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Chiral spin pumping is the generation of a unidirectional spin current in half of ferromagnetic films or
conductors by dynamic dipolar stray fields from close-by nanomagnets. We formulate a general theory of
long-range chiral interactions between magnets mediated by unidirectional traveling waves, e.g., spin waves in a
magnetic film or microwaves in a waveguide. The traveling waves emitted by an excited magnet can be perfectly
trapped by a second, initially passive magnet by a dynamical interference effect. When both magnets are excited
by a uniform microwave, the chiral interaction between them creates a large imbalance in their magnon numbers.
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I. INTRODUCTION

Unidirectional propagation of quasiparticles is a funda-
mental phenomenon with practical interest for information
processing in logic devices [1-6]. Magnons, the elemen-
tary excitations of the magnetic order, carry an intrinsic
angular momentum that can be utilized to transport in-
formation [7-10]. Dynamic dipolar stray fields emitted by
ferromagnetic nanostructures can generate a unidirectional
magnon current in a ferromagnetic film or conductors in its
proximity by ‘“chiral spin pumping” [11-15]. Magnons can
propagate over centimeters [16] in magnetic insulators such
as yttrium iron garnet (YIG) without Joule heating. In contrast
to electrons that are easily controlled and confined by electric
gates, the electric control of magnons on a small length
scale is difficult. Magnons are trapped by inhomogeneous
magnetic fields in, e.g., a spin-polarized atomic hydrogen
gas [17] and superfluid *He -B [18,19]. Existing magnon tran-
sistors [20,21] do not fully trap magnons in the film because
of inefficient gating.

In this work, we theoretically demonstrate trapping of
waves on short length scales by the unique functionalities of
chiral pumping [3,4,14,23]. We first focus on a device consist-
ing of two magnetic transducers in the form of nanowires on
top of a high-quality thin film of a magnetic insulator such as
YIG (Fig. 1). Exciting one of the nanomagnets by external
microwaves launches spin waves in the magnetic film that
propagate in only one direction [11-14]. These spin waves
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then interact with the second nanowire that does not see the
microwaves directly and excite its magnetization, which then
in turn emits spin waves as well. The relative phase shift of
the magnetizations in the two wires is m + ¢y, where ¢y is
the transmission phase of the spin waves in the film. The
phase shift 7 is caused by twice the dissipative phase shift
at the resonance of two identical nanowires [22]. When the
spin waves from both sources interfere destructively outside
the two wires, the nanowires form a magnonic cavity that
confines the traveling spin waves irrespective of the geometric
phase ¢y caused by their distance L. The spin waves thereby
cannot escape the passive wire; they are trapped. Since spin
waves are not reflected back and forth to form standing waves,
this mechanism is robust with respect to disorder and implies
nearly perfect spin and energy transfer between the wires. The
entrapment of traveling waves by the dynamic 7 phase shift
may occur in other chirally coupled systems as well: Two
magnets located on a special line of a waveguide at which
the momentum and rotation direction are locked [23] can trap
the photons in the same manner [24].

This paper is organized as follows. We first introduce the
general trapping mechanism in Sec. II and then discuss two
typical cases, including magnetic wires on top of a mag-
netic film in Sec. III and magnetic spheres in a microwave
waveguide in Sec. IV. An imbalanced pumping between two
magnets by chiral interaction is addressed in Sec. V. We
conclude with Sec. VI.

II. GENERAL TRAPPING MECHANISM

Generally, we consider a chirally coupled system in one
dimension, in which the magnon mode in the /th magnet j;
of frequency wg ; at position R;¥ interacts with the traveling
modes &; of frequency wy; for example, in Fig. 1 the magnon
modes are the Kittel modes [25] in the nanowires, and the
traveling modes are spin waves in the magnetic film [11-14].
Another typical example we shall highlight is two magnetic
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FIG. 1. Two magnetic nanowires on top of a thin YIG film with
in-plane magnetization along the magnetic field H2. A local stripline
antenna (not shown) is used to excite and detect the magnetization
dynamics in the nanowires. The red arrow indicates the unidirec-
tional magnon current in the film. The geometric parameters used
in the text are indicated.

