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We study the geometrical conditions for stabilizing magnetic skyrmions in cylindrical nanostrips and
nanotubes of ferromagnetic materials with chiral interactions. We obtain the low-temperature equilibrium state
of the system implementing a simulation annealing technique for a classical spin Hamiltonian with competing
isotropic exchange and chiral interactions, radial anisotropy and an external field. We address the impact of
surface curvature on the formation, the shape and the size of magnetic skyrmions. We demonstrate that the
evolution of the skyrmion phase with the curvature is controlled by the competition between two characteristic
lengths, namely the curvature radius, R (geometrical length) and the skyrmion radius, Rsk (physical length). In
narrow nanotubes (R < Rsk) the skyrmion phase evolves to a stripe phase, while in wide nanotubes (R > Rsk) a
mixed skyrmion-stripe phase emerges. Most interestingly, the mixed phase is characterized by spatially separated
skyrmions from stripes owing to the direction of the applied field relative to the surface normal. In the stability
regime (R � Rsk) skyrmions remain circular and preserve their size as a consequence of their topological
protection. Zero-field skyrmions are shown to be stable on curved nanoelements with free boundaries within the
same stability region (R � Rsk). The experimental and technological perspectives from the stability of skyrmions
on cylindrical surfaces are discussed.
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I. INTRODUCTION

Magnetic skyrmions are self-localized vortexlike spin
structures with axial symmetry [1]. They have been mainly
studied in noncentrosymmetric bulk crystals and their thin
films [2–4], as well as in ultrathin ferromagnetic (FM) films
on heavy metal (HM) substrates [5,6], in which a sizable
Dzyaloshinskii-Moriya interaction (DMI) [7,8] induces their
stability. From the point of view of technological applications,
two-dimensional magnetic skyrmions formed in FM-HM in-
terfaces have potentials for a variety of innovative robust and
high-density magnetic storage technologies due to their pro-
tected topology and nanoscale size [9]. Magnetic skyrmions
on FM-HM nanostrips can be driven by a transverse spin cur-
rent [9–11] that is generated by a longitudinal electrical cur-
rent with five to six orders of magnitude smaller density than
that needed to electrically drive a typical domain wall [6], thus
pointing to energy efficient skyrmion-based racetrack-type
memory devices [9,12]. However, current-driven skyrmions
will drift towards the racetrack side edges due to the action
of a magnetic Magnus force stemming from the chirality of
their spin structure [13,14]. This phenomenon known as the
Skyrmion Hall effect (SkHE) leads to their annihilation at
the racetrack edge and the loss of stored information. Vari-
ous proposals [15–19] for creating a potential barrier to the
sideways drift of skyrmions have been presented, which aim
to the confinement of skyrmions in the central region of the
racetrack. Tuning of the perpendicular [19] or the crystalline
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[18] magnetic anisotropy, transverse modulation of the ferro-
magnetic layer thickness [17] and transverse modulation of
the ferromagnetic damping constant [20] have been proposed
as methods to create a low resistance path for skyrmions
in the middle part of a nanostrip and suppression of the
SkHE. Along the same spirit, an exchange coupled pair of
skyrmions hosted in an antiferromagnetically coupled pair of
nanostrips were shown to exhibit null SkHE [21], due to their
opposite chiralities. Synthetic antiferromagnets are promising
candidate systems for realization of null SkHE; however, their
requirement for double amount of material raises a practical
issue in device design. A final aspect hampering the use of
magnetic skyrmions in racetrack memory applications, is their
uncontrollable excitation realized at the free side edges of
nanostrips and thin films [22] leading to error reading-writing
events.

From the above, it appears that the possibility of mag-
netic skyrmions generation and manipulation on boundary-
free samples would be a desirable direction of research and
curved nanostructures, as, for example, magnetic nanowires
and nanotubes, constitute a promising option. The magnetic
structure and soliton-type excitations on curvilinear nanos-
tructures have attracted intensive research effort in recent
years, motivated by the fact that the curvilinear geometry and
topology of a nanostructure offer a tool for tailoring the mag-
netic state of a FM sample [23]. The appearance of curvature-
induced DMI [24] in curved ferromagnetic thin films offers
the possibility to form small-sized skyrmions in the region of
maximal curvature. This general result was thoroughly studied
for spherical ferromagnetic shells with and without intrinsic
DMI [25]. Also, the skyrmion radius is controlled by the
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curvature gradient, which results in tunable-size skyrmions
[24]. Besides, multiplet of skyrmion states with possible
switching between them and reconfigurable skyrmion lattices
have been realized in the region of a curvilinear defect on
an otherwise planar surface [26]. For the particular case of
cylindrical nanotubes, recent numerical works [27,28] study
the statics and current-driven dynamics of Bloch skyrmions in
the absence [27] or presence [28] of an applied magnetic field.
These works report a weakly elongated shape of skyrmions
hosted on nanotubes [27,28]. Also, the skyrmion size in-
creases weakly with nanotube radius [28]. When a uniform
field is applied normal to the nanotube axis there exists a
critical polar angle beyond which the current-driven skyrmion
deforms and annihilates. The critical angle is independent on
nanotube radius and decreases with increasing field strength
[28]. In previous numerical studies [28] the effect of film
curvature on the characteristics of skyrmions (shape, size) has
been considered under dynamic conditions, namely, during
the electric current-driven motion, which could, in principle,
interfere with the skyrmion structure.

