gives the main results and consequences before proceed-
ing section by section with more details of the derivations.
Section II introduces the model and presents the main results.
We will find that four factors determine the shot noise: (i)
the electron-transport-related shot noise coefficients, (ii) the
driver frequency, (iii) the thermal energy, and (iv) the spin-
dynamics factor. Section III discusses the specifics of the
influence of ferromagnetic and antiferromagnetic dynamics
driven by magnetic fields that govern the spin-dynamics fac-
tor. Then, in Sec. IV, we discuss the shot noise coefficients in
various junctions, such as ballistic and disordered contacts,
both in antiferromagnets and ferromagnets. We present the
general theory of adiabatic pumping-induced electric current
noise in Sec. V. Section VI applies the general theory in
Sec. V to derive the spin dynamics-driven shot noise in
Sec. III. We conclude our presentation in Sec. VII. Finally,
we derive the general scattering theory of adiabatic driven
enhanced electric current noise in Appendix.

II. MODEL AND MAIN RESULTS

We consider a magnet embedded between metals (or semi-
conductors) in an open circuit. At equilibrium, electric cur-
rents fluctuate in the metals. In the magnet, there can be ther-
mally induced spin fluctuations or coherent spin precessions
caused by external forces. We consider the latter case that the

Metal MetalMagnet

δjl(t) δjr(t)n(t)

FIG. 1. Schematic description of a metal-magnet-metal system.
An open circuit (not shown) is connected to the system. The electric
currents fluctuate. The spin dynamics in the magnet described by
precession of the temporal unit vector along the order parameter n(t )
enhance the current fluctuations.

spin dynamics is coherent and dominated by external drivers
as in ferromagnetic resonance or antiferromagnetic resonance.
It is straightforward to generalize our results to explicitly
include contributions from incoherent spin dynamics relevant
when the external drive is weak or absent.

When the spins in the magnet precess, the fluctuations are
enhanced. Figure 1 schematically depicts the system in a two-
terminal configuration. Our results are also valid for many
terminals. The unit vector aligned with the order parameter,
the magnetization in ferromagnets and the staggered field in
antiferromagnets, n, is homogeneous. When external mag-
netic fields or currents drive the system, the order parameter
n precesses around an equilibrium direction. While we sub-
sequently develop a formulation describing general junctions
that may include the spin-orbit interaction and magnetic impu-
rity scattering, our first and primary focus is on systems with
the conservation of spin angular momentum. Giant magne-
toresistance, tunnel magnetoresistance, spin-transfer torques,
and spin pumping are examples of central phenomena in such
systems.

In systems with the conservation of spin angular momen-
tum, two independent scattering matrices, S↑ and S↓, for
spin-up and spin-down electrons govern electron transport.
The scattering matrices contain all details of the junctions
related to the interfaces between the metals and magnets, band
structure, and bulk and surface impurity scattering. We evalu-
ate the electric current and the associated noise in the metallic
leads. The electric current direction is towards the magnet.
While our formalism is valid irrespective of the magnet‘s
conducting properties, it is most relevant for metallic systems
since we will demonstrate that, in the absence of spin-orbit
coupling, the electric noise vanishes when there is no flow of
electric charge between the leads. Furthermore, we consider
systems where itinerant electrons carry the current and spin
currents carried by localized spins can be disregarded. When
the spin angular momentum is conserved, our main result is
that the low-frequency electric current noise in the presence
of coherent spin excitations has two contributions:

pζη = p(th)
ζη + p(sn)

ζη , (2)

where ζ and η label the leads. Electric current conservation
ensures that

∑
ζ pζη = 0 = ∑

η pζη.
In Eq. (2), the first term describes thermal Johnson-

Nyquist noise, which is independent of the spin dynamics
and determined by the conductance tensor G and the thermal
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energy kBT :

p(th)
ζη = (Gζη + Gηζ )kBT . (3)

Microscopically, the conductance tensor is a sum over the
scattering properties of two spin components:

Gζη =e2

h
Tro[δζη − S↑†

ηζ S↑
ζη]

+ e2

h
Tro[δζη − S↓†

ηζ S↓
ζη]. (4)

The trace, Tro, is over orbital (“o”) degrees of freedom only, a
sum over the waveguide modes in the leads.

