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Phase diagram and topological order in the modulated XYZ chain with magnetic field
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The XYZ antiferromagnetic spin-1/2 chain with alternation of the exchange and anisotropy couplings in the
presence of uniform and staggered axial magnetic fields is studied. The analysis is done using the effective
quadratic fermionic Hamiltonian resulting from the Hartee-Fock approximation. Combining the exact and the
mean-field methods, the local and string order parameters on the ground-state phase diagram of the model are
identified and calculated. We found a topological phase with oscillating string order with a period of four lattice
spacings, not reported before for this model. A detailed analysis of patterns of the string order is given. The
special XXZ limit of the model with additional U(1) symmetry brings about, in agreement with the Lieb-Schultz-
Mattis theorem and its extensions, plateaux of magnetization and some additional conserving quantities. We
have shown that in the XYZ chain, where the plateaux are smeared, the robust oscillating string order parameter
is continuously connected to its XXZ limit. Also, the nontrivial winding number and zero-energy localized
Majorana edge states, as additional attributes of topological order, are robust in that phase, even off the line of
U(1) symmetry.
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I. INTRODUCTION: MODEL AND CONTEXT

This paper is about the ground-state properties of the mod-
ulated XYZ spin-1/2 chain. Its Hamiltonian in the presence
of uniform (h) and staggered (ha) axial magnetic fields is

H =
N∑

n=1

J

4

[
(1 + (−1)nδ)

(
σ x

n σ x
n+1 + σ y

n σ
y
n+1 + �σ z

nσ z
n+1

)
+ (γ + (−1)nγa)

(
σ x

n σ x
n+1 − σ y

n σ
y
n+1

)]
+ 1

2
(h + (−1)nha)σ z

n , (1)

where σ -s are the standard Pauli matrices. The chain has
bond alternation with parameter |δ| � 1. We also allowed
the xy anisotropy γ to be modulated with γa. In this paper,
we consider the antiferromagnetic (J > 0) model at zero
temperature.

The model (1) is not solvable in general, the exact solu-
tions based on the Bethe ansatz, are available only for some
special cases. For the historical references of the isotropic
XXZ model with zero field, see papers by Yang and Yang
[1], for more comprehensive reviews of the available exact
results see, e.g., Refs. [2–4], and for a most recent account of
integrability and more references, see Ref. [5]. The standard
Jordan-Wigner (JW) transformation [4,6] maps (1) onto the
interacting fermionic Hamiltonian

H =
N∑

n=1

J

2
(1 + (−1)nδ)

[
(c†

ncn+1 + H.c.)

+ 2�

(
c†

ncn − 1

2

)(
c†

n+1cn+1 − 1

2

)]

+ J

2
(γ + (−1)nγa)(c†

nc†
n+1 + H.c.)

+ (h + (−1)nha)
(

c†
ncn − 1

2

)
. (2)

Using spin-fermion dualities and mappings between the XYZ
and eight-vertex models, the isotropic XXZ limit and the
six-vertex model, den Nijs [7] proposed the (γ ,�)-phase
diagram of the XYZ model with zero fields and modulations.
The isotropic XXZ model is gapless at |�| < 1, and its
perturbations by, e.g., staggered field (ha), dimerization (δ),
or anisotropy (γ ) result in a gap opening. However, the inter-
ference of different relevant perturbations can result in their
cancellations at some values of model’s parameters leading to
gapless points or lines of quantum criticality. Scaling analysis
of such perturbations and their mappings onto the operators
of the eight- (six-) vertex model, lead to important conclusion
about nonuniversality of the XYZ or XXZ models [7,8]. The
phase diagram of the XXZ chain with uniform and staggered
fields was proposed from scaling analysis in Ref. [9], see
also Ref. [10]. The gapless phase of the XXZ model is the
Luttinger liquid in fermionic language, and its transition into
a gapped phase along the line of U(1) symmetry γ = 0 is of
the Berezinskii-Kosterlitz-Thouless (BKT) class [7,11].

In the context of huge recent interest in topological ma-
terials and Majorana fermions [12–15], the fermionic Hamil-
tonian of type (2) written more often in terms of Majorana
operators, belongs to a very actively studied class of models
known under the name of Kitaev-Majorana chains in recent
literature. The fermionic representation (2) is the chain of
interacting Majorana fermions with dimerized hopping and
modulated anomalous (superconducting) pairing and chemi-
cal potential. The solvable at special symmetric points Kitaev-
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Majorana models with dimerizations and spatial modulations
of potential were studied very actively in recent years with
the focus on their topological phases with hidden orders and
Majorana edge states [16–19], similar models in more general
settings were studied, e.g., in Refs. [20–22]. See Refs. [15–22]
also for more references on quite vast literature on the models
with Majorana fermions.

The noninteracting limit (� = 0) of the model (2) (also
known as XY chain) is known to have quite rich phase
diagram [23–25]. Very recently [25] one of the gapped phases
of that model was reported to possess a hidden topological
order diagnosed by nonlocal string order parameter (SOP)
[26], oscillating with a period of four lattice spacings. In the
view of lack of information about the modulated XYZ model
(1), it is natural to explore to which extend the results of
Ref. [25] can be generalized for the interacting case � �= 0.
The phase diagram of the model (1) is one of the main results
of the present study.

Another more broad goal of this work aligns with the recent
effort [19,25,27] to weave nonlocal (topological) orders into
extended Landau paradigm. Technically, the key point is to
incorporate string operators, string correlation functions, and
SOPs [26] into the standard framework. The local and nonlo-
cal order parameters are related by duality, so in a sense it is a
matter of choice of variables of the Hamiltonian [19,27–31].
Another bedrock of the Landau theory is symmetry change.
In the spin/fermionic systems like (1)-(2) the appearance of
nonlocal SOP is accompanied by the hidden Z2 ⊗ Z2 sym-
metry breaking [32]. These are internal discrete symmetries
of spin reversals, and they form the Klein four-group [33],
also known as the dihedral group [34], isomorphic to Z2 ⊗ Z2

group. In some cases the duality can simply map the nonlocal
order onto an average of some decoupled local operator, e.g.,
magnetization, and the hidden symmetry breaking becomes
apparent in terms of the sublattice magnetization(s) on a dual
lattice, with one or both of the Ising Z2 symmetries broken
[19,27,30]. In general manifestations of the hidden symmetry
breaking are less straightforward.

An important task addressed in this paper was to formalize
the technical protocol: In the proposed unifying formalism the
role of the Ginzburg-Landau effective action is played by the
effective quadratic (Hartree-Fock) fermionic Hamiltonian. All
local and nonlocal order parameters are calculated from the
string correlation functions of Majorana fermions, evaluated
from the limiting values of determinants of the block Toeplitz
matrices. For the quadratic Hamiltonian, the elements of those
matrices are found in a closed analytical form as functions of
the effective (or renormalized) couplings of the Hamiltonian.
The latter are calculated from the self-consistent minimization
equations.

It appears that the notion of topological order itself is not
understood uniquely in the literature. In connection to the
spin chain, it appears to be associated to the additional U(1)
symmetry of its isotropic XXZ limit. In such limit, the Lieb-
Schultz-Mattis (LSM) theorem [6] and its subsequent gener-
alizations [33,35,36] predict either gapless incommensurate
phase without symmetry breaking, or gapped phases with
broken Z2 ⊗ Z2 symmetry, integer fillings, and plateaux of
magnetization. The plateaux are sometimes viewed as a hall-
mark of topological order. Our understanding of topological

order is not tied up to the continuous U(1) symmetry or related
plateaux. The gapped phases with broken (discreet) symmetry
are secured by the extension of the LSM theorem for the
spin chains without continuous symmetry [37]. At γ �= 0, the
plateaux are smeared, but the robust SOP still exists and is
continuously connected to its γ = 0 limit. Thus we associate
topological order with a nontrivial SOP. Also, the nontrivial
winding number and zero-energy localized Majorana edge
states, as additional attributes of topological order, are robust
in the topological phase even aside from the line of U(1)
symmetry, in agreement with analogous exact results [19,25].