In the present work, we focus on the low-temperature
equilibrium properties of the skyrmion phase in cylindrical
ferromagnetic nanostructures with chiral interactions (DMI)
and examine the conditions under which curvature-driven
skyrmion instability occurs. We study Néel Skyrmions, as
those formed on a thin ferromagnetic film on a heavy metal
substrate, because the FM/HM interfaces have been so far
most promising from the point of view of technological ex-
ploitation in skyrmion-based devices [9]. Our structural model
accounts for adaption of the DMI vector to the curvature of
the nanostructure, thus providing a more realistic description
of the interplay between isotropic exchange (Heisenberg)
and chiral interactions on curved surfaces. We focus on
the interplay between intrinsic interactions (exchange, DMI,
anisotropy) under increasing curvature using a lattice spin
model. Thus, we do not include in the total energy the
curvature-induced DMI and curvature-induced anisotropy
terms, as introduced for a general curved surface in Ref. [25].
More specifically, for the cylindrical geometry considered
here, the curvature-induced terms have interaction strengths
expressed as [25,27] Dcurv = 2A/R and Kcurv = A/R2, with
A the exchange stiffness and R the cylinder radius. For pa-
rameters corresponding to a typical FM/HM interface [29,30]
and large enough cylinder radius that concern us here (see
Sec. III), the curvature-induced parameters become 5 to 10
times smaller than the corresponding intrinsic parameters and
have thus been ignored. Our results demonstrate the feasibility
of skyrmion formation along the ridge of a cylindrical nan-
otube, where the external field remains almost normal to the
surface, provided that the radius of the nanotube remains at
least comparable to the skyrmion radius (R � Rsk ). Skyrmion
instability is associated with a decrease of the radial com-
ponent of the applied field below a critical value or equiva-
lently with a critical curvature angle (φ0) for a given applied
field. This effect leads to shrinkage of the skymion-phase
pocket in the anisotropy-field phase diagram. Shape analysis
of the hosted skyrmions shows that the circular shape is
approximately preserved up to the instability point. The same
geometrical criteria (φ0 � φc

0, R � Rsk) define the stability
regime of zero-field skyrmions on curved nanoelements.

FIG. 1. (a) A planar nanostrip, modeled by a square lattice with
length Lz = 10a and width Ly = 6a, is wrapped around cylinders
with successively smaller radius and eventually forms a cylindrical
nanotube. Every cylinder has the main axis along the Cartesian z axis
and is characterized by the curvature radius R and the central angle
φ0. The x axis is normal to the cylindrical surface at the midpoint of
the nanostrip. (b) Top view of a curved nanostrip with Ly = 6a under
a uniform magnetic field along the x axis (left) as seen in unfolded
view (right).

II. LATTICE MODEL AND SIMULATION METHOD

We consider a planar nanostrip in the yz plane, cut from
a two-dimensional square lattice with lattice constant a and
Castesian coordinates −Ly/2 � y � Ly/2 and −Lz/2 � z �
Lz/2. A curved nanostrip is formed by wrapping the initial
nanostrip around a cylinder of radius R along the z axis. The
principal direction [01] of the square lattice is always parallel
to the z axis. The x axis is always normal to the cylindrical
surface at the midpoint of the nanostrip (Fig. 1). The width of
the nanostrip defines the central angle of the curved nanostrip
through φ0 = Ly/R. A planar nanostrip (R → ∞, φ0 = 0) and
a cylindrical nanotube (R �= 0, φ0 = 3600) are then consid-
ered as limiting cases of the curved nanostrip. The geometry
of our two-dimensional lattice model approximately describes
a continuous cylindrical nanostrip with infinitely small thick-
ness (t � R). We are interested in the magnetic behavior of
a curved interface between a thin ferromagnetic film and a
heavy metal substrate. For this purpose we use the following
expression for the total energy

E = −1

2
J

∑
〈i j〉

mi · m j − 1

2
d

∑
〈i j〉

Di j · (mi × m j )