The second and more interesting contribution to the noise
in Eq. (2) is the shot noise driven by the coherent spin
dynamics. We obtain our main result for the zero-frequency
shot noise:

p(sn)
ζη = Aζη + Aηζ

8

[
h̄ω coth

h̄ω

2kBT
− 2kBT

]
D(ω) , (5)

where the spin-dynamics control the spin-dynamics factor
D(ω) that is independent of the electron transport properties.
We discuss D(ω) further below. D(ω) is a positive definite
quantity. ω is the frequency of the spin excitations. The
diagonal components of the shot noise of Eq. (5) are positive
definite quantities as are the diagonal components of the shot
noise coefficients A. The shot noise coefficients Aζη depend on
the electron transport via products of the scattering matrices of
spin-up and spin-down electrons:

Aζη = e2

h
Tro

⎡
⎣δζη −

∑
αβ

S↑
ζαS↓†

αηS↓
ηβS↑†

βζ

⎤
⎦

+ e2

h
Tro

⎡
⎣δζη −

∑
αβ

S↓
ζαS↑†

αηS↑
ηβS↓†

βζ

⎤
⎦ . (6)

In the case of a two-terminal device, as in Fig. 1:

All = 2e2

h
Tro[1 − (r↑

ll r
↓†
ll + t↑

lt t
↓†
rl )(r↓

ll r
↑†
ll + t↓

lt t
↑†
rl )], (7)

where l means left and r means right, r is a reflection
coefficient matrix, and t is a transmission coefficient matrix.

In general, the shot noise parameter A of Eq. (6) differs
from the conductance G of Eq. (4), as does the voltage-
biased shot noise of Eq. (5) compared to the average current
governed by the conductance G. As is well known for the
latter case [3], signatures of the junctions and conductors can
be distinguished by the ratio between the voltage-biased shot
noise parameter and the conductance via the so-called Fano
factor, F = ∑

n Tn(1 − Tn)/
∑

n Tn. For instance, in tunnel
junctions F = 1, and in diffusive wires F = 1/3 [3]. The spin
dynamics-driven shot noise reveals more aspects of the elec-
tron transport in spin materials. We will compute the central
shot noise parameter of Eq. (7) for ballistic and disordered
junctions in ferromagnets and antiferromagnets in Sec. IV.

Reference [58] found that the adiabatic pumping driven
enhanced noise was related to the behavior of two particles
injected into the system. In agreement with this, the shot noise
parameter A of Eq. (6) contains products of four scattering
matrices describing two-particle processes. The new aspect

of the shot noise parameter A of Eq. (6) is that two of the
scattering matrices relate to spin-up electrons, and two relate
to spin-down electrons. In contrast, spin pumping is a one-
particle process. The spin-mixing conductance [27,50,51,56]
is a product of one spin-up scattering matrix and one spin-
down scattering matrix, two scattering matrices in total. This
is because the pumped spin current has spin along the di-
rection transverse to the magnetization direction, a linear
combination of spin-up and spin-down states along the spin
quantization axis that is parallel to the order parameter. Sim-
ilarly, we note that the shot noise coefficients of Eq. (6) have
combinations of spin-up and spin-down properties related to
the same lead. Since spin dynamics produce electric (charge)
current noise, a natural interpretation is that the fluctuations
arise due to temporal fluctuations of the emissions of spin
currents. While the emitted spin currents are instantaneously
transverse to the order parameter, they can be reconverted to
electric (charge) currents at later times due to the spin-filtering
effect in magnetic materials.

We observe that the shot noise parameter A vanishes when
no transmission occurs between the left and right reservoirs.
This can be seen by letting t↑ → 0 and t↓ → 0 in Eq. (7) and
using the unitarity of the scattering matrices. This behavior
implies that no electric noise will occur in spin dynamics-
driven metal-magnetic insulator-metal junctions when spin
angular momentum is conserved. In contrast, spin pump-
ing and spin-transfer torques can be as efficient in metal-
magnetic insulator bilayers as in metal-magnetic conductor
bilayers [59]. Beyond the formulation in this section that is
based on spin conservation, spin-orbit coupling in heavy met-
als provides a conversion between charge and spin currents
so that even magnetic insulators can become noisy [60]. Such
small effects are proportional to the square of the small spin
Hall angle.

In the expression for the shot noise (5), the spin dynamics
solely determine the spin-dynamics factor D(ω). This quantity
is small and related to the power absorbed in resonance
experiments [42], which implies that it can be indepen-
dently measured. At equilibrium and at sufficiently low tem-
peratures, n(t ) = n0. Oscillating transverse magnetic fields
at frequency ω, H(t ) = H+ exp iωt + H− exp −iωt , induce
small transverse excitations of the order parameter, δn =
n+ exp iωt + n− exp −iωt . In the linear response, the changes
in the order parameter and the (external or current-induced)
magnetic fields are related by the frequency-dependent spin
susceptibility χ (ω), a 2 × 2 matrix in the basis of the trans-
verse coordinates labeled by i, so that ni± = χi j±Hj±. In terms
of the spin susceptibilities and the oscillating magnetic fields:

D(ω) =
∑

i

ni+ni− =
∑
i jk

χi j+χik−Hj+Hk− . (8)

The spin susceptibilities χ (ω) have peaks at the resonance
frequencies, as does D(ω). In Sec. III, we give generic ex-
amples for central classes of anisotropies in ferromagnets and
antiferromagnets. In the linear response, the transverse excita-
tions are small. Therefore, the factor D is small. Nevertheless,
distinguishing the shot noise from the thermal noise should be
possible because the former has a strong dependence on the
frequency of the driver, while the latter has no such features.
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Subtracting the frequency-independent background thermal
noise reveals the shot noise.