The rest of the paper is organized as follows. In Sec. II,
we present a concise account of exact results for the nonin-
teracting limit of the model: spectrum, phase diagram, and
some average quantities. Those are building blocks to be used
in the effective Hamiltonian and in the mean-field equations.
Section III presents the derivation of the mean-field equations
and renormalized parameters. Section IV contains the results
for the XYZ chain. We present the phase diagram, local and
nonlocal order parameters, winding numbers for each phase.
Section V presents the results for the isotropic XXZ limit of
the model. Since more analytical work can be done in this
limit, more qualitative discussions of the results are presented,
including the role of interaction, robustness of the mean-
field approximation, and relation of the reported topological
order to earlier findings of the spontaneous magnetism in this
model. The algebraically ordered incommensurate gapless
phase is analysed in this section as well. The results are
summarized and discussed in the concluding Sec. VI.

II. NONINTERACTING LIMIT � = 0

A. Spectrum and phase diagram

In the noninteracting limit � ≡ Jz/J = 0, the model (1) is
exactly solvable. It was first introduced and analyzed by Perk
et al. [23]. See also Refs. [27,38–40] for related more recent
work on different versions of the model. The most recent
comprehensive analysis of the ground-state phase diagram
of the model at γa = 0 and its local and nonlocal order
parameters is given in Ref. [25]. It turns out that introducing
alternation of anisotropy γa does not change the results [25]
qualitatively, resulting in some minor modifications which
we present below. The noninteracting results are used in
the subsequent analysis of the case � �= 0. We will always
assume |γa| < |γ | and from now on we set J = 1. We also
modify for further convenience the hopping term of the
Hamiltonian (2) as

1 + (−1)nδ �−→ t + (−1)nδ . (3)

Referring readers to Ref. [25] for technical details, in this
section, we present a concise account of the results for γa �= 0.

We set the lattice spacing a = 1 and restrict wave num-
bers to the reduced Brillouin zone (BZ) k ∈ [−π/2, π/2].
The band index α = 1 and 2 serves to map the Fourier-
transformed JW fermions from the 2π BZ onto the reduced
zone as

c(k) = c1(k) · ϑ (π/2 − |k|) + c2(k − π ) · ϑ (|k| − π/2) ,

(4)
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where ϑ (x) is the Heaviside step function. Then the coordi-
nate representation of the JW fermion reads as

cn = 1√
N

∑
α,q

cα (q)(−1)(α−1)ne−iqn . (5)

The Hamiltonian (2) at � = 0 can be written as

H = 1

2

∑
k

ψ
†
k H(k)ψk, (6)

where the fermions are unified in the spinor

ψ
†
k = (c†

1(k), c†
2(k), c1(−k), c2(−k)), (7)

with the 4 × 4 Hamiltonian matrix

H(k) =
(

Â B̂

B̂† −Â

)
, (8)

where

Â ≡
(

h + t cos k ha + iδ sin k
ha − iδ sin k h − t cos k

)
(9)

and

B̂ ≡
(−iγ sin k −γa cos k

γa cos k iγ sin k

)
, (10)

The Hamiltonian has four eigenvalues [23] ±E±, where

E±(k) =
√
C2(k) ±

√
C2

2(k) − C4(k) , (11)

with

C2(k) ≡ h2 + h2
a + (

t2 + γ 2
a

)
cos2 k + (δ2 + γ 2) sin2 k (12)

and

C4(k) ≡ (
h2 − h2

a − (
t2 − γ 2

a

)
cos2 k − (δ2 − γ 2) sin2 k

)2

+ (tγ − δγa)2 sin2 2k (13)

The phase diagram of the model [23] shown in Fig. 1, is
found from the condition

C4(k) = 0 (14)

for the critical lines, where the model becomes gapless.
There are three phase boundaries: (i) at ±h(1)

c with

h(1)
c ≡

√
t2 + h2

a − γ 2
a , ∀ γ , δ, (15)

the gap vanishes at the center of the BZ (k = 0).
(ii) At the edge of the BZ (k = ±π/2), the gap vanishes on

the circle

h2 + γ 2 = h2
a + δ2 , (16)

which we will associate with the critical field h(2)
c .

(iii) Two critical line segments at γ = 0 (γa = 0) corre-
spond to the gap vanishing at the incommensurate (IC) wave
vector

kF = ± arcsin Q, Q ≡
√

t2 + h2
a − h2

t2 − δ2
, (17)

FIG. 1. Phase diagram of the model in h-γ plane (γa = 0). The
model is critical on (i) two infinite lines h = ±h(1)

c (bold blue); (ii) cir-
cle h2 + γ 2 = R2 (bold red); and (iii) two segments h(2)

c � |h| � h(1)
c

along γ = 0 (bold green). Three phases are shown: disordered para-
magnetic (PM) polarized by the axial field, planar antiferromagnetic
(AFM) with local order parameters mx,y, and topological Oz(π/2)
with oscillating string order. The four paths (1–4) in parametric space
are indicated by thin lines. The winding numbers Nw calculated in
Sec. IV are also shown. The bold phase boundaries are calculated for
interaction � = 1/2, while their dashed counterparts correspond to
noninteracting case � = 0.

which corresponds to the Fermi momentum (h̄ = 1) of the JW
fermions. The IC solution exists in the range of parameters
γ = γa = 0, |δ| < 1, and√

h2
a + δ2 � |h| �

√
t2 + h2

a . (18)

The Fermi momentum (17) varies continuously from kF = 0 at
the intersection of γ = 0 and h = ±√

t2 + h2
a, to kF = ±π/2

where the critical segments end at the intersections with
the circle.

B. Spin and Majorana averages

Differentiation of the free energy with respect to h and to
ha yields two magnetizations

mz = 1

N

N∑
n=1

〈
σ z

n

〉
(19)

and

ma
z = 1

N

N∑
n=1

(−1)n
〈
σ z

n

〉
, (20)

054436-3



TOPLAL PANDEY AND GENNADY Y. CHITOV PHYSICAL REVIEW B 102, 054436 (2020)

respectively. Their explicit expressions are

mz = h

π

∫ π/2

0

[(
1

E+
+ 1

E−

)

+ t2 cos2 k + |wa|2
R

(
1

E+
− 1

E−

)]
dk (21)

and

ma
z = ha

π

∫ π/2

0

[(
1

E+
+ 1

E−

)

+ |w|2 + γ 2
a cos2 k

R

(
1

E+
− 1

E−

)]
dk. (22)

We define the auxiliary parameters:

w ≡ h + iγ sin k, (23)

wa ≡ ha + iδ sin k, (24)

z ≡ wwa − tγa cos2 k, (25)

c ≡ (ht + haγa) cos k, (26)

R ≡
√

c2 + |z|2. (27)

The Hamiltonian (8) is diagonalized with the help of two
unitary 2 × 2 matrices 
̂ and �̂. We find


̂(q) =
(

e−iθβ+ β−
−β− eiθβ+

)
, (28)

where

eiθ ≡ z

|z| (29)

and

β± ≡ 1√
2

(
1 ± c

R

)1/2

. (30)

The second matrix of this Bogoliubov transformation is
calculated as

�̂ = Î−1
E 
̂(Â − B̂), (31)

where ÎE ≡ diag(E+, E−). We introduce the Majorana
fermions as

an + ibn ≡ 2c†
n. (32)

From the matrix

Ĝ(q) ≡ �̂†(q)
̂(q), (33)

we find the correlation function of the Majorana operators:

〈ibnam〉 = 1

2π

∫ π

−π

dqe−iq(m−n){G11(q) + (−1)nG12(q)},
(34)

where the matrix elements are:

G11(q) = (t cos q + w∗)

{
β2

+
E+

+ β2
−

E−

}

+ (wa − γa cos q)e−iθβ+β−

{
1

E+
− 1

E−

}
, (35)

G12(q) = (wa − γa cos q)

{
β2

−
E+

+ β2
+

E−

}

+ (t cos q + w∗)eiθβ+β−

{
1

E+
− 1

E−

}
. (36)

All the above formulas recover those of Ref. [25] in the limit
t → 1 and γa → 0. The correlation function (34) is a building
element of Toeplitz determinants [6] used to calculate local
order parameters (magnetization) and nonlocal SOPs. Addi-
tion of γa �= 0 only slightly numerically modifies positions of
boundaries on the phase diagram and the values of correlation
functions, leaving the structure of the phase diagram, the
nature of its phases, and order parameters essentially the same
as reported in our earlier work [25], see Fig. 1.