− k
∑

i

(mi · ni )
2 − h

∑
i

mi · hi, (1)
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where mi is the magnetic moment unit vector (spin) of ith site.
The first term in Eq. (1) is the symmetric exchange energy
contribution and is restricted to first nearest neighbor sites de-
noted as 〈i j〉. The second term is the antisymmetric exchange
(DMI) energy. The DMI vector Di j lies on the surface of the
nanostrip with direction normal to the first nearest neighbor
bond vector ri j and has the form Di j = ni×ri j , with ni the
unit vector in the radial direction on site i. This expression
is analogous to Di j = x×ri j that describes the DM coupling
at planar interfaces along the yz-plane [29,31]. The main
difference with the planar case is that for curved nanostrips
the direction of the vector Di j becomes site-dependent, owing
to the variation of the radial direction across the surface. The
consequences of this geometrical condition are discussed in
the next section. The 1/2 prefactor of the first and second
terms accounts for the double-counting of energy contribu-
tion from pairs of nearest neighboring sites. The third term
is the uniaxial anisotropy energy with easy axis along the
local radial direction. We assume here a generalization of the
perpendicular anisotropy observed in thin ferromagnetic films
on a heavy metal substrate [9,29]. The final term is the Zee-
man energy due to an applied field, which is assumed either
homogeneous along the x axis (hi = x) or radial (hi = ni), as
explicitly mentioned in the numerical results. Magnetostatic
energy terms are neglected in Eq. (1), because for infinitely
thin shells (t � R) they can be reduced to a correction to the
local anisotropy [32,33]. The energy parameters J, d, k, h en-
tering Eq. (1) are related to the corresponding micromagnetic
parameters through the relations J ≈ 2Aa, d ≈ Da2, and k ≈
Kua3, h ≈ MsBa3, where A is the exchange stiffness, D the
DMI energy density, Ku the anisotropy energy density, Ms the
saturation magnetization and B the applied field. The above re-
lations are exact in the case of cubic discretization of a planar
nanostrip. However, we use them also in the case of a cylin-
drical nanostrip assuming that the discretization cell is almost
cubic, which is a reasonable approximation when R 	 a. We
use material parameters typical of a transition metal thin film
on a heavy metal substrate [29,30], namely, Ms = 580 kA/m,
A = 10 pJ/m, D = 5 mJ/m2, and Ku = 500 kJ/m3. The ap-
plied field is B = 0.9 T and the lattice constant a = 2 nm,
which is below the magnetic length lm = √

A/Ku ≈ 4.5 nm.
Then the rationalized (dimensionless) parameters read d/J =
0.5, k/J = 0.1, h/J = 0.1 and they consist a complete set of
parameters that determines the equilibrium state configuration
of the spin system.

In the absence of anisotropy (k = 0) the pitch length of
the helical phase [34,35] p = 2πa/tan−1(d/J ) serves as a
rough estimate of the 2D skyrmion diameter [36]. For the
material parameters mentioned above we obtain p ≈ 13.6a.
The anisotropy (k �= 0) introduced in our model is expected
to weakly reduce the skyrmion radius. We use the value of
the pitch length as a rough estimate of the skyrmion size in
anisotropic samples and the ratio p/L as an estimate of the
role of finite size effects, that is useful when we change the
discretization level (see Sec. III C) [34].

To obtain the low-temperature equilibrium state we fol-
low the simulated annealing method [37] using the metropo-
lis Monte Carlo algorithm with single spin updates and
temperature-dependent spin aperture that accelerates the ap-
proach to equilibrium. In particular, we follow a field-cooling

FIG. 2. Ground state configuration showing skyrmion formation
in cylindrical nanostructures along the z axis under application of a
uniform magnetic field along the x axis. Cylindrical surfaces are con-
structed by gradually wrapping an initial square sample Ly = Lz ≡ L.
Spin configurations are color coded according to the value of mag-
netization along the applied field direction (red = +1, blue = −1).
(a), (d) planar surfaces, (b) L = 50a, φ0 = 1500, R = 19.1a, (c)
L = 50a, φ0 = 3600, R = 8.0a, (e) L = 100a, φ0 = 1500, R = 38.2a,
and (f) L = 100a, φ0 = 3600, R = 15.9a, with a = 2 nm. With in-
creasing angle of curvature (φ0) the skyrmion phase transforms to
either a spiral phase, as in (c), or to a mixed skyrmion-spiral phase, as
in (f), depending on the value of the curvature radius (R). Parameters:
d/J = 0.5, k/J = 0.1, h/J = 0.1, and kBT/J = 10−3.

(FC) protocol under an applied field h/J = 0.1 bringing the
system from the high-temperature (kBT/J = 20) demagne-
tized state to the low-temperature (kBT/J = 10−3) state, with
a variable temperature step dT/T = 5%, which allows for
longer relaxation periods and as the temperature drops. At
each temperature step we perform 5000 Monte Carlo steps
per spin (MCSS) for thermalization followed by 5000 MCSS
for calculations of thermodynamic quantities. The thermal av-
erages of macroscopic quantities are obtained from sampling
every τ = 10 MCSS, in order to minimize statistical correla-
tions between sampling points. The thermodynamic quantities
at each temperature are averaged over Nseq = 50 independent
relaxation sequences to obtain the statistical errors.

III. RESULTS AND DISCUSSION

A. Skyrmion phase

We consider first the evolution of the skyrmion phase as
the curvature of the nanostructure increases. We start from a
planar surface in the yz plane and fold it gradually to form an
open cylindrical surface with axis along the Cartesian z axis
and eventually, a closed cylindrical surface corresponding to a
nanotube (Fig. 1). When we curve the 2D sample, we preserve
the dimensions (Ly, Lz ) of the initial planar system in order to
emphasize the role of curvature and exclude finite size effects.
Periodic boundary conditions are used solely along the z axis
of our curved samples, except for nanotubes, when the lateral
free boundaries couple among themselves, naturally.