spheres in a microwave waveguide in which the magnon
modes are the Kittel modes in the spheres and the traveling
waves are the microwaves [23,24,26-28]. The model is ex-
tendable to chiral nano-optics [1] and plasmonics [3] in which
the magnetic dipoles by magnon modes may be replaced
by electrical dipoles [29,30]. The chiral coupling, with the
mechanism addressed later, implies that the magnon modes
prefer to interact with the traveling waves propagating in
one direction. We use a general quantum description between
harmonic oscillators that is allowed to generally describe the
chirally coupled systems. We denote the coupling constant
between the magnon mode and traveling waves as gi;, and
the full chiral coupling indicates that one of gj and g_
vanishes. The general Hamiltonian then reads [14]

A/ni= Z wx. Bl B+ Z ol
] k

+ 33 (grae ™ e + grae™Blar). (1)

l k

We now consider two identical magnets located at r; =
R¥ and r; = R,¥, which act as transducers for microwaves
that are emitted or detected by local microwave antennas.
They communicate by exciting and absorbing the traveling
waves. Hereafter, g; | = gx2 = g and wg,| = wk 2 = wk.
Expressing the local magnon operators at R; and R, by j;
and B,, we obtain the long-range chiral interaction between
the two magnets mediated by the traveling waves through
eliminating the dynamics of traveling modes in the equa-
tions of motion of the system [31,32] (see Appendix A for

derivation):
d (B, [(ox—iT@) =i ) (B (P
dt \ B, —iMy(@)  ax— il \B) \B)

Here, ox = wk — ik /2, in which k = 2agwg is the intrinsic
damping of the Kittel modes in the magnets parameterized

by the Gilbert coefficient ag. P, = —,/KI(,I) pl!) represent the

mn
input terms from the local antennas ﬁgfl) to the Kittel magnons,
where «{ is the additional radiative damping induced by
the microwave photons that is usually much smaller than
k. With R, > R; in mind, the couplings between magnets

read

Ia(w) = v(kw)|g—kw|2€ik‘“(R2_R'),

Parfw) = o=l P70, @)
and the self-interaction

P() = 77 8w + lg—c. 1) 3)

is the pumping-induced damping for a single nanowire [14].
Here, v(k) is the group velocity of the traveling waves, k,
is the positive root of w; = w, and we have used the on-
shell approximation w = wg at the ferromagnetic resonance
(FMR). [Ia(@)| # [T21(@)] since |gk| # |g—«!, implying the
(partially) chiral dissipative coupling [33-36]. In the fully
chiral limit with, e.g., g_x = 0, |I'2;(w)| = 2I'(w), i.e., twice
the magnon broadening by chiral pumping [Eq. (3)]. When
one of the couplings is exactly zero, one magnet can influence
the other magnet but without back action. This breaks the reci-
procity of the interaction and promises new functionalities, as
addressed below.

We now turn on only p!!” and calculate the excited traveling
waves. In frequency space and the chiral limit we have (see
Appendix A)

& (@) = Gr(w)gile ™ Bi(w) + e "2 B, ()],

—iy gin(a))e”‘(Rz_R‘)
—i(w—wk) +K/2+iY , G (w)

where Gr(w) = 1/[(w — wy) + iki /2] is the Green’s function
of the traveling modes, where «; denotes the intrinsic damping
of traveling modes. Equation (4) gives the phase relation
between B, and B; when the left magnet is excited. At the
FMR,

Br(w) = Bi(w), @

Ba(wx) = n(wx)e™ T ERIB, (o), )
where &, is the positive root of w, = wk, and
2IN(wk)
= 6
n(wg) /2 ) (6)

modulates the magnitude of the excited magnon amplitude.
This corresponds to a phase shift

Ap =1 +k (R, — Ry) (N

between the two magnets. k.(R, — R;) is the phase delay by
the traveling wave transmission between the two magnets.
The phase shift of & reflects the doubled dissipative phase
shifts /2 between magnons in the magnets and traveling
waves that is the key for the magnon trap addressed below.
We recently reported observation of this phase shift with two
magnetic nanowires on top of magnetic film by microwave
spectroscopy [37]. Remarkably, when /2 < I, n — 2, im-
plying that the energy accumulates in the passive magnet,
apparently amplifying the signal by a factor of 2.

The phase relation (5) implies the trapping of magnons at
the FMR when n(wg) — 1, i.e., when the pumping-induced
damping and the intrinsic damping are comparable. At the
FMR, the excited traveling-wave amplitude with momentum
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k, reads

(, (k) = G, ()i, e (Br(wr))[1 — n(wk)],  (8)

which indicates suppression of the right-propagating waves on
the right side of the magnets when n(wx) — 1. Meanwhile,
the left-propagating waves are not excited due to the nature
of chiral coupling. Therefore, the excited traveling waves are
confined between magnets, and the magnons are trapped in
the right magnet (the spatial amplitude is calculated below).
By tuning 1 one can modulate the transport of traveling waves
as well.