III. MEAN-FIELD EQUATIONS

The mean-field theory for the XYZ chain is in fact the
Hartee-Fock approximation for its interacting fermionic rep-
resentation (2). We use the most general decoupling [41] for
the interacting term with a product of two number operators
(n̂l = c†

l cl ) as

n̂l n̂m ≈ n̂l〈n̂m〉 + n̂m〈n̂l〉 − 〈n̂l〉〈n̂m〉
+ c†

l cm〈cl c
†
m〉 + H.c. + |〈clc

†
m〉|2

+ c†
l c†

m〈cmcl〉 + H.c. − |〈clcm〉|2. (37)

Such approximation applied to the Heisenberg chain is known
from the literature to be accurate, at least qualitatively, see,
e.g., [41–44]. One cannot expect the mean-field approxima-
tion to furnish, e.g., correct critical indices to identify the
universality class, but predictions of model’s phase diagram
and order parameters are qualitatively correct. Since 1d is a
realm of strong fluctuations, special care needs to be exer-
cised while dealing with the mean-field predictions for phase
boundaries (critical points). They need to be cross-checked
against available exact results, as we will explain below.

We introduce the following mean-field parameters:

〈cnc†
n+1〉 ≡ K + (−1)nδη, (38)

〈cncn+1〉 ≡ P − (−1)nδηP, (39)

〈1 − 2c†
ncn〉 ≡ mz + (−1)nma

z . (40)

Using decoupling (37) and parameters (38)–(40) in (2), we
obtain the approximate mean-field Hamiltonian

H ≈ HMF = N�C + 1

2

∑
k

ψ
†
k HR(k)ψk . (41)

The renormalized Hamiltonian HR(k) is given by the same ex-
pressions as for the noninteracting case (8), (9), and (10), with
the difference that the six bare couplings of the free-fermionic
Hamiltonian are replaced by the remormalized parameters as
follows:

h �−→ hR ≡ h − �mz, (42)

ha �−→ haR ≡ ha + �ma
z , (43)
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t �−→ tR ≡ 1 + 2�(K + δ2η), (44)

δ �−→ δR ≡ δ(1 + 2�(K + η)), (45)

γ �−→ γR ≡ γ − 2�(P − δ2ηP ), (46)

γa �−→ γaR ≡ γa − 2�δ(P − ηP ), (47)

and the constant term is

C= K2 − P2 − 1
4 m2

z + 1
4

(
ma

z

)2+ δ2
(
η2 − η2

P + 2Kη+ 2PηP

)
.

(48)
Contrary to the model’s bare parameters of choice, the renor-
malized couplings (42)–(47) are to be found from a set of six
self-consistent equations obtained from minimization of the
free energy. The latter is calculated from the Hartree-Fock
Hamiltonian HR(k). Using (38), we find equations for the
bond average

K = tR

2π

∫ π/2

0
dk cos2 k

{
1

E+
+ 1

E−
+ h2

R + γ 2
aR cos2 k

R

(
1

E+
− 1

E−

)
+ δRγRγaR sin2 k

tRR

(
1

E+
− 1

E−

)}
(49)

and for the dimerization susceptibility η

δη = δR

2π

∫ π/2

0
dk sin2 k

{
1

E+
+ 1

E−
+ |w|2

R

(
1

E+
− 1

E−

)
+ tRγRγaR cos2 k

δRR

(
1

E+
− 1

E−

)}
. (50)

From (39), we obtain equations for the anomalous pairing amplitude

P = γR

2π

∫ π/2

0
dk sin2 k

{
1

E+
+ 1

E−
+ |wa|2

R

(
1

E+
− 1

E−

)
+ tRδRγaR cos2 k

γRR

(
1

E+
− 1

E−

)}
(51)

and for the anomalous susceptibility

δηP = −γaR

2π

∫ π/2

0
dk cos2 k

{
1

E+
+ 1

E−
+ h2

aR + t2
R cos2 k

R

(
1

E+
− 1

E−

)
+ tRδRγR sin2 k

γaRR

(
1

E+
− 1

E−

)}
. (52)

The uniform and staggered magnetizations (40) satisfy
Eqs. (21) and (22) with their right hand sides written in terms
of the renormalized couplings (42)–(47). In the following, we
chose the bare coupling γa = 0.

The mean-field parameters (49)–(52) are fundamentally
important for calculation of the phase diagram, the local and
string order parameters in different phases. The representative
numerical results for these parameters are shown in Fig. 2.
Note that anomalous average P and ηP are not the true
(superconducting) order parameters signalling spontaneous
breaking of U(1) symmetry. This symmetry is intrinsically
broken by model’s anisotropy couplings γ , γa. As one can see
from Fig. 2(b), in the symmetry-restoring limit γ , γa → 0, the
anomalous average parameters vanish.

IV. RESULTS FOR XYZ CHAIN

Before we proceed to explore predictions of the derived
mean-field equations, let us first understand qualitatively pos-
sible outcomes. The way the mean-field theory is constructed,
i.e., by switching to the renormalized couplings (42)–(47),
makes it obvious that the interacting model has the same
spectrum as in Eq. (11), but with renormalized parameters.
Thus we obtain the same phases and their order parameters,
conditions for the phase boundaries (gaplessness), etc., as
described above for the case � = 0 (see Ref. [25] for more
details), proviso that all bare couplings are renormalized in
appropriate formulas. Within present theory, no new phase
with a new order parameter, other than presented on the phase
diagram in Fig. 1, can occur.

Interactions, however, can bring about additional nontrivial
solutions of the mean-field equations for the renormalized

parameters, like, dimerization, anisotropy, uniform or stag-
gered fields/magnetizations, even when their bare counter-
parts are zero. That would constitute the case of spontaneous
symmetry breaking associated with a phase transition. As one
can see from Fig. 2(b), the anomalous average parameters
vanish in the limit XY Z → XXZ . We did not find numerical
signs of spontaneous breaking of the U(1) symmetry (super-
conductivity) at � �= 0. Neither we found spontaneous dimer-
ization when bare δ = 0. This is in agreement with available
results for the XYZ and XXZ models [2,4,7,9]. However, it
is known from exact results that � = ±1 are critical points
of the antiferro-/ferromagnetic phase transitions in the XXZ
model [2,4]. In the XYZ chain (γ �= 0) spontaneous antiferro-
/ferromagnetism appears at |�| > 1 [7]. To stay on the safe
side and to avoid dealing with the interaction-induced mag-
netism in the results which follow, we will assume the regime
of weak interaction |�| < 1 in this section. The strongly
interacting regime � � 1 is discussed in Sec. V for the
XXZ chain.

The phase diagram of the model is shown in Fig. 1. Overall,
the mean-field results in this regime are qualitatively similar to
the noninteracting (� = 0) case [25]. The PM-AFM boundary
(15) gets modified by interactions. It is not a straight line
anymore. The value for critical field h(1)

c is available only
numerically. However, its maximum value reached in the XXZ
limit is found exactly from our equations:

γ = 0 : h(1)
c = � +

√
1 + h2

a , (53)

in agreement with earlier scaling results [9].
The topological phase with oscillating string order is

located inside the circle on the phase diagram in Fig. 1.
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(a)

(b)

FIG. 2. Representative behavior of mean-field parameters (49)–
(52) calculated for interaction � = 1/2. (a) shows results along the
path 1 on the phase diagram in Fig. 1. (b) corresponds to path 3.
In addition, (a) presents results along the line γ = 0.

Quite amazingly (in the view of complexity of the six coupled
mean-field equations), interactions only change the radius
of the circle R, conserving the perfect shape of this phase
boundary. Numerically we found

R(�) ≈ R(0) + a�, (54)

where the radius for the noninteracting case R(0) =√
h2

a + δ2. The linear fit with a ≈ 0.745, shown in Fig. 3,
works quite well even at � � 1.

A. Induced and spontaneous magnetizations

First we present the field-induced magnetizations mz and
ma

z as functions of the uniform magnetic field h in Fig. 4.
Their explicit expressions (21) and (22) are calculated at each
point with the renormalized couplings on the right hand sides,
determined self-consistently from numerical solution of the
mean-field equations given in the previous section.