As the curvature of the nanostrip increases the low temper-
ature magnetic state is modified. In Fig. 2 we show that for a
planar systems the well-known skyrmion lattice [38] occurs,

054439-3



KECHRAKOS, TZANNETOU, AND PATSOPOULOS PHYSICAL REVIEW B 102, 054439 (2020)

which consists of a hexagonal arrangement of skyrmions.
Obviously, the number of skyrmions increases with the area
of the planar sample, however their spatial density remains
almost unchanged.

As the angle of curvature increases, skyrmions close to the
free edges of the curved surface become elongated and finally
transform into spirals. This effect becomes more evident in
smaller samples, which are characterized by smaller values
of the curvature radius, as in Figs. 2(b) and 2(c). In a small
nanotube with radius R = 8a [Fig. 2(c)] stripes form almost
all around the surface. On the contrary, in a larger nanotube
with radius R = 15.9a isolated skyrmions are observed along
the front and the back ridge of the cylinder, where the external
field is almost normal to the surface, but spiral structures form
along the left and right sides of the large tube [Fig. 2(f)], where
the applied field is almost tangential to the surface.

Thus, skyrmion formation on nanotubes is strongly depen-
dent on the nanotube radius, with large radius nanotubes sup-
porting the coexistence of both skyrmion and stripe phases.
We underline the fact that the two phases are spatially sep-
arated with skyrmions forming along the ridge and stripes
forming on the sides of the nanotube. The width of the
region supporting skyrmions is determined by the size of the
skyrmion radius (Rsk) relative to the curvature radius (R). This
point is discussed further below.

To quantify the evolution of the skyrmion phase with
sample curvature, as depicted in Fig. 2, we calculate the
topological charge (Q). For a three component spin field
m(φ, z) on a cylindrical surface described by the coordinates
(φ, z), the topological charge is given as [25]

Q = 1

4π

∫∫
dφ dz m ·

(
∂m
∂φ

× ∂m
∂z

)
. (2)

For the numerical computation we implement an discrete
form of the topological charge [39] appropriate to a square
lattice wrapped around a cylindrical surface. Skyrmions have
a topological charge Q = ±1, depending on the direction
of the applied field relative to the surface normal. Thus the
absolute value of Q for a nanostrip in the skyrmion phase is
equal to the number of skyrmions supported.

For planar nanostrips shown in Fig. 2(a) (Q = 7.2) and
Fig. 2(d) (Q = 37.8), the values of Q deviate weakly from
integer values due to the misalignment of the moments located
on the free boundaries of the sample [32] and the thermal
fluctuations inherent to the Monte Carlo method. For curved
surfaces, however, the shape distortion of the skyrmions and
their evolution to stripe-like structures is not characterized
by integer values of Q, thus the calculation of Q based on
Eq. (2) assumes noninteger values and is only indicative of
the number of skyrmions observed in the mixed phase.

The dependence of the topological charge on the curvature
angle is shown in Fig. 3 for nanostrips with different sizes. We
notice that Q remains almost constant up to a characteristic
angle φc

0 ≈ 150◦ and then it drops monotonously to nearly
zero for nanotubes, indicating that only a small fraction of the
initial number of skyrmions are stable.

Examination of the low-temperature magnetization dis-
tribution in the radial direction in Fig. 3(a) indicates that
when a nanotube forms (φ0 � 3600), an equal number of
skyrmions in the front ridge (field-out) and the back ridge

FIG. 3. (a) Snapshots of the low temperature magnetic state
showing the evolution of the skyrmion phase with curvature angle
for a 100a×100a sample under a uniform magnetic field along the
x axis. The curved samples are unfoled on the yz plane for visual
clarity [see Fig. 1(b)]. The color code indicates the projection of
local moments on the radial direction (red = −1, blue = +1). A
nanotube (φ0 = 360◦) shows formation of skyrmions on opposite
sides with respect to the field direction. These skyrmions have
opposite helicities and topological charges. (b) Evolution of the
topological charge with curvature angle for different sample sizes:
50a×50a (squares), 100a×50a (circles), 100a×100a (triangles),
and 100a×100a under a radial field (stars). (c) Evolution of the
topological charge susceptibility with curvature showing a sudden
increase at φ0 ≈ 150◦, associated with the onset of skyrmion de-
formation close to the lateral sides of the samples. Parameters:
d/J = 0.5, k/J = 0.1, h/J = 0.1, and kBT/J = 10−3.