The shot noise of Eq. (5) takes a different form depending
on the ratio between the energy quantum associated with
the time dynamics h̄ω and the thermal energy kBT . At low
temperatures, when h̄ω � kBT , the shot noise becomes:

p(sn)
ζη ≈ Aζη + Aηζ

8
|h̄ω|D(ω) . (9)

The shot noise can be distinguished from direct heating by
the different frequency dependence. The low-temperature shot
noise of Eq. (9) is linear in the absolute value of the excitation
frequency ω relative to the spin-dynamics factor D(ω) that can
be independently measured.

We find below that A ∼ 2G in many systems. The ratio
between the shot noise of Eq. (5) and the thermal noise of
Eq. (3) at low temperatures is then psn

ζη/pth
ζη ∼ |h̄ω|D(ω)/kBT .

Since the transverse precession angle is small, typically
D(ω) ∼ 10−4 at resonance, but the possibly large prefactor
|h̄ω|/kBT will increase the ratio between the shot noise and
the thermal noise from this value. Stronger external drives can
also enhance D(ω).

In contrast, at high temperatures, kBT � h̄ω, the shot
noise is smaller. We can expand the shot noise in the small
parameter h̄ω and obtain:

p(sn)
ζη ≈ Aζη + Aηζ

8

(h̄ω)2

6kBT
D(ω) . (10)

At high temperatures, the shot noise of Eq. (10) is suppressed
by a factor |h̄ω|/6kBT with respect to the low temperature
limit of the shot noise of Eq. (9).

Ferromagnets typically have resonance frequencies less
than 100 GHz. These frequencies correspond to a low temper-
ature of less than 1 K. Transport measurements in this tem-
perature range can reveal the low-temperature shot noise (9).
Such and considerably lower-temperature measurements are
standard in the study of the fractional quantum Hall effect
and require sophisticated cryogenic instrumentation. At the
temperature of liquid helium, approximately 4 K, the ratio
between the resonance energy and the thermal energy is
approximately 0.2.

The resonance frequencies in antiferromagnets can be one
to two orders of magnitude higher than those in ferromagnets.
Therefore, detecting the low-temperature limit of the shot
noise of Eq. (9) appears to be easier for antiferromagnets.
Antiferromagnets can have resonance frequencies in the THz
range. We can then expect to observe low-temperature shot
noise (9) at temperatures below 10 K when an antiferromagnet
precesses at its resonance frequency. At room temperature, the
ratio between the high-temperature shot noise of Eq. (10) and
the low-temperature shot noise of Eq. (9) is on the order of
2 × 10−4. Such corrections are small, but their measurement
might be possible since corrections due to, e.g., the spin Hall
magnetoresistance (SMR), are of a similar magnitude and
routinely probed [61].

We conclude that detection of low-temperature shot noise
(9) should be possible in antiferromagnets and, with cryo-
genic techniques, in ferromagnets. Measurement of the high-
temperature shot noise (10) is possible in both systems.

III. SPIN DYNAMICS

In this section, we will compute the spin-dynamics factor
D(ω) in ferromagnets and antiferromagnets. Consider a uni-
axial ferromagnet with the easy axis along the z direction. The
free energy density is

fF = − M

2γ
ωAm2

z + δ fF , (11)

where m is a unit vector along the magnetization with
magnitude M and ωA is the anisotropy energy. A trans-
verse oscillating magnetic field drives the spin dynamics
via the additional contribution to the free energy, δ fF =
ωH⊥(mx cos ωt + my sin ωt )M/γ , where ωH⊥ is the magni-
tude of transverse magnetic field in units of frequency. We
compute the spin susceptibility that governs the spin dynamics
factor (8) from the Landau-Lifshitz-Gilbert equation

∂m
∂t

= −m × ωeff + αm × ∂m
∂t

, (12)

where the effective field ωeff depends on the free energy
density (11) as ωeff = −γ δ fF /Mδm and α is the Gilbert
damping constant. In linear response, the spin dynamics factor
(8) then becomes

DF (ω) = ω2
H⊥

2[(ω − ωA)2 + α2ω2]
. (13)

As in Eq. (8), the spin dynamics factor of Eq. (13) is
quadratic in the transverse fields, represented by their mag-
nitudes ωH⊥ in units of frequency. At resonance, DF (ωA) =
(ωH⊥/αωA)2/2.