The above mechanism is universal in chirally coupled
harmonic oscillators. We address two typical examples in
optomagnonics below, including coupled magnetic wires and
film [12-14,37] and coupled magnetic spheres and a mi-
crowave waveguide [23,26-28].

III. MAGNETIC NANOWIRE AND FILM

We consider the effectively one-dimensional model in
Fig. 1 with two sufficiently long magnetic nanowires (thick-
ness d and width w) on top of a thin YIG film of thickness
s. The latter is of the order of tens of nanometers, such that
the excited magnetization is distributed uniformly across the
film without chirality itself [12,14]. The distance between the
nanowires is L 3> w. Magnons in the nanowires are excited
and detected by local metal stripline antennas on top of the
nanowires [37]. The interlayer exchange interaction between
the wire and film has been found to be smaller than the dipolar
one in the antiparallel configuration [12,13] and can be further
suppressed by a spacer without affecting the longer-range
dipolar coupling.

We focus on the linear regime at temperatures far below
the critical one. To leading order, the magnetization operators
in the magnetic wires and film may be expanded by [25,38]

M, (r) = —/2M,yh Z[mg‘>(x)e"">‘&k +H.c.l,
k

Mo (v) = — /2N,y RIE, (1) + Hoc.l, ©)

where M, and M are the saturated magnetizations of the
film and nanowire, —|y| is the electron gyromagnetic ratio,
m® (x) and mf, (r) represent, respectively, the amplitudes of
the spin waves in the film and Kittel modes in the wires, and
k denotes k,. The magnetization M in the film couples to the
dipolar field emitted by the magnetization M; of the wire via
the Zeeman interaction [14,39]. With the mode expansion, the
coupling constants (refer to Sec. B 1)

oo (1K ik ()
gu1 = —Fik) (" m” )(ik |k|> (m "
_ K

are real, and the form factor

2 MM _ T
Fi(k) = ’ZSV,/‘T"’(l—e Kd) (1 — ¢~kis) sin <7w)

1)
L is the (sufficiently large) length of the magnetic nanowire.
By tuning the magnetic field to change the resonant mo-
mentum k of the spin waves to the Kittel mode, the factor

sin(kw/2) allows for tuning of the dipolar coupling strength.
Chiral coupling is reflected by g_j = 0 for the circularly
polarized spin waves with m{ = im{" (M || 2) [14]. In Ap-
pendix C, the full numerical simulation confirms the chiral
spin pumping and validates the single-mode approximation.

We now calculate the excited magnetization in real space.
By Eq. (8), at the FMR @ — wg the film magnetization in
Eq. (9) is the real part of

Mo(x,y) = = 2/2My iBi(wx) ) mP (0)Gr(wx gk
k

X [e—ik(Rl—y) _ n(wK)eikr(Rz—Rl)e—ik(Rz—y)L (12)

in which the k integral can be carried out by closing the
contour in the complex plane, with singularities in the denom-
inator of Gy being k} = *(k, 4 i€), where € is the inverse
of the propagation decay length. When y < R} < R;, the
integral path is chosen in the lower half plane that selects the
singularity k*, leading to

N 2i ~
ME(x) = U—\/zMsyhﬂl(wK)m;’“(x)g_k,
ky

ik (Ri—y) _

x [e n(wy e CRa=fim], 13)

which vanishes when the chiral coupling g_; = 0. When y >
Ry > Ry, the integral path is chosen in the upper half plane
that selects the singularity k%, and we obtain

N 2i o
ME(x) = g\/zMJyhﬂl<wK>m£ff)<x>gk,

x e R — p(ag)], (14)

which vanishes when n(wg) — 1. When R; <y < Ry,

M, (x) = vz—‘\/zMsyhBl (@Om (x)gg e O (15)
k,

is a right-propagating wave in the chiral limit. We note that
the decay of the excited magnetization is governed by the
ubiquitous Gilbert damping by the complex k7 . Without going
into the details of the nonchiral system, we envision that
the vanishing magnetization on the right side of the passive
nanowire is also established even without chiral coupling. But
the left-moving traveling waves are excited, and the chiral spin
pumping can even emerge in the nonchiral system with active
and passive excitations by the dynamic interference effect. We
note that the trapped magnetization is not a standing wave
as there are no back and forth reflections. This helps us to
focus the magnetization on a small region of micrometers and
efficiently transport the spin information directly from one
wire to the other.