(field-in) of the nanotube are stabilized. By the term ridge we
mean here a narrow zone of the cylindrical surface extending
parallel to the cylinder axis (z axis) and containing a generator
of the cylinder. The skyrmions on opposite ridges of the
nanotube have opposite helicity (chirality) and opposite topo-
logical charge. The latter explains the null total topological
charge of nanotubes seen in Fig. 3(b). The sign inversion of
the topological charge and chirality of skyrmions hosted on
the front and the back ridge of a nanotube is consistent with
the inversion of the field direction relative to the normal to the
surface, which in turn is equivalent to chirality inversion of
the DMI vectors.
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To further characterize the destabilization of the skyrmion
phase around the angle φc

0 ≈ 1500, we compute the topologi-
cal susceptibility defined as

χQ = (J/kBT )(〈Q2〉 − 〈Q〉2) (3)

and show the results in Fig. 3(c). The destabilization of
skyrmions and the transformation of the pure skyrmion phase
to the mixed skyrmion-stripe phase is identified by a sudden
jump in the susceptibility around the characteristic angle φc

0 ≈
150◦. We notice, however, that this is not a true second order
phase transition, namely the susceptibility χQ does not diverge
around the characteristic angle. The gradual decrease of the
susceptibility above the characteristic angle φc

0 reflects the
coexistence of skyrmions and stripelike textures in the mag-
netization distribution. A final comment is due, regarding the
value of the characteristic angle φc

0. The curving of a planar
nanostrip under a uniform applied field leads to reduction of
the normal (radial) component of the field (hn). For a certain
curved nanostrip, the reduction of hn is more severe near
the side edges of the nanostrip and less in the central part
(ridge) of the strip, where the field remains almost normal
to the surface. Therefore, skyrmions initially formed near the
side edges of a curved nanostrip deform first [see Fig. 3(a)]
and this occurs when the radial component of the field on
the edge of the nanostrip drops below the critical field value.
The phase diagram (Sec. III C) predicts for a planar nanostrip
with parameters d/J = 0.5, k/J = 0.1 a critical field hc ≈
0.14 d2/J = 0.035, below which skyrmions are unstable. The
radial (normal) component of the field on the edge of a curved
nanostrip with curvature angle φ0 is hn = hsin(π/2 − φ0/2),
and thus the characteristic angle φc

0 = 2cos−1(hc/h) ≈ 140◦.
This result is in reasonable agreement [40] with the value of
the characteristic angle shown in Fig. 3. Thus, the drop of the
normal-to-the-surface component of the applied field below
the critical value for a planar surface (hn < hc) is the condition
for destabilization of skyrmions on cylindrical nanostrips in a
uniform field.

We consider next the case of a radial applied field with
cylindrical symmetry, as in this case the radial component
of the field does not change with increasing curvature of
the nanostrip. In Fig. 3(b) we show that for a radial field
the topological charge is weakly dependent on the curvature
angle showing ≈25% reduction for a nanotube compared to
the planar nanostrip. We attribute the decrease of Q with
curvature under a radial field to the nonadaption of the DMI
vectors to the surface curvature. In particular, under curving
of the nanostrip the directions of the DMI vectors around
each site remain unchanged and tangential to the surface.
However, the applied field, having radial symmetry, adapts
to the curvature. Thus, the total field acting on each site of
the lattice is modified due to the local tilting of the applied
field. Consequently, the skyrmion texture of the planar case
is perturbed leading to reduction of the topological charge.
The value of Q is expected to decrease monotonously with
increasing curvature and this is actually seen in Fig. 3(b)

B. Skyrmion shape and size

We consider next the evolution of the skyrmion geometri-
cal characteristics, namely size and shape, upon increase of

the nanostrip curvature. Shape-size analysis of skyrmions in
an equilibrium state that hosts an assembly of skyrmions is
a numerically intricate task [41] which becomes even more
elaborate when the nanostrip is in a mixed skyrmion-stripe
phase as it occurs in curved samples (Figs. 2 and 3). To
keep the analysis simple, we confine ourselves to nanostrips
containing a single skyrmion. However, to improve the spatial
analysis of the magnetization distribution we increase the
discretization level of our simulations by reducing the cell
size (a = 0.8 nm), but keeping the same material parameters
Aex, D, Ku, Ms and applied field strength B. This leads to new
rationalized parameters d/J = 0.2 (p/a ≈ 32), k/J = 0.016,

and h/J = 0.016.
In Fig. 4, we show the evolution of the single-skyrmion

state when it is hosted on nanostrips with gradually increasing
curvature. For small angles (φ � 100◦), the skyrmion retains
its basic geometrical features, such as its size and axially
symmetric shape. The robustness of the skyrmion at small
curvature angles is consistent with the constant value of the
topological charge at small curvature angles, seen in Fig. 3.
With increasing curvature, the skyrmion attains a weakly
elliptical shape (φ � 100◦) and eventually at larger angles
(φ ≈ 160◦) it annihilates.