Similarly, we can consider a uniaxial antiferromagnets
with the easy axis along the z direction. The free energy
density is:

fAF = L

2γ

[
ωE m2 − ωAn2

z

] + δ fAF , (14)

where n is a unit vector along the staggered field, m is the
dimensionless small magnetic moment, L is the magnitude
of the staggered magnetization, γ is the gyromagnetic ra-
tio, ωE is the exchange energy, and ωA is the anisotropy
energy. A transverse oscillating magnetic field drives the
spin dynamics via the additional contribution to the free en-
ergy, δ fAF = ωH⊥(mx cos ωt + my sin ωt )L/γ . The coupled
Landau-Lifshitz-Gilbert equations for the staggered field n
and the magnetic moment m are

∂n
∂t

= −n × ωm,eff − m × ωn,eff

+αn × ∂m
∂t

+ αm × ∂n
∂t

, (15)

∂m
∂t

= −n × ωn,eff − m × ωm,eff

+αn × ∂n
∂t

+ αm × ∂m
∂t

, (16)

where the effective fields ωn,eff and ωm,eff depend on the free
energy density (14) as ωn,eff = −γ δ fAF /Lδn and ωm,eff =
−γ δ fAF /Lδm.
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In linear response, and in the exchange approximation,
ωE � ωA, the spin dynamics factor (8) becomes:

DAFM(ω) = ω2ω2
H⊥

2
(
ω2 − ω2

r

)2 + 8α2ω2ω2
E

, (17)

where ωr = √
2ωAωE is the resonance energy and α is the

Gilbert damping constant. As in Eqs. (8) and (13), the spin dy-
namics factor of Eq. (17) is quadratic in the transverse fields,
represented by their magnitudes ωH⊥ in units of frequency.
At resonance, DAFM(ωr ) = (ωH⊥/αωE )2/8. Generalizations
to other anisotropies and the inclusion of effects arising from
external magnetic fields are straightforward in both antiferro-
magnets and ferromagnets.

IV. JUNCTIONS

In this section, we compute the shot noise coefficients A for
simple models of ballistic and disordered junctions. Beyond
the scope of the present paper, extensions of these calculations
are feasible. Generalizations to consider the effects of the
band structure with ab initio calculations and more compli-
cated models of junctions and disorder are possible. Similar
calculations have been successfully carried out for interface
resistances [62], spin-transfer torques [63], spin pumping
[64], and Gilbert damping [43,45].

In ferromagnets, the potential landscapes for spin-up and
spin-down electrons strongly differ. Therefore, the reflection
and transmission amplitudes as well as probabilities are spin
dependent. In antiferromagnets, the reflection and transmis-
sion probabilities are the same for spin-up and spin-down
electrons under compensation of the localized spins. Nev-
ertheless, the quantum mechanical phases associated with
reflection and transmission differ for the two spin directions.

A. Clean metal

In clean, ballistic systems, the waveguide modes experi-
ence either perfect transmission or perfect reflection. In a
simple semiclassical model of a normal metal-ferromagnet-
normal metal junction, we can assume N↑ propagating chan-
nels for spin-up electrons and N↓ propagating channels for
spin-down electrons. Then,

All = 2e2

h
PN , (18)

where P = (N↑ − N↓)/(N↑ + N↓) is the polarization and N =
N↑ + N↓ is the total number of conducting channels. Simi-
larly, the two-terminal conductance becomes Gll = e2N/h so
that the ratio between the shot-noise coefficient and conduc-
tance is All/Gll = 2P.

In a similar model of compensated antiferromagnets, N↑ =
N↓, and thus,

All = 0 (19)

while Gll = e2N/h so that All/Gll = 0. Therefore, for this
simple semiclassical model, the shot noise vanishes in antifer-
romagnets. However, this is generically not the case for other
kinds of junctions. More realistic models of clean junctions
will probably result in a small but finite shot noise coefficient
in antiferromagnets as well. The semiclassical results for clean

junctions illustrate that the shot noise coefficients can strongly
differ in antiferromagnets and ferromagnets.

B. Disordered metals

When sufficient disorder exists, either because of bulk
impurity scattering or scattering at boundaries, we can use
random matrix theory to evaluate the average of scattering
matrices. In the semiclassical regime, the phases of the reflec-
tion and transmission coefficients are random. They are also
statistically independent for spin-up and spin-down electrons.
The averages of the transmission and reflection probabilities
are [62]:

T σ
i j = 1

N

1

1 + πσ

(20)

and

Rσ
i j = 1

N

πσ

1 + πσ

, (21)

where πσ = ρσ dNe2/Ah, N is the number of waveguide
modes, ρσ is the resistivity for each spin direction, d is the
width of the junction, A is the cross section of the junc-
tion, and the spin directions are σ =↑ and σ =↓. We can
then compute that the spin-dependent conductance is Gσ =
(e2/h)

∑
i j Ti j = Gdσ /(1 + Gdσ /Gsh), where the conductance

of a diffusive conductor is Gdσ = A/ρσ d and the Sharvin
conductance is Gsh = e2N/h. A more intuitive expression is
that the resistance consists of the Sharvin resistance in series
with the diffusive resistance, 1/Gσ = 1/Gsh + 1/Gdσ . The
total conductance is G = G↑ + G↓.

