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We propose a different tensor renormalization group algorithm, anisotropic tensor renormalization group
(ATRG), for lattice models in arbitrary dimensions. The proposed method shares the same versatility with
the higher-order tensor renormalization group (HOTRG) algorithm, i.e., it preserves the lattice topology after
the renormalization. In comparison with HOTRG, both the computation cost and the memory footprint of our
method are drastically reduced, especially in higher dimensions, by renormalizing tensors in an anisotropic way
after the singular value decomposition. We demonstrate the ability of ATRG for the square lattice and the simple
cubic lattice Ising models. Although the accuracy of the present method degrades when compared with HOTRG
of the same bond dimension, the accuracy with fixed computation time is improved greatly due to the drastic
reduction of the computation cost.
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I. INTRODUCTION

Understanding critical phenomena observed universally in
many-body systems is one of the central topics in statistical
physics. Due to the difficulties in solving the many-body sys-
tems analytically, however, we often have to rely on numerical
methods, such as the Monte Carlo method, in the investigation
of such complex systems. In recent years, on the other hand,
different alternatives, the real-space renormalization group
methods, have become popular more and more, and many
studies have been conducted using these approaches. The
tensor renormalization group (TRG), proposed by Levin and
Nave in 2007, calculates approximately the contraction of a
tensor network by using the singular value decomposition
(SVD) [1]. By representing the partition function of the
Ising models by a tensor network, the free energy for the
honeycomb or square lattice Ising models is calculated for
huge system sizes, which can be regarded virtually as in the
thermodynamic limit.

Despite the success of TRG for two-dimensional systems,
it is challenging to extend TRG to higher dimensions, be-
cause the framework of TRG is tightly related to the two-
dimensional lattice topology. In 2012, Xie et al. proposed the
higher-order tensor renormalization group (HOTRG) method,
which performs the real-space renormalization of tensor net-
works based on the higher-order singular value decomposi-
tion [2]. Unlike TRG, HOTRG can be applied to arbitrary
dimensions. Although the computation cost of HOTRG is
higher than TRG, its accuracy is higher when we compare
these two methods with the same bond dimension χ , which is
the maximum number of the tensor indices. A lot of methods
inspired by TRG and HOTRG have been proposed [3–15],
and they have been used for examining classical and quantum
systems not only in the condensed matter physics but also in
the particle physics [16–31].

Although HOTRG can be applied to higher-dimensional
systems in principle, its computation cost in the
d-dimensional lattice model increases quite rapidly as
O(χ4d−1), where d is the dimension of the lattice, as a
function of bond dimension χ . Thus, it is impractical to
apply HOTRG for large bond dimensions and/or high spatial
dimensions. New algorithms that can perform the real-space
renormalization in general dimensions with a reasonable cost
are strongly demanded.

In this paper, we propose a different TRG method, referred
to as the anisotropic tensor renormalization group (ATRG),
in which the computational complexity for systems on hyper-
cubic lattices is drastically reduced by renormalizing tensors
in an anisotropic way after the tensor decomposition. The
computation cost of ATRG scales as O(χ2d+1), which is much
lower than that of the conventional HOTRG, O(χ4d−1), and
the memory footprint of ATRG scales as O(χd+1), which is
also much smaller than that of HOTRG, O(χ2d ).

The present paper is organized as follows. We describe
the two- and three-dimensional ATRG algorithms in Sec. II.
ATRG can be applied to dimensions higher than three in a
straightforward way. In Sec. III, we calculate the free energies
of the square lattice and simple cubic lattice Ising models at
their critical points as demonstrations of ATRG. Finally, we
discuss the advantages of our method over TRG and HOTRG
in Sec. IV.

II. ALGORITHMS

Let us begin by describing the ATRG algorithm for the
two-dimensional square lattice network. Hereafter, U{X }, S{X },
and V{X } represent, respectively, the left isometry, the singular
value matrix, the right isometry of SVD of matrix X , i.e.,
X = U{X }S{X }V t

{X } or Xi j = ∑
α S{X }ααU{X }iαV{X } jα . In ATRG,

we renormalize two neighboring tensors in the horizontal (x)
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FIG. 1. Renormalization step of ATRG in y direction for the two-
dimensional square lattice model.

and the vertical (y) directions alternately as in the same way
as HOTRG. The outline of one ATRG renormalization step
along y direction is shown in Fig. 1.