To quantify our observations made in Fig. 4, we proceed
with a numerical shape analysis of the isolated skyrmions.
We define the skyrmion region S, as the compact region of
the nanostrip in which the local magnetization along the field
remains below the saturation value (mi,x < 0.98 for Bx > 0)
and has topological charge Q > 0.5. We compute two shape
measures of S, namely the invariant moments that measure
the degree of circularity [42] (Mcirc) and linearity [43] (Mlin).
These are defined as

Mcirc = μ00

μ20 + μ02
(4)

and

Mlin =
√

(μ20 − μ02)2 + 4μ2
11

μ20 + μ02
, (5)

where the second order geometric moments are

μpq = 1

NS

∑
i∈S

(yi − yc)p(zi − zc)q, (6)

with p, q positive integers satisfying p + q � 2, NS the num-
ber of cells in S and (yc, zc) the centroid coordinates yc =∑

i yi/NS and zc = ∑
i zi/NS . In the limiting case of a circular

disk the invariant moments are Mcirc = 1, Mlin = 0 and in
case of a linear chain Mcirc = 0, Mlin = 1.

In Fig. 5 we show the evolution of the skyrmion shape
measures with curvature angle. The steep drop of Mcirc in the
range φ0 � 100◦ − 150◦ signifies the skyrmion deformation
and eventual annihilation. Below this characteristic angle, the
skyrmion retains to a good approximation the circular shape
(Mcirc � 1 and Mlin � 0). Taking a closer look at the evolution
of the moments with curvature angle two further comments
arise. First, at small angles φ0 � 50◦ a weak increase of
Mcirc toward unity indicates a closer proximity to the circular
shape at intermediate angles and second, a weak hump in Mlin

around φ0 � 120◦ indicates weak elongation of the skyrmion
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FIG. 4. Snapshots of the low temperature magnetization configurations of curved nanostrips hosting a single skyrmion. Curvature
angles and topological charge are (a) φ0 = 0◦, Q = 0.84, (b) φ0 = 50◦, Q = 0.83, (c) φ0 = 100◦, Q = 0.84, (d) φ0 = 150◦, Q = 0.99, (e)
φ0 = 160◦, Q = 0.52, and (f) φ0 = 200◦, Q = 0.10. The curved nanostrips (b)–(f) are unwrapped on the yz-plane for visual clarity. A uniform
field along the x axis [see Fig. 1(b)] is applied in all cases. The color code indicates the values of magnetization along the field axis. A
transformation from purely skyrmion phase (a), to a mixed skyrmion-stripe phase (e), (f), due to increasing curvature, is seen. System size:
50a×50a (a = 0.8 nm). Parameters: d/J = 0.2, k/J = 0.016, h/J = 0.016, and kBT/J = 10−3.

before annihilation. A similar elongation of Bloch skyrmions
as they approach the annihilation region on cylindrical nan-
otubes exposed to an external magnetic field has been recently
predicted by micromagnetic simulations [27,28]. The authors
[27] attributed the deviations from the circular shape to the
competition between intrinsic Bloch-type DMI and curvature-
induced DMI terms that have different symmetries. In the
present study, the elongation of Néel skyrmions is observed
despite the lack of DMI terms with conflicting symmetries and
is understood as an intermediate stage in the transformation of
skyrmions to stripes.

FIG. 5. Dependence of skyrmion circularity (Mcirc) and linear-
ity (Mlin) on curvature angle of a cylindrical nanostrip with size
50a×50a in a uniform applied field. Error bars are obtained from an
average over 30 independent configurations. Parameters: d/J = 0.2,

k/J = 0.016, h/J = 0.016, and kBT/J = 10−3.

Before proceeding with the calculation of the skyrmion
size we need to clarify some points. For deformed
(noncircular) skyrmions, as for example, those forming close
to the sides of a large nanotubes [Fig. 3(a)] or on a surface with
small curvature radius (Fig. 4), the skyrmion radius cannot be
defined in a unique and strict manner. A common approach is
to fit the elongated skyrmion shape to an ellipse and determine
the values of major and minor radii [28]. For computational
efficiency, we have chosen instead to define an effective radius
through the relation

Reff =
√

2Rg, (7)

where Rg = √
μ20 + μ02 is the gyration radius that can be

computed in a straightforward manner from the Cartesian
coordinates of the sites belonging to the skyrmion region
S. Then, for a circular skyrmion, the effective radius coin-
cides with the exact radius (Rsk = Reff ) and for a noncircu-
lar skyrmion Eq. (7) provides an rms value of the distance
distribution from the skyrmion center. However, the shape
measures (Fig. 5) indicate that skyrmions remain to a good
approximation circular and only close to annihilation they are
weakly deformed (Mlin ≈ 0.15 in Fig. 5). It is therefore rea-
sonable to approximate the skyrmion radius by the effective
radius (Rsk ≈ Reff) for the rest of our study.