The plots for the XYZ chain are done for two cases. The
first case corresponds to the path 1 on the phase diagram in
the h-γ plane shown in Fig. 1. The path crosses the PM-AFM
boundary at h = h(1)

c and the AFM-Oz(π/2) boundary at h =
h(2)

c . The magnetizations have noticeable cusps at these critical
points, which correspond to divergent susceptibilities. In case
of the path 2, it crosses only the PM-AFM boundary and

FIG. 3. Radius of the circle enclosing Oz(π/2) phase in the
phase diagram Fig. 1 as a function of interaction. The linear fit with
the slope a ≈ 0.745 is shown.

bypasses the topological phase. The magnetizations demon-
strate cusps at the only critical point h(1)

c , while at h < h(1)
c they

and their derivatives are analytical.
The phase diagram in Fig. 1 contains two conventional

antiferromagnetic phases with spontaneous planar magnetiza-
tions mx and my. The local order parameter mx is calculated
form the limit of the spin-correlation function which is also
the correlation function of the Majorana string operators [6]:

〈
σ x

Lσ x
R

〉 =
〈

R−1∏
n=L

[ibnan+1]

〉
�⇒

[R→∞]
m2

x . (55)

As we have shown in Ref. [25], this Majorana string correla-
tion function is given by the determinant of the block Toeplitz
matrix constructed from 1

2 (R − L) × 1
2 (R − L) blocks of size

2 × 2 with the elements given by Eq. (34). For explicit ex-
pressions of this block Toeplitz matrix we refer the reader to

FIG. 4. Two induced magnetizations mz (red) and ma
z (green)

vs uniform field h at δ = 0.35, ha = 0.25, � = 0.5 for different
γ . At γ = 0, mz (solid line) demonstrates plateaux in the gapped
phases connected by a continuous curve through the gaplees IC
phase. Similar behavior is demonstrated by ma

z . Dashed-dotted lines
correspond to path 1 shown in the phase diagram Fig. 1. Dashed lines
correspond to path 2. The magnetizations show noticeable cusps at
the critical fields h(1)

c (path 2); h(1)
c and h(2)

c (paths γ = 0 and 1), when
the paths cross phase boundaries.
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(a)

(b)

FIG. 5. Visualization of the oscillating string order inside the
circle at the point h = 0.2 on path 1 (Fig. 1) for ha = 0.25, δ = 0.35,
γ = 0.35, and � = 1/2. (a) shows Dzz(1, N ) (58) with alternating
limiting values ±O2

z,1 (blue) and ±O2
z,3 (red). (b) shows Dzz(2, N )

with similar parameters ±O2
z,2 (green) and ±O2

z,3.

Ref. [25]. At each point in the parametric space, the elements
(34) of this matrix are calculated with renormalized couplings
determined from the mean-field equations. The results for
spontaneous magnetization are given in Fig. 6. The numerical
values of the parameters we present in that figure are stable
in the fourth decimal place for the M × M matrices of sizes
M � 30. In immediate vicinities of the critical points the
order parameters are checked to decay smoothly as M → ∞.
The expressions for my are obtained along the same lines.
Numerical values satisfy useful relation my(−γ ) = mx(γ ),
verified explicitly.

B. Nonlocal string order

Now we address the topological phase with nonlocal string
order inside the circle in Fig. 1, first reported in Ref. [25] for
noninteracting case. It turns out that the fermionic interaction
renormalizes the phase boundary and SOPs, but does not alter
the nature of the order in this phase. To quantify this type of
order, we use the string operator

Oz(n) ≡
n∏

l=1

σ z
l =

n∏
l=1

[iblal ] (56)

and related string correlation function

Dzz(L, R) ≡ 〈Oz(L − 1)Oz(R)〉 =
〈

R∏
l=L

[iblal ]

〉
. (57)

Following the original proposal by den Nijs and Rommelse
[26], the SOP was defined and detected in the subsequent
work on the spin chains, see, e.g., Refs. [32,45,46]. The SOP
was defined (up to some minor variations) as the limit of
the string-string correlation function, which is not convenient,
since such SOP has a wrong dimension of square of the order
parameter. The definition we use, due to Berg et al. [47],
is more consistent with the standard theory of critical phe-
nomena, and the critical index of the (string) order parameter
β correctly enters all the hyperscaling relations [27]. The
correlation function (57) is calculated from the determinant of
the block Toeplitz matrices, built from elements (34). These
matrices are given explicitly in Ref. [25].

Inside the circle, Dzz oscillates with the period of four
lattice spacings (i.e., twice the unit cell), see Fig. 5. Doubling
of the translational period by the string order is a sign of
spontaneous breaking of the hidden Z2 ⊗ Z2 symmetry. This
phase is labeled as Oz(π/2) to distinguish it from the plain
behavior of Dzz in the PM phase. Since Dzz(L, R) �= Dzz(R −
L), we need three parameters to account for the string order:

Dzz(L, R) −−−→
R→∞

⎧⎪⎪⎨
⎪⎪⎩

(−1)mO2
z,1 , L = 1, R = 2m

(−1)mO2
z,2 , L = 2, R = 2m

(−1)m+LO2
z,3 , L = 1, R = 2m + 1 or L = 2, R = 2m + 1

. (58)

The ordering patterns (58) detected from nondecaying os-
cillations of the string correlation function for a particular
parametric point in the Oz(π/2) phase, are depicted in Fig. 5.
The magnitudes of the SOPs Oz,i along different paths on the
phase diagram Fig. 1 are given in Figs. 6(a) and 6(c). At each
point the SOP is calculated with the remormalized couplings
determined from numerical solution of the self-consistent
mean-field equations. Similarly to the noninteracting case
[25], the other two components of the SOP Ox and Oy vanish
when h �= 0 and ha �= 0.

The string correlation function Dzz in the PM satu-
rated phase is always positive and essentially monotonous.

For completeness we plot in Fig. 6 the PM SOP defined as
limR→∞ Dzz(L, R) = O2

z .
There are interesting limiting cases of the topological

string order. Two alternating (bare) parameters of the model,
ha and δ generate the topological phase, see Fig. 1. The
radius of its boundary R = √

h2
aR + δ2

R . We check from the
mean-field equations that at |�| < 1, haR ∝ ha and δR ∝ δ, i.e.,
turning off one of those parameters, turns off its renormalized
counterpart as well. Although the four lattice spacing peri-
odicity of the string correlation function (58) is preserved,
its ordering patterns are distinct. There are often physically
interesting situations when there is an alternating component
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(a)
(b)

(c)

(d)

FIG. 6. Spontaneous planar magnetizations mx,y and modulated string order parameters Oz,i numerically calculated from the 2N × 2N
matrices with N = 70. The panels (a-d) correspond to the paths 1-4 on the phase diagram shown in Fig. 1 (ha = 0.25 and δ = 0.35). In the
AFM phases, mx,y �= 0 and Oz,i = 0. In the PM phase h > h(1)

c , Oz �= 0 and plainly monotonous. The exact values of the critical parameters
h(1)

c , h(2)
c , γc (shown by arrows) are calculated from renormalized Eqs. (15) and (16). Nonvanishing small tails of the order parameters seen in

the immediate vicinities of the critical points are the finite-size effects, checked to die off as N → ∞. The special case γ = 0 when all SOPs
become step-like functions is shown in (a).

of the magnetic field (or modulated chemical potential, when
dealing with various versions of the Kitaev-Majorana models
(2), while the dimerization is absent. Or vice versa, quite often
one is dealing with dimerized models with uniform magnetic
field (chemical potential). We find for the former case,

ha = 0, δ �= 0 : Oz,1 �= 0, Oz,2 = Oz,3 = 0, (59)

and for the latter,

ha �= 0, δ = 0 : Oz,1 = Oz,2 = Oz,3, (60)

These properties hold for the noninteracting case (� = 0) as
well as in the presence of interactions (� �= 0). Two cases of
the ordering patterns are shown in Fig. 7.

With the help of duality mappings [27] and identities for
the string operators [25], we find the SOP analytically for
� = 0 inside the circle for the case ha = 0 along the line

h = 0:

ha = h = 0 : O2
z,1 = 2

[
(δ2 − γ 2)

((1 ± δ)2 − γ 2)2

]1/4

. (61)

The above result yields the critical index of the order parame-
ter β = 1/8 in the universality class of the 2D Ising model.
Equation (61) is derived for � = 0, the interacting result
within the present approximation is obtained by promoting
bare couplings in (61) to the renormalized ones.1

Note that the case (59) applies for the dimerized isotropic
(γ = 0) Heisenberg chain without magnetic field. In the
SU(2) limit � = 1, the noninteracting result (61) can be
improved. The magnitude of the SOP Oz,1 was calculated by

1It should be kept in mind that the critical indices found for � = 0
are not valid for the interacting case [7,8].
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FIG. 7. Visualization of the oscillating string order inside the
circle at the point h = 0.2 on path 1 (Fig. 1) with γ = 0.35 and � =
1/2 for two special cases. (1) For ha = 0 and δ = 0.35, the string
order shown in Fig. 5(b) vanishes, since Oz,2 = Oz,3 = 0, while
the order shown in Fig. 5(a) reduces to the pattern (1) above. (2)
For ha = 0.25 and δ = 0, Oz,2 = Oz,2 = Oz,3 �= 0, and the patterns
shown in Fig. 5 become the same, up to a singe lattice spacing
translation, as shown in (2a) and (2b) above.