First, four-leg tensor T with bond dimension χ is approxi-
mated by a rank-χ matrix by using the partial SVD as

Ty0y1x0x1 ≈
χ∑

α=1

S{T }ααU{T }y0x0αV{T }y1x1α. (1)

The partial SVD (or the truncated SVD) is a method to obtain
largest singular values and corresponding isometries by using
the Arnoldi method or the low-rank approximation based on a
randomized technique [32,33]. By using the partial SVD, the
computation cost for calculating K largest singular values of
an M by N matrix (K � M, N) can be reduced to O(KMN ),
which is significantly smaller than O(min(M, N )MN ), the
computation cost of the standard full SVD. It has been shown
that by using this technique, one can perform the original TRG
with O(χ5) computation cost [11]. In the present calculation,
the decomposition of T [Eq. (1)] can also be done with O(χ5)
instead of O(χ6). Another advantage of the partial SVD is that
it does not require the full matrix, but only the multiplication
of the matrix to a vector. This significant property enables
us to reduce the total memory footprint of the algorithm in
addition to the reduction of the computation cost as shown in
the Appendix.

Then, we define four tensors, A, B, C, and D, as

Ay0x0α = U{T }y0x0α, (2)

By1x1α = S{T }ααV{T }y1x1α, (3)

Cy1x2β = S{T }ββU{T }y1x2β, (4)

Dy2x3β = V{T }y2x3β, (5)

[step (a) in Fig. 1]. Note that the accuracy of the final free
energy may depend on how to separate the singular value
matrix in the above step. Indeed, we observe that by including
the singular matrix S in B and C, the error of the final free
energy is minimized. Such a construction gives us better
free energy than the equal weight decomposition,

√
S, of

the singular matrix into A and B (or C and D). If we do
not introduce truncations in step (a), our splitting of singular
matrix S, together with step (b) and (c) below, gives an
identical singular value spectrum to the direct partial SVD of
T T = ABCD. In this sense, the present splitting gives the best
local approximation, and we think it remains optimal even if
there exist truncations in step (a).

Next, by using partial SVD, we swap the bond of B and C
[step (b) and (c) in Fig. 1]. In order to swap the x1 bond of B
and x2 bond of C, we define tensor M as

Mαβx1x2 =
∑

y1

By1x1αCy1x2β, (6)

and, by partial SVD of M and truncating the singular values
to χ , we define new X and Y as

Mαβx1x2 ≈
χ∑
y1

S{M}y1y1U{M}αx2y1V{M}βx1y1 , (7)

Xαx2y1 = √
S{M}y1y1U{M}αx2y1 , (8)

Yβx1y1 = √
S{M}y1y1V{M}βx1y1 . (9)

Then, we renormalize the horizontal two bonds into one
by using squeezersE and F [step (d) and (e) in Fig. 1]. We
call them squeezers since they are not necessarily isometries,
unlike conventional HOTRG. By applying squeezer E (F ) to
A and X (Y and D), we obtain new tensor G (H) as

Gy0y1x′
0
=

∑
α,x0,x2

Ay0x0αXαx2y1 Ex0x2x′
0
, (10)

Hy1y2x′
1
=

∑
β,x1,x3

Dy2x3βYβx1y1 Fx1x3x′
1
. (11)

Finally, a new renormalized tensor, T ′, is made from the
product of G and H as

T ′
y0y2x′

0x′
1
=

∑
y1

Gy0y1x′
0
Hy1y2x′

1
(12)

[step (f) in Fig. 1], which is used as an input to the next
renormalization step in x direction.

It should be noted that the explicit form of the squeezers is
not needed for calculating the free energy. One can obtain G
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FIG. 2. Renormalization step of ATRG in z direction for the
three-dimensional simple cubic lattice model.

and H directly by partial SVD as

Qy0y1y2y3 =
∑

x1x3αβ

Yβy1x1 Dy2x3βAy0x1αXαx3y3

≈
χ∑
x′

1

S{Q}x′
1x′

1
U{Q}y1y2x′

1
V{Q}y0y3x′

1
, (13)

Hy1y2x′
1
=

√
S{Q}x′

1x′
1
U{Q}y1y2x′

1
, (14)

Gy0y3x′
1
=

√
S{Q}x′

1x′
1
V{Q}y0y3x′

1
. (15)

The explicit form of the squeezers is needed for calculating
other physical quantities, e.g., the energy and the magne-
tization. We discuss the computation cost for calculating
squeezers in Appendix.