In ferromagnets, the conductances for spin-up and spin-
down electrons differ. Based on Eqs. (20) and (21), we can
now obtain the average:

〈All〉 = 2

(
G↑ + G↓ − 2

G↑G↓
Gsh

)
. (22)

In the diffusive regime, G↑, G↓ � Gsh, and we obtain All =
2G. This result agrees with the results computed in Ref. [47]
for a double barrier tunnel junction system. While the trans-
port regimes in our approach and Ref. [47] are not identical,
the treatments seem to share the common feature that strong
randomization of the electron trajectories occurs. It is, there-
fore, natural that the results agree in this limited case.

In compensated antiferromagnets, spin-up and spin-down
electrons have the same conductance, G↑ = G↓ = G/2. How-
ever, the phases of the reflection and transmission coeffi-
cients for the spin-up and spin-down electrons remain statis-
tically independent, as in ferromagnets. Then, the shot noise
coefficient is:

〈All〉 = 2
e2

h

(
G − G2

2Gsh

)
, (23)

and in the diffusive limit, we obtain the same result as for
a ferromagnet, All = 2G. We conclude that for disordered
ferromagnets and antiferromagnets, the ratio between the
shot noise coefficient and the two-terminal conductance is
All/Gll = 2.
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FIG. 2. Schematic example of a three-terminal device. A scatter-
ing region (red area) is connected via leads (green areas) to particle
reservoirs (blue areas). Currents can flow between the reservoirs.

V. THEORY OF PUMPING-INDUCED NOISE

We will, in this section, present our general results for noise
enhancements by adiabatic pumping. We derive these results
from the general scattering theory with multiterminals and
an arbitrary number of waveguide modes in Appendix. The
results in this section are valid for any periodic drive and are
not limited to spin-dynamics driven noise discussed in Sec. II.
We will, in Sec. VI, use the results in this section to obtain the
results for the spin-dynamics drive noise that we presented in
Sec. II.

We consider phase-coherent conductors attached to reser-
voirs via leads. Within the conductors, scattering by spin-
conserving impurities, the spin-orbit interaction, and the ex-
change field arising from localized spins can occur. Above,
in Sec. II, we have assumed that spin angular momentum
is conserved and that the magnetization in ferromagnets or
staggered fields in antiferromagnets is homogeneous. How-
ever, we do not use these assumptions here when presenting
the general formula for pumping-induced noise. Appendix A
gives details of the derivation of the formulas presented in this
section.

While we consider a general setup with many reservoirs,
we give an example of a three-terminal device in Fig. 2.
Currents can flow between the reservoirs, arising from either
differences in bias voltages therein or time-dependent changes
within the scattering region. Above, we have considered the
latter case when spin excitations drive the scattering region.
Our focus is on the current fluctuations when all of the
reservoirs are at equilibrium.

We consider a general phase-coherent conductor. Scatter-
ing matrices then describe transport between the reservoirs.
All orbital waveguide modes and spin quantum numbers
span these scattering matrices. In general, the matrices have
diagonal and off-diagonal components in orbit and spin. In our
case, since the scattering region changes in time, the scattering
matrices also have a complex temporal dependence. However,
when the temporal changes are slow compared to the typical
electron transport time, knowing the temporal behavior of
the frozen scattering matrix is sufficient (see Appendix). We
evaluate the frozen scattering matrix at a snapshot in time

when the driver has a constant value. This scattering matrix
is Sαnγ l (t, ε), where α is the outgoing lead, n is the outgoing
waveguide mode (including spin), γ is the incoming lead, l is
the incoming waveguide mode (including spin), t is the time,
and ε is the electron energy.

The current fluctuations are

Pζη(t1, t2) = 1
2 〈�Iζ (t1)�Iη(t2) + �Iη(t2)�Iζ (t1)〉 , (24)

where �Iζ (t ) = Iζ (t ) − 〈Iζ 〉(t ) is the deviation of the current
Iζ (t ) from its expectation value 〈Iζ (t )〉 in lead ζ . The period
of the driver is T = 2π/ω. Following Ref. [58], apart from a
factor of 2, we define the zero frequency noise as:

pζη =
∫ T

0
dt

1

T

∫ ∞

−∞
dτPζη(t + τ/2, t − τ/2) . (25)

Our first central step is that we compute a general expres-
sion for the noise induced by a slowly and periodic varying
change in the scattering region. When the elastic transport
properties are weakly energy dependent, the current cross
correlations are:

pζη =
∑

q

X (s)
ζη (h̄ωq)kBT

+ 1

2

∑
q

X (s)
ζη (h̄ωq)

[
h̄ωq coth

h̄ωq

2kBT
− 2kBT

]
, (26)

where the first term represents the thermal noise contribution
and the second represents the shot noise contribution. The
frequency quantum h̄ωq relates to the period T of the driver by
h̄ωq = 2πq/T , where q is an integral number. The coefficients
X (s)

ζη (h̄ω) = [Xζη(h̄ω) + Xζη(−ωq)]/2 are determined by the
scattering matrices:

Xζη(h̄ωq) = e2

h

∑
nζ nη

∑
βmγ l

�ζnζ βmγ l (ωq)�ηnηγ lβm(−ωq) , (27)

where

�ζnζ βmγ l (ωq) = 1

T

∫ T

0
dte−iωqt�ζnζ βmγ l (t ) , (28)

�αnβmγ l (t ) = [δαnβmδαnγ l − S∗
αnβm(t )Sαnγ l (t )], (29)

and the static (“frozen”) scattering matrices are to be evaluated
at the Fermi energy.