Hida via bosonization [45], however the oscillating pattern of
the string order shown in Fig. 7(1) was not reported before.

To deal with the string order in a more unified and compact
way, we introduce a new function

D(+)
zz (n) ≡ Dzz(1, n) + Dzz(2, n) (62)

From visual inspection of the patterns shown in Figs. 5(a) and
5(b) one can easily check that D(+)

zz (n) has its ordering pattern
similar to the one shown in Fig. 7(1), i.e.,

D(+)
zz (n) −−−→

n→∞ cos
(π

2
n
)
O2

z,+ , (63)

where

O2
z,+ ≡ O2

z,1 + O2
z,2 . (64)

From inspection of Fig. 7 one can check as well that the
special cases (59) and (60) can be united under the same
pattern of Eq. (63).

C. Winding number

For each phase we also find the winding number. The cal-
culation outlined in Ref. [25], for the quadratic Hamiltonian
(8)–(10) leads to the following result:

Nw = 1

2π i
[ln λ+(k) + ln λ−(k))]

π
2

−

− π
2

+ , (65)

where

λ±(k) = h ± (
h2

a + (
t2 − γ 2

a

)
cos2 k

+ (δ2 − γ 2) sin2 k − i(tγ − δγa) sin 2k
)1/2

(66)

are the eigenvalues of D̂(k) ≡ Â(k) + B̂(k). One can establish
an important relation between parameter C4 of the Hamilto-
nian’s spectrum, defined by (13), and eigenvalues (66):

C4 = |λ+|2|λ−|2 . (67)

A simple comparison of the condition (14) for quantum criti-
cality and Eq. (67) leads to the following conclusion: topolog-
ical winding number (mod 2) can change only upon crossing
gapless phase boundary. Within the present approach, num-
bers Nw in different phases of interacting model are calculated
using Eqs. (65) and (66) with renormalized couplings. Their
values are shown in Fig. 1. Only the phase with oscillating
string order is topologically nontrivial, Nw = 1.

V. ISOTROPIC CHAIN

In this section, we present the results for isotropic XXZ
chain, that is the limit γ = γa = 0. It turns out that a consider-
able progress can be achieved in analytical treatments, making
the outcome more transparent for intuitive grasp.

A. Noninteracting XX limit (� = 0)

Most of the formulas of Sec. II for free fermions can be
brought to a closed form of standard mathematical functions.
The content of this subsection is implicitly present in the ear-
lier work [25], but the XX limit was not specifically analyzed
in that paper. The spectrum (11) becomes

E±(k) = h ± ξ, ξ ≡
√

h2
a + t2 cos2 k + δ2 sin2 k . (68)

To better understand results of this section, it is convenient
to write the ground-state energy per site

f = − 1

2π

∫ π/2

0
(|E+| + |E−|)dk (69)

as

f = 1

2π

∫ π/2

−π/2
εeff(k)dk. (70)

The effective spectrum εeff(k) is shown in Fig. 8 for three
phases. From (68) and (69), we find the h-independent
effective spectrum εeff(k) = −ξ in the topological phase
(h < h(2)

c ). In the IC gapless phase (h(2)
c < h < h(1)

c ), the
parabolic spectrum εeff(k) = −ξ at |k| < kF with the Fermi
momentum given by Eq. (17), becomes a flat band εeff(k) =
−h at kF < |k| < π/2. The Fermi sea shrinks with the growth
of the field, as shown in Fig. 8, and in the PM phase (h > h(1)

c )
the whole band is flat, εeff(k) = −h.
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FIG. 8. The effective single-particle spectrum εeff(k) in three
phases at different values of the uniform field.

Analytically, we find

f =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− 1
2 h, h > h(1)

c

− 1
π

√
t2 + h2

aE(kF , κ
2)−

− 1
2 h

(
1 − 2

π
kF

)
, h ∈ [

h(2)
c , h(1)

c

]
− 1

π

√
t2 + h2

aE(κ2), h < h(2)
c

. (71)

Here, E is the elliptic integral of the second kind, and

κ2 ≡ t2 − δ2

t2 + h2
a

. (72)

The uniform magnetization derived from Eq. (21)

mz = 1

2
+ 1

π

∫ π/2

0
sign(E−)dk (73)

or obtained directly from differentiation of (71), demonstrates
two plateaux in the gapped phases, connected by a continuous
curve in between:

mz =

⎧⎪⎨
⎪⎩

1, h > h(1)
c

1 − 2
π

kF , h ∈ [
h(2)

c , h(1)
c

]
0, h < h(2)

c

. (74)

The above results is in agreement with the arguments of
Ref. [35], generalizing the Lieb-Schultz-Mattis (LSM) theo-
rem [6] for nonzero field. According to another formulation
of the LSM theorem in terms of fermions [36] [cf. Eq. (40)],
the plateaux of magnetization correspond to integer fermionic
fillings per unit cell, and the filling can admit noninteger
values only in the gapless phase, leading to a smooth evolution
of mz ∈ [0, 1] at h ∈ [h(2)

c , h(1)
c ].

To unify and generalize the analysis of phases done in
Sec. II and to directly relate it to the LSM theorem [6,36],
we analytically continue the spectrum of the model onto
the complex plane z ∈ C with z = eik [4]. In the isotropic
limit, the eigenvalues λ± defined by Eq. (66) become the
eigenvalues of the Hamiltonian (68), so the condition of the
quantum criticality (14) with Eq. (67) reads

|E+(z)|2|E−(z)|2 = 0 . (75)

FIG. 9. Real and imaginary parts of the complex wave vector k+
giving the values of the fermionic filling per unit cell νF = 2/πkF

and inverse correlation length ξ−1 ∝ κ for the three phases. The main
plot is done for noninteracting model with ha = 0.25 and δ = 0.35.
The inset shows the same parameters for the interacting case with
� = 0.5.

Using Q defined in Eq. (17) and extended to Q ∈ C, we find
two roots of (75)

z± = eik± = �±, with �± ≡ iQ ±
√

1 − Q2 , (76)

The roots �± encode important information about three
phases. (1) In the IC phase Q ∈ R and 0 < Q < 1. The roots
are complex conjugate �+ = �∗

− and |�±| = 1. The wave
vectors k± ∈ R and we can pick k+ = kF corresponding to
the known solution (17). The real wave vector kF defines the
period of oscillations of correlation functions [see Eq. (95)
below] and controls the (IC) filling (Fermi level) of the
parabolic band νF = 2/πkF , see Figs. 8 and 9.

(2) In the PM phase Q = i|Q| is imaginary, and it leads to
the imaginary k± = −i ln �±, see Fig. 9:

kF = Rek± = 0, (77)

κ = Imk+ = − ln(
√

1 + |Q|2 − |Q|). (78)

The nonvanishing imaginary part of the complex root k+ gives
the inverse correlation length [4], and it is responsible for the
exponential decay of correlation functions in gapped phases.
In the vicinity of the PM transition h → h(1)

c + 0: |Q| � 1, and
κ ≈ |Q| ∝ (h − h(1)

c )1/2. The vanishing real part of the root
kF = 0 means monotonous behavior of correlation functions
without oscillations.

Note that probing the correlation length in the limit γ → 0
is subtle in the PM (polarized) phase. In this case, mz = Oz =
1 and mx = my = 0. Moreover, the correlation functions are
featureless, i.e., 〈σ z

Lσ z
R〉 = 1 and 〈σ x

Lσ x
R〉 = 〈σ y

Lσ
y
R〉 = 0, ∀L, R.