One of the most significant differences between ATRG and
HOTRG is that in ATRG, before applying the squeezers E and
F , we construct X and Y from a low-rank approximation of M
[step (b) and (c) in Fig. 1], where the singular value matrix
is truncated to χ . As a result, the contraction of high-rank
tensors, which dominates the computation cost in HOTRG,
can be avoided. As a price, ATRG involves an additional
approximation, by which the accuracy of ATRG becomes
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FIG. 3. Absolute error of the free energy density of the two-
dimensional Ising model at T = Tc as a function of bond dimension
χ calculated by TRG (black squares), HOTRG (blue circles), and
ATRG (red diamonds). Even though ATRG has the same computa-
tion cost as TRG, it produces more accurate results than TRG.

worse than HOTRG with a fixed bond dimension, as seen
below. Also, unlike TRG and HOTRG, ATRG does not sustain
the axisymmetry of the networks anymore. It is interesting to
see that despite these differences, ATRG in two dimensions
still has the corner double line tensor as a fixed-point tensor
as TRG and HOTRG [3].

The computation cost of the whole ATRG renormalization
procedure is dominated by SVD. As already mentioned above,
the cost of SVD can be reduced to O(χ5) by adopting the
partial SVD. The overall computation cost of ATRG is thus
the same as TRG with the partial SVD or projective truncation
method [11,34] in two dimensions. The memory footprint is
O(χ4), which is needed to store the intermediate tensor M.
As we see in the Appendix, however, the memory footprint
can be reduced to O(χ3).

One can easily generalize ATRG to systems in dimensions
higher than two. In Fig. 2, we illustrate the renormalization
step of ATRG in three dimensions. For d-dimensional hyper-
cubic lattices, ATRG can renormalize tensors with computa-
tion cost of O(χ2d+1) and memory footprint of O(χd+1).

III. BENCHMARKS

To demonstrate the efficiency of ATRG, we apply ATRG
to the two- and three-dimensional Ising models. In both cases,
each axis (x and y, or x, y, z) is renormalized 15 times
alternately, i.e., the system contains (215)d spins.

First, we discuss the two-dimensional Ising model on
a square lattice. The free energy density calculated at the
critical temperature, T = Tc = 2/log(1 + √

2) [35], is shown
in Figs. 3 and 4. In Fig. 3, we plot the absolute error of
the free energy density as a function of bond dimension χ .
We calculate up to χ = 108 (χ = 58) for TRG and ATRG
(HOTRG). For all χ , the result of ATRG is between those of
TRG and HOTRG. Note that ATRG has the same computation
cost as TRG, while the cost of HOTRG is higher than them. In
order to investigate the performance of ATRG more precisely,
we compare the χ dependence of the error with fixed compu-
tation time. For that purpose, we introduce the leading-order
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FIG. 4. Absolute error of the free energy density of the two-
dimensional Ising model at T = Tc as a function of leading-order
computation time τ [Eq. (16)] calculated by TRG (black squares),
HOTRG (blue circles), and ATRG (red diamonds). ATRG achieves
the most accurate results among the three methods with fixed com-
putation time.

computation time τ (dimensionless quantity) defined as

τ =
{

χ5 for TRG and ATRG

χ7 for HOTRG
(16)

based on their leading computation cost. In Fig. 4, we plot the
absolute error of the free energy density as a function of τ for
the three methods. With fixed τ , ATRG has the smallest error
among the three methods. In ATRG, partial SVD is the most
expensive operation, while it is the contraction in HOTRG.
In practice, the partial SVD takes a much longer time than the
contraction, even when their computation costs are in the same
order. Thus, the actual performance difference between ATRG
and HOTRG is smaller than Fig. 4, though ATRG becomes
more and more advantageous for larger χ due to the difference
in the order in computation cost [Eq. (16)].