The result for the thermal and shot noise of Eq. (26) are
general for any drivers and valid when the elastic transport
properties are weakly energy-dependent. In the next Sec. VI,
we use this general result to find the noise driven by spin
excitations.

VI. SPIN DYNAMICS-DRIVEN NOISE

In this section, we explain how we can use the general
result of the pumping-driven noise in Sec. V to obtain the
shot noise when the pumping is due to spin dynamics. We
consider homogeneous spin dynamics relevant to ferromag-
netic resonance and antiferromagnetic resonance. Now, we
assume the conservation of spin angular momentum as in the
phenomena of spin-transfer torques and spin pumping. We
do not explicitly consider the spin-orbit coupling instrumental
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relevant for, e.g., spin-orbit torques, but further investigations
using the same formalism can elucidate its role.

Since the degrees of freedom of the orbital are indepen-
dent of the spin degrees of freedom, we use the notation
that the states n consist of orbital quantum numbers no and
spin quantum numbers s, n → nos. When spin angular mo-
mentum is conserved, we separate the frozen S matrix into
spin-independent [labelled by superscript “(c)”] and spin-
dependent terms [labelled by superscript “(s)”]:

Sηnosζmos‘ = S(c)
ηnoζmo

δss‘ + σss‘ · n(t )S(s)
ηnoζmo

, (30)

where n is a unit vector in the direction of the order parameter,
n2 = 1. The calculations in this section are valid for both
ferromagnets where the order parameter is the magnetization
and for antiferromagnets where the order parameter is the
staggered field.

As the spins precess, only the spin-dependent part of the
scattering matrix acts as a pump. Inserting the spin-dependent
scattering matrix into Eq. (27) and using the unitarity of
the scattering matrices and the normalization n2 = 1, after
considerable algebra, we obtain that the factor that appears
in the general expression for the noise of Eq. (26) becomes:

X (s)
ζη =

∫ T

0

dt1
T

e−iωqtq

∫ T

0

dt2
T

eiωqt2

×
[

Gζη + Gηζ + Aζη + Aηζ

8
[n(t1) − n(t2)]2

]
, (31)

where the conductance tensor G is defined in Eq. (4) and the
shot noise coefficients A are defined in Eq. (6).

To proceed to find the expression for the spin-dynamics
driven shot noise of Eq. (2) with the thermal contribution of
Eq. (3) and the shot noise contribution of Eq. (5), we need to
evaluate the following integral appearing in the last term of
Eq. (31):

W =
∫

dt1
T

e−iωqtq

∫
dt2
T

eiωqt2 [n(t1) − n(t2)]2 (32)

to the second order in the deviation of the order parameter
from equilibrium. To this end, expanding to the linear order is
sufficient:

n(t1) − n(t2) =
∑
±

δn±[e±iωt1 − e±iωt2 ], (33)

where δn+ and δn− are transverse to the equilibrium spin
directions n0.

Inserting the linear expansion of Eq. (33) into Eq. (32),
we then obtain that W (h̄ωq = 0) = 2δn+ · δn− and W (h̄ωq =
±h̄ω) = −δn+ · δn−. As a consequence, we find

X (s)
ζη (h̄ωq = 0) = (Gζη + Gηζ ) + Aζη + Aηζ

8
2δn+ · δn−

(34)
and

X (s)
ζη (h̄ωq = ±h̄ω) = −Aζη + Aηζ

8
δn+ · δn− . (35)

For both ferromagnets and antiferromagnets, we can now
insert the expressions for X (s) of Eqs. (34) and (35) into the
general expression for the noise of Eq. (26). The thermal
contribution to the noise is then Eq. (3) and is independent

of the spin oscillations. The shot noise contribution is given
in Eq. (5).

VII. CONCLUSIONS

In conclusion, we have presented general expressions for
the noise driven by ferromagnetic and antiferromagnetic res-
onance. The noise consists of thermal and shot noise con-
tributions. Conductances determine the thermal noise. Shot
noise coefficients and the frequency-dependent magnitude of
the spin excitations determine the shot noise. The shot noise
attains its maximum at ferromagnetic resonance in ferromag-
nets and antiferromagnetic resonance in antiferromagnets.