(These functions were first found by Barouch and McCoy in
[48] for the case ha = δ = 0). The string correlation functions
are found to behave in a similar way, i.e., Dzz = 1 and Dxx =
Dyy = 0 at γ = 0. As one can find in Table 1.2 of the book
by Franchini [4] at h > 1 and γ �= 0 (ha = δ = 0), the spin
correlation function〈

σ x
1 σ x

n

〉 � XD
�−n

+√
n

at n � 1,
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where �+ defined as in Eq. (76), determines the correlation
length and agrees with the γ → 0 result (78). Vanishing of the
correlation function in the above equation is due to prefactor
XD → 0 as γ → 0 [4]. No analytical results are available for
the spin or string correlation functions in the general case
ha �= 0 and δ �= 0, but we infer from numerical calculations
that those functions have: (i) rapid decrease with n; (ii)
vanishing amplitudes; (iii) finite gap and thus meaningful
definition of the correlation length in the limit γ → 0, similar
to the equation above. Another way to probe the finite gap
(inverse correlation length) at γ = 0, is to consider nonzero
temperature, when one expects temperature corrections to the
correlation and/or response functions ∝ exp(−O(1)κ/T ).

(3) For the Oz(π/2) phase, it is convenient to use V ≡√
1 − Q2. In this phase V = i|V | is imaginary, leading to

kF = Rek+ = π

2
, (79)

κ = −Imk+ = ln(
√

1 + |V |2 + |V |). (80)

The real part of the root kF = π/2 corresponds to the constant
filling νF = 1 in this phase and π/2 oscillations of the string
correlation function (63). Near transition point h → h(2)

c − 0:
|V | � 1 and κ ≈ |V | ∝ (h(2)

c − h)1/2, in agreement with the
expected gap closing.

The above results for real and imaginary parts of the
complex roots k± are depicted in Fig. 9. In agreement with
general arguments [36] and with Fig. 9, the magnetization in
all three phases can be related to the filling as mz = 1 − νF .

Qualitatively, the integer-valued fermionic fillings con-
nected by a continuous curve through the gapless phase of
Fig. 9, are due to the flat piece of the effective spectrum
shown in Fig. 8. An interesting topological transition known
as fermionic condensation [49] is signalled by appearance of
a continuous real filling smoothly connecting between two

integer values (1,0) of the step function predicted by the
Landau Fermi-liquid theory. One needs a flat band piece of the
single-particle spectrum for such noninteger filling to occur.
The flat band and fermionic condensation [50] can model
linear-T resistivity in the so-called Planckian metal [51,52].
These analogies are worth exploring further.

Two complex roots �± are also the eigenvalues of the
transfer matrix which generates the wave function of the
zero-energy edge Majorana fermion [19]. Our findings predict
that the localized Majorana edge state in the Oz(π/2) phase
has the wave function with the inverse penetration depth ∝ κ .
The exponential decay of the wave function into the bulk is
modulated by π/2 oscillations. In the IC phase the edge state
gets delocalized, since κ = 0.

The staggered magnetization found from Eq. (22) as

ma
z = ha

π

∫ π/2

0

dk

ξ
(1 − sign(E−)) (81)

leads to

ma
z =

⎧⎪⎪⎨
⎪⎪⎩

0, h > h(1)
c

2ha

π
√

t2+h2
a

F(kF , κ
2), h ∈ [

h(2)
c , h(1)

c

]
2ha

π
√

t2+h2
a

K(κ2), h < h(2)
c

. (82)

Here, K and F are, respectively, the complete and incomplete
elliptic integrals of the first kind.

The bond average and dimerization susceptibility (38) can
be also found in a closed form via elliptical functions [53].
Indeed,

K = 1

2π

∫ π/2

0
dk

cos2 k

ξ
(1 − sign(E−)) (83)

yields

K =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, h > h(1)
c√

t2+h2
a

π (t2−δ2 ) [E(kF , κ
2) − (1 − κ2)F(kF , κ

2)], h ∈ [
h(2)

c , h(1)
c

]
√

t2+h2
a

π (t2−δ2 ) [E(κ2) − (1 − κ2)K(κ2)], h < h(2)
c

. (84)

The dimerization susceptibility

η = 1

2π

∫ π/2

0
dk

sin2 k

ξ
(1 − sign(E−)) (85)

is found as

η =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, h > h(1)
c√

t2+h2
a

π (t2−δ2 ) [F(kF , κ
2) − E(kF , κ

2)], h ∈ [
h(2)

c , h(1)
c

]
√

t2+h2
a

π (t2−δ2 ) [K(κ2) − E(κ2)], h < h(2)
c

.

(86)
In the isotropic limit, two anomalous parameters (39) breaking
the particle number conservation, P = ηP = 0 due to U(1)
symmetry.

Some additional progress in analytical evaluation of the
string correlation function (57) can be made for XX chain.

The Majorana correlation function (34) gets simplified.
Introducing

G±(k) ≡ G11(k) ± G12(k) (87)

and

g± ≡ (t cos k ± ha ± iδ sin k)/ξ , (88)

we find

G±(k) = 1
2 (1 + sign(E−)) + 1

2 (1 − sign(E−))g±. (89)

The above equation yields for the gapped phases

G±(k) =
{

1, h > h(1)
c

g±, h < h(2)
c

(90)
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and for the gapless IC phase at h(2)
c < h < h(1)

c ,

G±(k) =
{

1, k > kF

g±, k < kF

. (91)

At h > h(1)
c , the block Toeplitz matrix for evaluation of Dzz

(cf. Ref. [25] its explicit form) becomes just a unit matrix for
any choice of L and R in (57). So we find the exact result for
the SOP:

Oz = 1, h > h(1)
c . (92)

The above result for the average of strings of σ z operators
(56) is in sync with the existence of plateau of magnetization
mz = 〈σ z〉 = 1.

At h < h(2)
c , the SOPs Oz,i form step-like parabolic lines

along h, similar to Eqs. (82), (84), and (86) [54]. The values
of Oz,i are available via numerical calculations only. However,
in case ha = 0 the result (61) can be used to find SOP inside
the circle along the line γ = 0:

ha = γ = 0, |h| < h(2)
c : O2

z,1 = 2
δ1/2

1 + δ
. (93)

The model at γ = 0 with additional U(1) symmetry belongs to
a separate universality class with the central charge c = 1 [4].
From (93) we infer the index of the order parameter β = 1/4
in the vicinity of the critical point δ = 0.1 Unfortunately, no
progress is made at this point in analytical evaluation of SOPs
beyond two special cases (61) and (93).

Two plateaux of mz have a certain analogy with quantized
Hall conductance, proportional to the topological Chern num-
ber [55]. In the isotropic limit the eigenvalues λ± defined by
Eq. (66) become the eigenvalues of the Hamiltonian (68). In
such a case, the winding number (65) and magnetization (73)
are simply related in the gapped phases:

mz = 1 − Nw (94)

The IC gapless phase does not have long-range string order,
since all three Oz,i = 0 on the right hand side of (58). [In the
limit γ → 0, parameters Oz,i vanish abruptly as h → h(2)

c + 0
and h → h(1)

c − 0, see Fig. 6(a) for visualization]. However the
gapless phase is algebraically ordered, demonstrating power-
law decaying string-string correlation function with the IC
oscillations:

Dzz(1, n) = A√
n

cos(kF n) . (95)

In the above formula the coefficient A is nonuniversal, while
the critical index of the correlation function η = 1/2. The
latter along with other two indices ν = 1 and β = 1/4 satisfy
all scaling relations. We found a perfect agreement between
Eq. (95) and direct numerical calculation of the string correla-
tion function. For a particular choice of parameters yielding
kF = π/6, the results are shown in Fig. 10(a) with A =
1/π1/8 ≈ 0.87.

B. Interacting XXZ limit (� �= 0)

1. Plateaux, parabolic lines, string order, and oscillations

To deal with the regime of weak interactions � � 1, we
need to replace the bare parameters in the equations of the

(a)

(b)

FIG. 10. Power-law decaying oscillations of the string correla-
tion function Dzz(1, n) in the gapless IC phase. (a) shows direct
numerical results from the Toeplitz determinant (blue dots) for the
noninteracting case and the plot of Eq. (95) (dashed line). (b) shows
direct numerical results for the interacting case when the Toeplitz
determinant is calculated with renormalized parameters found from
the mean-field equations (red dots) and the plot of Eq. (98) (dashed
line) In both cases, A = 1/π 1/8 ≈ 0.87 and kF = π/6.

previous subsection by the renormalized quantities. Having
almost all results expressed via standard functions does not
rescind the task of extensive numerical calculations, since
critical fields h(1,2)

c and remormalized couplings must be found
from self-consistent mean-field equations for each point in the
four-dimensional space of bare parameters. (Two parameters
are eliminated from our analysis, since we found γR = γaR = 0
in the isotropic limit).