It should be mentioned that the present method suffers
from larger and nonmonotonic fluctuations in the convergence
of the error. This observed behavior is probably related to
the two independent truncations in the ATRG renormalization
procedure. Because ATRG optimizes only the local tensors in
each truncation, increasing χ does not necessarily improve the
accuracy of the free energy, which is determined by the global
tensor network. The nonmonotonic convergence in ATRG
should be subjected to further investigation.

Next, we move to the three-dimensional Ising model
on a simple cubic lattice. In the three-dimensional case,
we compare ATRG with HOTRG. In Fig. 5, we show the
free energy density as a function of τ at T = Tc = 4.5115
[2,36–38]. Here, we again define the leading-order computa-
tion time τ for three dimensions as

τ =
{

χ7 for ATRG

χ11 for HOTRG.
(17)

In the present case, we calculate up to χ = 56 (χ = 27) for
ATRG (HOTRG). In Fig. 5, it is demonstrated again that the
ATRG gives the better (lower) free energy density than that of
HOTRG for the same leading-order computation time τ . We
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FIG. 5. Free energy density of the three-dimensional Ising model
at T = Tc as a function of leading-order computation time τ

[Eq. (17)] calculated by HOTRG (blue circles) and ATRG (red
diamonds). ATRG achieves much lower free energy than HOTRG
with fixed computation time.

expect that the advantage of ATRG over HOTRG should be
more pronounced in higher dimensions.

IV. SUMMARY

In this paper, we proposed the ATRG method that can
perform tensor renormalization operations with computation
cost of O(χ2d+1) and memory footprint of O(χd+1) for d-
dimensional hyper cubic lattices. The computation cost and
the memory footprint of the proposed method are much lower
than that of the conventional HOTRG, O(χ4d−1) and O(χ2d ),
respectively, which enables us to apply the tensor renormal-
ization method in higher dimensions. Unlike HOTRG, our
algorithm involves the truncation of the bond dimension by
using SVD when we swap the bonds of two tensors. Due to
this additional approximation, the accuracy in the final result
degrades compared with HOTRG. However, this disadvantage
is compensated by the drastic reduction of the computation
cost from O(χ4d−1) to O(χ2d+1). We confirmed that for two-
and three-dimensional Ising models, our method achieves
higher accuracy than HOTRG with fixed leading-order com-
putational time. Since ATRG is a real space renormalization
method similar to HOTRG and preserves the lattice topology
after the renormalization, it can be applied to various lattice
systems in arbitrary dimensions.

Finally, as we pointed out already, the partial SVD is the
most expensive operation in ATRG. The performance of the
partial SVD is thus essential in ATRG, and the development
of more efficient and stable partial SVD algorithms is desired
for future application of ATRG to large-scale complex lattice
systems.
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APPENDIX: FURTHER TECHNIQUES

In this Appendix, we discuss further detailed techniques to
achieve the optimal cost in ATRG.

1. Choice of bond geometry in step (a)

In step (a) of Fig. 1, there remains freedom in choosing
the bond geometry of A, B, C, and D. By setting the bond
geometry of A′ and B′ (or C′ and D′) in the following renor-
malization step so as to match the geometry of G and H
in the previous step, respectively, we can avoid SVD of T ′,
which introduces additional truncation errors, and continue
the renormalization procedure by using SVDs for G and H ,
which have no truncation error. The modified step is illustrated
in Fig. 6. Note that an explicit partial SVD of T ′ requires the
computation cost of O(χ5), while in the modified procedure
the cost is reduced to O(χ4) that includes SVDs of G and H ,
and that of the intermediate two-bond tensor, K , defined as
K = S{G}V t

{G}U{H}S{H}.

2. Calculation of squeezers in step (d)

Next, we explain how to obtain squeezers E and F in step
(d) in Fig. 1. In this step, as we explained, we want to prepare
squeezers E and F that satisfy Eqs. (10)–(15). In general,
such squeezers should minimize ‖LR − LFER‖2, where L =
Y D, R = AX , and ‖ · ‖ denotes the Frobenius norm, and thus
they can be obtained from the partial SVD of LR as

E = S
− 1

2
{LR}U

t
{LR}L, (A1)

F = RV{LR}S
− 1

2
{LR}, (A2)

(Fig. 7) [39]. The partial SVD of LR can be performed
by O(χ )-times matrix-vector multiplications. Therefore, the
computation cost of this process is O(χ5) in two dimensions.