The shot noise parameter can be evaluated for arbitrarily
junctions. We have given examples for ballistic systems and
disordered systems. The ratio between the spin dynamics-
driven shot noise parameter and the conductance is smaller
for ballistic systems than for disordered systems. This feature
is similar to the behavior of the Fano factor associated with
voltage-driven shot noise.

Our formalism can be generalized to treat the spin-orbit
coupling related to spin-orbit torques and electric (charge)
pumping [54,65]. Such extensions will shed further light on
spin-charge conversions related to spin dynamics.
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APPENDIX: DERIVATION OF GENERAL THEORY OF
NOISE DUE TO ADIABATIC PUMPING

Using Floquet scattering theory, Ref. [58] considered
pumping-driven noise in a multiterminal configuration with
one-dimensional leads. In other words, each lead only had
one waveguide mode. The purpose of the present section is
to generalize this description to find equations for arbitrary
two- and three-dimensional leads that can also capture the
effects of impurities and boundary scattering. To this end, we
include many waveguide modes. In our derivation, we also
found that an alternative path without explicitly using Floquet
scattering states could be easily followed. We will demon-
strate that our results agree with the results in Ref. [58] for
one-dimensional leads.

In metallic systems, the energy quantum associated with
the pump oscillations is typically much smaller than the Fermi
energy. In this regime, the relevant previous result is Eq. (27)
in Ref. [58] when the scattering matrix is weakly energy
dependent due to the noise:

pMζη = p(th)
ζη + p(sh)

Mζη . (A1)

The expression for the thermal noise p(th)
ζη is the same as that

in Eq. (3) in the limit of only one mode in all leads. The
one-dimensional shot noise contribution in the notation of
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Ref. [58] is:

p(sh)
Mζη = 2e2

h

∞∑
q=1

C(sym)
ζη,q

[
h̄ω coth

h̄ωq

2kBT
− 2kBT

]
, (A2)

where C(sym)
ζηq = [Cζηq + Cζη−q]/2,

Cαβq =
∑
γ δ

[S∗
αγ Sαδ]q[S∗

βδSβγ ]−q, (A3)

and the (frozen) scattering matrices should be evaluated at the
Fermi energy EF . The Fourier transform of the product of the
(frozen) scattering matrices (at the Fermi energy) is defined
as follows:

[S∗
αγ Sαδ]q =

∫ T

0

dt

T
eiqωt [S∗

αγ (t )Sαδ (t )]. (A4)

We reproduce the result in Ref. [58] represented by Eqs. (A1),
(A2), (A3), and (A4) for one-dimensional leads and ob-
tain generalizations to leads with an arbitrary number of
waveguide modes.

The starting point for our derivation is the expression for
the current operator in lead α:

Îα (t ) = 2π h̄e
∑

n

[â†
αn(t )âαn(t ) − b̂†

αn(t )b̂αn(t )], (A5)

where α denotes the lead and n denotes the transverse waveg-
uide mode (orbital and spin). The outgoing operators b̂ are
related to the incoming operators â via the time-dependent
scattering matrix S:

b̂αn(t1) =
∑
βm

∫ ∞

−∞
dt2Sαnβm(t1, t2)âβm(t2) . (A6)

We use the Fourier transform as follows:

âβm(t ) = 1

2π h̄

∫
dεe−iεt âβm(ε) (A7)

and the corresponding inverse Fourier transform. At thermal
equilibrium, the thermal averages are:

〈â†
αn(ε2)âβm(ε1)〉eq = δαβδnmδ(ε2 − ε1) f (ε1) , (A8)

where f (ε) is the Fermi-Dirac distribution function that de-
pends on the chemical potential μ and the thermal energy kBT .
The fluctuations are:

〈â†
αk (ε1)âβl (ε2)â†

γ m(ε3)âδn(ε4)〉
−〈â†

αk (ε1)âβl (ε2)〉〈â†
γ m(ε3)âδn(ε4)〉

= δαkδnδβlγ m f (ε1)[1 − f (ε2)]δ(ε1 − ε4)δ(ε2 − ε3). (A9)

We express the scattering matrix in terms of the Wigner
representation [66]:

S(t, t ′) = 1

2π h̄

∫ ∞

−∞
dεS

(
t + t ′

2
, ε

)
e−iε(t−t ′ )/h̄ . (A10)

The inverse transform is:

S(t, ε) =
∫ ∞

−∞
dτS(t + τ/2, t − τ/2)eiετ/h̄ . (A11)

By Taylor expanding the S-matrix S((t + t ′)/2, ε) around
S(t, ε) in the Wigner representation of Eq. (A10), we obtain:

S(t, t ′) = 1

2π h̄

∫ ∞

−∞
dεe−iε(t−t ′ )/h̄eih̄∂ε∂t /2S(t, ε). (A12)

The current operator of Eq. (A6) can then be expressed as:

Iα (t ) = e

2π h̄

∑
nβmγ l

∫
dε1

∫
dε2ei(ε1−ε2 )t/h̄

×φαnβmγ l (t, ε1, ε2)â†
βm(ε1)âγ l (ε2), (A13)

where

φαnβmγ l (t, ε1, ε2)

= δαnβmδαnγ l − e−ih̄∂ε1 ∂t /2S∗
αnβm(t, ε1)eih̄∂ε2 ∂t /2Sαnγ l (t, ε2).