As expected [35], the uniform magnetization in the inter-
acting model has two plateaux, as in Eq. (74). It is shown
in Fig. 4. The interaction renormalizes numerical values of
critical fields h(1,2)

c and the form of the curve mz in the IC gap-
less phase, but not the universal plateau values mz = 0, 1 in
two gapped phases. Qualitatively, it means that the interaction
does not change the integer-valued filling per unit cell (1 or
0), in agreement with Ref. [36], as one can see in Fig. 9. Thus,
the present mean-field theory respects the LSM theorem.

The analytical results of the previous subsection allow
us to understand how this interesting feature makes it way
through the equations. The renormalized effective spectrum
has the same form, as shown in Fig. 8. The bond average
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K and dimerization susceptibility η (cf. (84) and (86)) in
the Oz(π/2) phase (h < h(2)

c ) are h-independent functions of
other couplings, see Fig. 2(a). In mathematical terms, these
functions form parabolic lines of zero curvature in the para-
metric space. Both quantities K and η vanish in the PM phase
(h > h(1)

c ). The staggered magnetization ma
z , cf. (74) and Fig. 4,

demonstrates similar behavior. The ground-state energy f in
the Oz(π/2) phase is given by the third expression in (71) plus
the constant term �C where C, determined from Eq. (48), is

C = K2 + 1
4

(
ma

z

)2 + δ2(η2 + 2Kη). (96)

The above term and h-independent effective band εeff lead to
f as an h-independent parabolic line at h < h(2)

c [54], and,
consequently, mz = 0. For the PM phase with a totally flat
band, we find

f = − 1
4� − 1

2 h, (97)

where Eq. (42) with hR = h − � is used, leading to
mz = 1 [56]. So, the plateau mz = 1 is due to: (1) flat band
which leads to linear dependence of the ground-state energy
on the field; (2) the fact that interaction does not renormalize
the slope (−1/2) of this straight line. The relation between
the magnetization and the winding number (94) holds for the
interacting case.

The exact result (92) holds for the plateau of the SOP
Oz in PM phase of the interacting model, along with the
step-like h-independent behavior of three parameters Oz,i of
the oscillating string long-ranged order, see Figs. 6(a) and 5.
Since the interaction does not change the wave vector of the
oscillating string order kF = π/2, cf. Fig. 9, one can select
a convenient single correlation function (63) and to use the
SOP Oz,+.

It is worth stressing qualitative similarities and distinctions
in behaviors of the average quantities entering our equations
in two gapped phases: while in the gapped topologically
trivial PM phase (h > h(1)

c ) all quantities mz, ma
z ,Oz,i,K, η are

equal to 1 or 0, i.e., they form true plateaux, in the gapped
topological phase (h < h(2)

c ) only the uniform magnetization
demonstrates a true (trivial) plateau mz = 0. The other quanti-
ties are h-independent functions of other couplings (parabolic
lines) [54]. Except for the SOPs, all other quantities are having
their values in the gapped phases continuously connected
across the IC gapless phase with cusps at two critical points
h(1)

c and h(2)
c .

The IC gapless phase is the Luttinger liquid (LL) of the
JW fermions [8].2 The long-range string order of the gapped
topological phase (h < h(2)

c ) is taken over by the algebraic
order of the power-law decaying string correlations at h(2)

c <

h < h(1)
c . We have verified numerically oscillating behavior

of (57). It is in agreement with predictions (95). In the
mean-field approximation, the only effect of interactions on

2The mean-field approximation cannot account for such reconstruc-
tion of the fermionic ground state due to interactions. Instead of
LL, the mean field predicts free fermions, albeit with renormalized
parameters. In a moderately minimalist sense, we accept this approx-
imation as adequate, since the exact approach and the mean field both
predict a gapless fermionic state.

the correlation function is renormalization of kF and a phase
shift. For a comparison with the noninteracting case (95)
presented in Fig. 10(a), we chose the model parameters to
make the renormalized kF = π/6 again. The direct numerical
calculations are in excellent agreement with the analytical
expression

Dzz(1, n) = A√
n + 2

cos
(π

6
(n + 2)

)
, (98)

as one can see from Fig. 10(b). The gapless IC (LL) phase is a
counterpart of the floating phase occurring via a BKT thermal
phase transition in frustrated 2D Ising models [57,58].

2. Interaction-driven transition

The main goals of this subsection is to establish restrictions
of the proposed mean-field theory coming from the strength of
interactions �, and to relate the predicted Oz(π/2)-phase to
the antiferromagnetic phase known from exact solution. The
model of this study is antiferromagnetic, so � > 0. Since we
are interested to probe effects of the interaction, we turn off
other relevant couplings and set ha = δ = 0.

We analyze the model on the (h,�)-plane shown in
Fig. 11. As known from exact results [2,4], the chain with-
out external fields generates spontaneous antiferromagnetism
(AFMz) in the axial direction (ma

z �= 0) at the critical value
� = 1. At the noninteracting point � = 0 the model is
in the IC phase at 0 < h < 1, as we infer from Fig. 1
along the line γ = 0 [the Oz(π/2) circle is absent, since
R(ha = δ = 0) = 0]. At h = 1 the noninteracting model en-
ters the familiar PM phase. The IC-PM phase boundary h(1)

c =
1 + � is a special case of the exact result (53). At � > 1
the AFMz phase resides inside the V-shaped wedge on the
(h,�) plane, and at a certain critical field h = h(2)

c the XXZ
chain undergoes a phase transition into the IC (LL) phase.
This phase boundary, known exactly from the Bethe ansatz,
is schematically shown in Fig. 11.

The interaction is a marginal perturbation of the free
fermionic Hamiltonian. One can check from the mean-field
equations that along with the trivial solution ma

z , correspond-
ing to the gapless IC state, consistent with the exact results
at � < 1, those equations admit a nontrivial solution ma

z �= 0
corresponding to the spontaneously generated antiferromag-
netism. The order parameter of this phase is the spontaneous
staggered magnetization and it can be found analytically in
the regime of weak interaction:

ma
z ≈ 2

�
exp

(
− π

2�

)
, � � 1 . (99)

At large � � 1, the order parameter saturates towards
ma

z ∼ 1. A nontrivial ma
z generates via Eq. (43) the sponta-

neous staggered field haR = �ma
z .

We have checked that at the critical value � = 1 and h = 0,
the mean field predicts the ground-state energy of the AFMz

phase fAFMz = −0.4323, while for the gapless IC phase fIC =
−0.4196 with the relative gain of the AFMz phase about 3%.
At � = 1/2 and h = 0, the parameters are fAFMz = −0.3694
and fIC = −0.3690, with the relative gain ∼0.1%. At smaller
� the gain is even smaller, and the two states are virtually
degenerate. However an unbiased minimization predicts at
h = 0 the winning antiferromagnetism all the way to � = 0,
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FIG. 11. Phase diagram of the model with zero bare staggered
field and dimerization in (h,�) plane. The exact result [2,4] for
the phase boundary between the phase AFMz with spontaneous
staggered magnetization and gapless IC (LL) phase, ending at the
critical point (0,1), is indicated with red dotted line. The bold red
line is the mean-field prediction for this boundary. The mean-field
approximation agrees with the exact result for the IC-PM phase
boundary, shown in bold blue. The topological winding numbers Nw

are also shown for each phase.

albeit exponentially weak (99). At � � 1, the mean field
predicts the AFMz-IC phase boundary

h(2)
c ∼ haR ≈ 2 exp

(
− π

2�

)
, (100)

while at � � 1 the critical field h(2)
c crosses over towards

h(2)
c ∝ � . (101)

The result of numerical mean-field calculations for h(2)
c is

shown in Fig. 11.
The AFMz-IC phase transition is of the first order in the

mean-field theory, since ma
z undergoes a jump from zero in

the gapless IC phase to a finite value and stays constant for
a given � in AFMz phase (h < h(2)

c ). (Note that � = const
lines on the (h,�) plane are parabolic lines of h-independent
parameters, like f , ma

z , haR, etc., as explained above). The
spontaneous antiferromagnetism with its primary order pa-
rameter ma

z coexists with the four-periodic string order defined
in previous sections. The SOPs are induced by the staggered
field haR ∝ ma

z and are the secondary. The order is of the type
(60) with patterns shown in panels (2a) and (2b) in Fig. 7.
The string order can be also combined into a single pattern as

in Fig. 7 (1) with the help of the correlation function (63).
The algebraically ordered gapless IC(LL) phase in Fig. 11
is characterized by the power-law decaying correlation func-
tions, similar to the one shown in Fig. 10.