In higher dimensions, the computation cost of the above
procedure can be reduced from O(χ2d+1) to O(χmax(d+3,7)),
as shown in Fig. 8, where A, X, Y , and D in Fig. 1 are
represented as three-bond tensors with bond dimensions
χd−1, χ, χ . In Fig. 8, before making squeezers, SVD or the
QR decomposition is performed for each tensor. Furthermore,

G

H

T

K

A (C )

B (D )

O(χ4)

O(χ3)

O(χ5) O(χ5)

O(χ4)

U{G} U{G}

U{K}S{K}V{H} V{H}V †
{K}

FIG. 6. Reduction of SVD computation cost for the two-
dimensional square lattice model. Here, K = S{G}V t

{G}U{H}S{H}.
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U{LR}S{LR}V
t
{LR}

S
− 1

2
{LR}
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U t
{LR}

S
− 1

2
{LR}

FIG. 7. Preparation of squeezers E and F in step (d) in Fig. 1.
These squeezers E and F are chosen so as to minimize ‖LR −
LFER‖2.

the matrix-vector multiplications in the partial SVD can be
performed, as in Fig. 9, without making a full matrix or
χ4 × χ4. By introducing these preprocesses, the cost of the
partial SVD for making squeezers in steps (d) and (e) in
Fig. 2 is reduced to O(χmax(d+3,7)), which means the cost
of SVDs for making squeezers becomes subleading for d >

3. Although the cost for the contraction of tensors at the
final stage in Fig. 8 remains O(χ2d−1), reduction of the
cost of SVD is essential as the prefactor in the cost of
the partial SVD is typically much larger than that for the
contraction.

3. Swapping bonds in step (c)

Finally, we discuss the computation cost for swapping
bonds [step (c)]. The cost of this procedure can be reduced
to O(χd+3). In addition, the memory footprint can also be
reduced from O(χ2d ) to O(χd+1). In Fig. 10, we show the
procedure to reduce memory in step (b) and (c) in Fig. 1 in
d dimensions. The upper sequence in Fig. 10 is the original
procedure shown in Fig. 1, where the memory footprint of the
intermediate tensor is O(χ2d ). In the partial SVD based on the
Arnoldi method, the most time-consuming part is the matrix-
vector multiplication. The matrix-vector multiplication can
be factorized into two successive tensor-vector multiplica-
tions, as shown in the lower row of Fig. 1. In this way,
generating a large intermediate tensor can be avoided. This

χχ2
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χd−1
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χ
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χ
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χ
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χd−1
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χ
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χ2χ2
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χd−1

χd−1χd−1

χd−1

FIG. 8. Reduction of SVD cost in step (d) and (e) in Fig. 2 by
using SVD or the QR decomposition for d > 3. The partial SVD
from lower left to upper right can be performed in O(χ7) without
making a full matrix of χ 4 × χ 4 by using the factorization technique
shown in Fig. 9.
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FIG. 9. Factorization of matrix-vector multiplication in the par-
tial SVD to make squeezers in Fig. 8. To obtain χ singular values
and corresponding isometries, we need χ -time matrix-vector mul-
tiplications, which is manifested by an additional bond with bond
dimension χ to the rightmost vector.

procedure requires only the memory footprint of O(χd+1) (to
store χ vectors of length χd ) and the computation cost of
O(χd+3).
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χ

χ

χ

O(χ2d+1) O(χ2d+1)

O(χd+3) O(χd+3)
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FIG. 10. Factorization of matrix-vector multiplication in SVD.
The upper row is the original procedure [step (b) and (c)] presented
in Fig. 1. The memory footprint of the intermediate tensor is O(χ2d ).
In the lower row, the matrix-vector multiplication in the partial SVD
is factorized in two successive tensor-vector multiplications. This
procedure reduces the memory footprint from O(χ2d ) to O(χ d+1)
and also reduces the computation cost from O(χ 2d+1) to O(χ d+3).
Similar to Fig. 9, the vector at the bottom have the bond with bond
dimension χ .
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