In Fig. 6 we show the dependence of skyrmion radius on
curvature radius for the same nanostrips as in Fig. 5. Starting
from the planar limit (R 	 a), we notice that Rsk remains con-
stant as R decreases up to the point that the two radii become
approximately equal. Then a sudden drop of Rsk indicates the
skyrmion instability and annihilation. This behavior is also
observed for higher field values (h/J = 0.020, 0.024), where
the skyrmion radius is slightly reduced. Seen from the point of
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FIG. 6. Dependence of the (effective) skyrmion radius on curva-
ture radius for nanostrips with size 50a×50a in a uniform applied
field. The dashed line is the Rsk = R plot that serves as guide to the
eye. Skyrmion annihilation is observed when Rsk � R. Parameters:
d/J = 0.2, k/J = 0.016, and kBT/J = 10−3.

view of competing length scales, the curvature radius is a ge-
ometrical length while the skyrmion radius a physical length.
Skyrmions are stable when R/Rsk 	 1 and instability occurs
when R/Rsk ∼ 1. This geometrical argument summarizes the
instability condition of skyrmions on cylindrical nanostrips as
a competition between length scales.

C. Phase diagram

We conclude this section with the anisotropy-field phase
diagram [34] under increasing sample curvature. The equi-
librium magnetization distribution of a nanostip is the out-
come of a balance between competing energy terms leading
to parallelization of the moments (anisotropy, applied field)
and orthogonal arrangement of the moments (DMI), both
expressed in terms of the exchange energy. Thus, the scaled
anisotropy k̃ = kJ/d2 and scaled applied field h̃ = hJ/d2 are
the only two dimensionless parameters required to quantify
the relative strength of these two competing factors [44].
Notice that the scaled parameters (k̃, h̃) are independent of
the discretization level and they depend solely on the material
parameters (A, D, Ku, Ms). We choose the ratio p/L � 10.8
equal to the value used in our simulations for systems sup-
porting a single skyrmion (Sec. III B) in order to have the
same finite size effects. We simulate a field-cooling process
for different values of the scaled parameters. When the topo-
logical charge of the final state is Q > 0.5 we consider it a
skyrmion hosting state. The resulting lines shown in Fig. 7
represent the boundary of the skyrmion domain in the phase
diagram. For a planar nanostrip we reproduce the triangular
skyrmion domain discussed previously by Keesman et al.
[34,45] The skyrmion domain shows a gradual shrinkage with
curvature and a shift of the skyrmion boundary towards lower
anisotropy and higher field values. The increase of the lower
critical field values means that stronger fields are required
to stabilize skyrmions on curved surfaces, because only the
radial component of the field assists the stability of skyrmions.
A particular choice of material parameters is represented by a
fixed point in the anisotropy-field diagram. The mark (star)
in Fig. 7 corresponds to the material parameters used in our
simulations (see Sec. II). The displacement of the skyrmion
boundary relative to the fixed mark implies an instability of
the skyrmion phase for curvature angles larger than φ0 � 120◦,
as the material mark lies outside the skyrmion boundary.
This result is consistent with our previously discussed results
regarding the suppression of skyrmion circularity (Fig. 5)

FIG. 7. Scaled field versus scaled anisotropy phase diagram
showing the evolution of the skyrmion phase with sample curvature.
Lines indicate the boundary of the skyrmion domain, defined for
Q > 0.5. Curvature angles are indicated on the boundary lines for
φ0 = 0◦ (solid), φ0 = 50◦ (dash), φ0 = 100◦ (dot), φ0 = 120◦ (dash-
dot) and φ0 = 150◦ (short dash-dot). The star indicates the material
parameters (k̃ = 0.4, h̃ = 0.4) used in the present work. Parameters:
sample size 17a×17a, d/J = 0.656, and kBT/J = 10−3.

and skyrmion radius (Fig. 6) around the same angle. A final
remark would be that, despite the fact that we do not proceed
with a finite size scaling of our results, we anticipate that our
findings for the role of curvature will be qualitatively valid for
other values of the p/L ratio.

D. Zero-field skyrmions

It has long been established [32] that magnetic skyrmions
can be stabilized in planar nanoelements of circular shape
(dots) in the absence of an applied field, commonly referred
to as zero-field skyrmions. We examine here the possibility of
stabilizing zero-field skyrmions in cylindrical nanoelements
and study the geometrical limits of stability. The size of
the nanoelement and the skyrmion pitch are chosen, as in
the previous section, so that a single skyrmion is stabilized
in the nanoelement. Free boundaries are assumed in both
directions. To generate a skyrmion, we field-cool the sys-
tem to low temperature under a uniform field normal to the
nanostrip. Then we switch off the magnetic field and record
the time evolution of the magnetization configuration and the
topological charge. To reach the long-term behavior of the
system the observation time after switching off the field is
20 times longer (MCSS = 105) than the relaxation time used
during the field-cooling process (MCSS = 0.5×103). Results
for the zero-field relaxation of skyrmions and their topological
charge are shown in Fig. 8. Distinct behaviors are recored
for systems with different degree of curvature. In case of
a planar nanoelement the topological charge remains almost
constant in time indicating the stability of skyrmion at zero
field. In systems with small curvature angle (φ0 � 100◦), the
skyrmion is still stable, however, its size increases slightly in
the absence of a magnetic field, because the Zeeman energy
acted in favor of ferromagnetic order and shrinkage of the
skyrmion region. As seen in Fig. 8(a), the curvature of the
nanoelement enhances the expansion of the skyrmion after
switching off the field. The weak increase of the topological
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FIG. 8. (a)–(c) Time evolution of zero-field skyrmions in a na-
noelement with size 50a×50a and different curvature angles (φ0 =
50◦, 100◦, 150◦). The nanostrips are unwrapped on the yz-plane for
visual clarity. A uniform field is applied in all cases along the x axis
[see Fig. 1(b)]. The color code indicates the values of magnetization
along the field direction. (d) Time evolution of the topological
charge (Q) after switching off the applied field (t = 0) Parameters:
d/J = 0.2, k/J = 0.016, h/J = 0.016, and kBT/J = 10−3.