So the phase with the interaction-induced antiferromag-
netism AFMz on the phase diagram in Fig. 11, per se is just
a special case of the Oz(π/2) phase shown in Fig. 1. That is
why the second label Oz(π/2) for the magneic phase is added
in Fig. 11. However, the transition into the gapless IC phase is
quite different in two cases, revealing important distinctions
between the two phases. The axial symmetry broken in the
interaction-generated AFMz-phase which possesses a sublat-
tice magnetization and doubling of a unit cell, is restored via
the first order transition into the IC (LL) phase. The latter,
shown in Fig. 11, has both the staggered field and magneti-
zation zero, ma

z = haR = 0. For the case of the field-generated
Oz(π/2)-IC transition shown in Fig. 1, no symmetry breaking
related to sublattice (staggered) magnetization occurs, and the
field-induced ma

z is not the order parameter. It is continuous
across transition and has a cusp only, as one can see in Fig. 4;
the gaplessness of the IC phase is a result of subtle interplay
of several relevant couplings. In both cases, of the AFMz or
Oz(π/2) phases, the uniform magnetization mz is zero, as
shown in Fig. 4 (γ = 0) at h < h(2)

c .
The last comment is in order here to address the va-

lidity of the proposed mean-field approach. More exactly:
how the mean-field prediction of the spurious spontaneous
antiferromagnetism with ha = δ = 0 in the range � < 1 can
undermine our predictions for the phase diagram in Fig. 1?
The answer is twofold: in the absence of relevant terms ∝ha or
∝δ and h = 0, the mean-field instability in the region � < 1
signals the need of that approximation to be replaced by
more sophisticated techniques. In the case when one or more
of the mentioned parameters are nonzero, the (exponentially
weak) interaction-generated terms do not drive spontaneous
magnetization, but rather result in innocuous renormaliza-
tions of model’s parameters. As an example tested by direct
simulations, we can mention our earlier work on coupled
dimerized XXX chains (� = 1) [27,59] where two rele-
vant parameters—dimerization and inter-chain coupling—are
present. The mean-field predictions are shown to be very
accurate quantitatively, no spurious phases, in agreement with
DMRG or exact diagonalization results, even on the lines of
quantum criticality where a mutual cancellation of relevant
terms occurs.

VI. CONCLUSION

The phase diagram and the order parameters of the
XYZ spin-1/2 chain with alternation of the exchange and
anisotropy couplings in the presence of uniform and staggered
magnetic fields are analyzed. In the fermionic representation,
the model is the interacting Kitaev-Majorana chain with hop-
ping, superconducting pairing, and chemical potential mod-
ulated. The model is treated within the Landau mean-field
framework, where the role of the Ginzburg-Landau potential
is played by the effective quadratic fermionic Hamiltonian,
derived from the Hartee-Fock (HF) approximation of the
interacting fermionic Hamiltonian of the model. The effective
HF Hamilonian is expressed in terms of the renormalized
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couplings, “dressed” by interactions, which are determined
from minimization of the thermodynamic potential. In the
noninteracting limit � = 0, the HF Hamiltonian recovers
the exact one of the free JW fermions, and the renormal-
ized couplings become the bare microscopic parameters of
the model.

In this paper, we have worked out all the steps of the
framework to deal with an interacting problem involving local
and nonlocal orders within the same (extended) Landau for-
malism. The main progress with respect to the earlier related
work [19,25,27], is to present a solution for a physically
interesting nonintegrable model, to connect the tools available
for the exactly solvable quadratic fermionic Hamiltonians
with the standard methods of the mean-field approximation.

The steps of analysis are as follows. Since the effective
Hamiltonian is quadratic, its eigenvalues can be found ana-
lytically. All possible phases of the model and conditions for
the phase boundaries are found from zeros of the spectrum. In
case of competing orders, the stable phase is determined by
the energy minimum. More physically relevant information
is available if analysis of zeros of the spectrum is extended
on the complex plane of wave numbers, however it is not
always technically straightforward. In this study, such an
analysis was done for the axial symmetric limit of the model.
On the phase diagram of the model, three possible local
order parameters (components of the magnetization) and the
nonlocal string order parameter are identified in general case.
The local and nonlocal order parameters are expressed via the
string correlation functions of Majorana fermions. The latter
are evaluated as asymptotes of the determinants of the block
Toeplitz matrices. For the effective quadratic Hamiltonian
with six renormalized couplings, two unitary matrices of
the Bogoliubov transformation were found. These matrices
allow to derive an analytic expression for the correlation
function of two Majorana fermions, which defines elements
of those block Toeplitz matrices. These exact methods are
combined with the self-consistent approximation. The latter
is a component of the mean-field theory (along with the de-
coupling and approximation of the Hamiltonian), which uses
the minimization of the thermodynamic potential to determine
the renormalized couplings (mean-field parameters) of the
effective Hamiltonian.

The main result of the above formalism combining the
exact and the mean-field methods, is the phase diagram of the
model found numerically and shown in Fig. 1, and its local
and string order parameters. The representative numerical
results for the latter are plotted in Fig. 6. The predictions
for conventional (local) orders agree with the earlier results
[2,4,7,9,10,42,44] available only for some special choices of
parameters of the model we study. We found the topological
phase on the diagram with oscillating string order with a pe-
riod of four lattice spacings which was not reported before for
this model. A detailed analysis of patterns of the string order
is given. In addition, we have calculated the winding numbers

Nw for all phases. The phase with the oscillating topological
SOP is the only one with nontrivial Nw = 1. In particular,
we have shown that the topological winding number cannot
change without crossing gapless phase boundary. The present
results agree with the recent results for the XY chain [25],
which is the noninteraction limit of the current model.

The U(1)-symmetric XXZ limit of the model was given
a special consideration. It was demonstrated that the present
approach respects the LSM theorem and its implications. In
particular, plateaux and h-independent parabolic lines were
revealed in various physical quantities, most notable, in the
uniform axial magnetization, in accordance with general ar-
guments [35,36,54]. The appearance of the integer-valued and
IC fermionic fillings, responsible for qualitatively different
behavior of the physical parameters in the gapped and gap-
less phases, can be qualitatively related to the presence of
flat band in the effective single particle spectrum. Turning
on the anomalous U(1)-symmetry breaking coupling γ �= 0,
rounds the flat band and smears plateaux of magnetization
and other step-like parameters. The IC (LL) gapless phase
with the algebraic order of power-law decaying correlations, is
unstable versus any γ �= 0, transforming into gapped phases
with spontaneous planar magnetization (mx,y, depending on
the sign of γ ). The topological order, which we associate
with the oscillating SOP, evolves continuously (albeit not
smoothly) through the γ = 0 line inside the circle on the
(h, γ ) plane, without gap closing, vanishing order parameter,
or changing topological winding number. Similarly, nothing
particular happens in the PM phase h > h(1)

c along γ = 0 line.
So, this line is a gapless line of quantum criticality only

at h(2)
c < h < h(1)

c separating gapped AFM phases with planar
spontaneous magnetizations mx,y. In the topological phase
Oz(π/2) inside the circle, the SOP signaling discrete Z2 ⊗ Z2

symmetry breaking, demonstrates four lattice spacing period-
icity throughout. The line γ = 0 inside this phase corresponds
to additional U(1) symmetry which brings about conserving
quantities, but no transition changing the nature of the order
in the Oz(π/2) phase, is identified at γ = 0.

The mean-field results of the present study lay a very
good intuitively clear framework for further more technically
sophisticated work. Most importantly, direct numerics, like
DMRG and/or exact diagonalization, plus heavier analytical
guns, like RG and bosonization, are needed to check beyond
the mean field the robustness of the predicted phase bound-
aries and stability of the phases in the sensitive parametric
range, along with winding numbers and zero-energy Majorana
edge states, with respect to the interaction-driven effects.
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