(A14)

The current fluctuations are defined in Eq. (24) and can be
expressed as:

Pζη(t1, t2) = 1
2 [Fζη(t1, t2) + Fηζ (t2, t1)] (A15)

in terms of

Fζη(t1, t2) = 〈Iζ (t1)Iη(t2)〉 − 〈Iζ (t1)〉〈Iη(t2)〉 . (A16)

Using the expectation value of the fluctuations of Eq. (A9),
we find:

Fζη = e2

(2π h̄)2

∑
nζ nηβmγ l

∫
dε1

∫
dε2ei(ε1−ε2 )(t1−t2 )/h̄

×φζnζ βmγ l (t1, ε1, ε2)φηnηγ lβm(t2, ε2, ε1) f (ε1)

× [1 − f (ε2)]. (A17)

We follow Ref. [58] [Eq. (9)], apart from a factor of 2, and
define the zero-frequency noise as in Eq. (25). We therefore
introduce:

fζη =
∫ T

0

dt

T

∫ ∞

−∞
dτFζη(t + τ/2, t − τ/2) (A18)

so that

pζη = ( fζη + fηζ )/2. (A19)

We therefore first consider quantities of the form:

λ =
∫ T

0

dt

T

∫ ∞

−∞
dτei(ε1−ε2 )τ/h̄A(t + τ/2)B(t − τ/2) ,

(A20)
where A(t + τ/2) and B(t − τ/2) are periodic functions with
period T that depend on the energies ε1 and ε2. The Fourier
transforms of the periodic functions are:

A(t ) =
∑

n

eiωnt An (A21)

and similarly for B(t ), where ωn = n2π/T and n is an integral
number. The inverse transforms are defined in corresponding
ways. We then obtain:

λ = 2π h̄
∑

n

AnB−nδ(h̄ωn + (ε1 − ε2)). (A22)
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Using Eqs. (A17) and (A18), the low-frequency noise is of the
form:

κ =
∫

dε1

∫
dε2 f (ε1)[1 − f (ε2)]2π h̄

×
∑

n

AnB−nδ(h̄ωn + (ε1 − ε2)), (A23)

where An and B−n depend on the energies ε1 and ε2. Carrying
out the integral over the energy ε2:

κ = 2π h̄
∑

n

∫
dε1 f (ε1)[1 − f (ε1 + h̄ωn)]AnB−n, (A24)

where the energy ε2 = ε1 + h̄ωn in the coefficients An

and B−n.
In metallic systems, the Fermi energy and exchange inter-

action are typically much larger than the driving frequency.
In this case, we can approximate the scattering matrix as
independent of the driving frequency h̄ωn and the temperature
kBT . We can then evaluate the scattering matrices at the Fermi
energy and obtain:

κn = An(εF )B−n(εF )2π h̄h̄ωn[1 + fBE(h̄ωn, kBT )], (A25)

where the Bose-Einstein distribution function is:

fBE = 1

exp h̄ωn/kBT − 1
. (A26)

We then obtain:

fζη =
∑

q

Yζη(ωq)h̄ωq[1 + fBE (h̄ωq)], (A27)

where

Yζη(h̄ωq) = e2

h

∑
nζ nη

∑
βmγ l

φζnζ βmγ l (ωq)φηnηγ lβm(−ωq), (A28)

and we have defined the Fourier transform as:

φζnζ βmγ l (ωq) = 1

T

∫ T

0
dte−iωqtφζnζ βmγ l (t, εF , εF ) . (A29)

We see that Yζη(−h̄ωq) = Yηζ (h̄ωq). Consequently, using
Eq. (A19) and rewriting the Bose-Einstein distribution,
we obtain:

pζη =
∑

q

Y (s)
ζη (h̄ωq)kBT

+ 1

2

∑
q

Y (s)
ζη (h̄ωq)

[
h̄ωq coth

h̄ωq

2kBT
− 2kBT

]
, (A30)

where the first term represents the thermal noise contribution,
the second represents the shot noise contribution, and

Y (s)
ζη (h̄ωq) = [

Y (s)
ζη (h̄ωq) + Y (s)

ζη (−h̄ωq)
]/

2. (A31)

At this point, consistent with our assumption that the
scattering matrix is energy independent on the scale of the
frequency and temperature, we can use the static scattering
matrix in the evaluation of Y , Y → X , where X is defined
in Eq. (27). Hence, we obtain Eq. (26) with the quantities
introduced in Eqs. (27)–(29).
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