charge from Q � 0.8 to Q � 1.2 that accompanies the increase
in size of the zero-field skyrmion (φ0 � 100◦) is understood
as an outcome of thermal fluctuations and misalignment of
the moments along the free boundaries [32]. For larger cur-
vature angles (φ0 � 100◦) the zero-field skyrmion becomes
unstable and gradually transforms to a stripelike structure.
This behavior is characterized by decreasing values of the
topological charge with time. In case of planar nanoelemets
the stabilization of zero-field skyrmions is attributed to the
presence of free boundaries that repel the skyrmion [32].
It becomes clear from Fig. 8 that the same argument holds
in the case of a curved nanoelement provided the curvature
angle remains below a characteristic angle (φ0 ∼ 100◦) that
corresponds to a curvature radius R/a ∼ 28) close to the
zero-field skyrmion radius [Fig. 8(a)].

IV. CONCLUSIONS AND DISCUSSION

We have studied the influence of curvature on the
stabilization of nanometer size Néel skyrmions in thin
cylindrical nanostructures with competing Heisenberg and

Dzyaloshinskii-Moriya exchange interactions. We showed
that application of a uniform magnetic field normal to the
cylinder axis could stabilize skyrmions under two conditions.
First, the radial component of the applied field must exceed
the critical field for skyrmion formation on the corresponding
planar nanostrip, and second, the curvature radius of the
nanostrip must at least exceed the skyrmion radius (R � Rsk).
These conditions control the shrinkage of the skyrmion-phase
pocket in the anisotropy-field phase diagram, under curving of
the hosting nanostrip. Similarly, zero-field skyrmions can also
be stabilized on cylindrical nanoelements, provided the above
geometrical conditions are satisfied. In cylindrical nanostrips
and nanotubes with large curvature radius (R > Rsk) and
subject to a uniform applied field normal to the cylinder
axis both skyrmion and strip-like phases coexist, which are
however spatially separated. Skyrmions form on the ridge of
the curved surface, namely, a zone parallel to the cylinder
axis where the external field is normal or almost normal to
the surface and stripes form on the lateral side of the surface,
where the magnetic field is parallel or almost parallel to the
surface. A remark regarding our theoretical model is due.
Extending the lattice spin model of Eq. (1) by curvature-
induced DMI and anisotropy interactions [25] is not expected
to change qualitatively our results. These terms in conjunction
with long-range magnetostatic interactions would improve the
numerical accuracy of the critical parameters for skyrmion
stability on nanotubes, as, for example, the curvature angle
(Fig. 3) and the skyrmion phase boundary (Fig. 7).

From the point of view of physical systems and their tech-
nological applications, composite magnetic nanowires with
heavy metal core and thin transition metal shell could be
candidate physical systems to support interface skyrmions
in the shell layer. The spatial separation of skyrmions from
stripes in the thin shell of these hybrid nanostructures is
anticipated to bring new perspectives in current-driven dy-
namics of skyrmions in cylindrical nanostructures, since the
applied uniform magnetic field on the curved cylindrical
shell establishes the required confining energy barrier that
holds skyrmions along the ridge of the nanotube and pro-
hibits boundary annihilation. A recent numerical study of
current-driven Bloch skyrmions on cylindrical nanotubes in
a uniform applied field normal to the cylinder axis demon-
strated this effect [28]. This is anticipated by the fact that
Bloch skyrmions on nanotubes of B20 materials (MnSi, etc.)
are expected to exhibit similar static properties to the Néel
skyrmions studied here. The case of an applied field with
radial symmetry is particularly interesting. Our simulations
indicate that a cylindrical nanotube in a radial field supports a
pure Néel skyrmion phase for any nanotube radius (R > Rsk),
however, with weak deformation as the curvature or the
field strength increases. Despite the fact that the realization
of magnetic fields with cylindrical symmetry and curvature
radius in the nanoscale is practically unfeasible at present,
potential systems, such as magnetic monopoles and nanoscale
ferromagnetic needles, have been discussed in the literature
[46]. Furthermore, even before achieving magnetic fields with
full radial symmetry at the nanoscale, a narrow radial distribu-
tion of the applied field around a central direction is expected
to widen the width of the region along a nanotube that can host
skyrmions.
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We believe that our results could stimulate experimental
studies of magnetic skyrmions in hybrid nanowires composed
of heavy-metal core and ferromagnetic shell and in nanotubes
of noncentrosymmetric materials.
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