We illustrate the concept by calculating the pumping-
induced damping and magnon trapping under chiral pumping
of spin waves for Co nanowires with a thickness of 30 nm
and a width of 100 nm on top of a YIG film with s =20
nm. We use the magnetizations uoM; = 0.177 T for YIG and
/L()MA- = 1.62 T for Co [13]. The intrinsic Gilbert damping
coefficient of Co wire is taken to be ag = 0.01 [13,37,40].
Figure 2 is a plot of the magnetic-field dependence of 7,
the pumping-induced broadening I', and the intrinsic one
k/2 = agwg of the wire Kittel mode, which can be mea-
sured in terms of the broadening of the wire FMR. For the
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FIG. 2. Pumping-induced (I") and intrinsic (x/2) broadenings
of a Kittel magnon as a function of applied magnetic field. At the
crossings (black dots) the magnons emitted from the left nanowire
are perfectly trapped. The material parameters are given in the text.

particular magnetic fields puoH ~ 31.8 and 139.7 mT, the
pumping-induced damping equals the intrinsic one, at which
the trapping becomes perfect.

In Figs. 3(a) and 3(b) we plot a snapshot of M, in real
space for magnetic fields poH =~ 31.8 and 50 mT. We choose
Co wires centered at R; = 0 and R, = 2 um. At the critical
field of 31.8 mT, the excited magnetization is very well
confined between the two wires [Fig. 3(a)], while magneti-
zation is allowed to leak into the right half-space otherwise
[Fig. 3(b)]. This device therefore functions as a magnon
valve/switch/transistor that can be opened and closed by
weak magnetic fields with characteristics far superior to
previous realizations that operate by very different princi-
ples [20,21].

IV. MAGNETIC SPHERES AND MICROWAVE WAVEGUIDE

Another example in optomagnonics is the chirally coupled
magnetic spheres and microwaves in a waveguide along the §
direction with a rectangular cross section of dimensions a > b
(a |l z, b | %) [23,26-28]. Considering the lowest TE |y mode
with magnetic-field component H; , = 0, the magnetic field is
polarization momentum locked at the special positions termed
the “chiral line” with the magnetic field H; . = isgn(k)Hy
(details are shown in Sec. B2). Two identical submillime-
ter magnetic spheres with saturation magnetization M; and
volume V; are saturated in the % direction and put on the
chiral lines R;—;»§. The diameter of the spheres is much

G ] ®
HH=31.8mT HH=50mT
Sol M
i [\/\/\N\N\/\
1105 1.0, ]
-5 0 5-5 0 5
Y (um) y (um)

FIG. 3. Snapshots of the calculated magnetization M, in real
space for magnetic fields (a) puoH =~ 31.8 and (b) 50 mT. The
material parameters are given in the text.

smaller than the wavelength of the microwaves such that they
can be treated as point particles [41]. The magnetization and
waveguide magnetic field are quantized by (see Sec. B 2)

My (6) = —2M,y B[, (0B + Hee.,
ng(l‘) =

> [Hpa(x. 2)e™ay +Hel, (16)
k

and the Zeeman coupling leads to the coupling constant

y M,V
25

At the chiral line, the magnet couples with the microwave
propagating along only one direction. The formalism is ex-
actly the same as the one for magnetic wires and film. Again,
with the condition n = 1 satisfied, excitation of the left ac-
tive magnet by a local antenna can confine the microwaves
between two magnets, and the photon is trapped at the passive
magnet: the microwaves at the right of the passive magnet

g1 = —Io R H (x, 2) — iHe(x, )] (17)

A

2i A -
Ay = ——Bi(ox) H& g e R[] — ()] (18)
Uk,

vanish, and the microwave is unidirectionally invisible [24].
This proves that the dynamic interference effect is a universal
mechanism for trapping.

V. IMBALANCED PUMPING

We turn to the situation in which the whole samlple is
illuminated by a global microwave field with finite p nd
ﬁfz) With the same coherent driving, we may expect that chi-
rality causes different magnon populations in the two wires.
We set up the master equation of the density operator p to
calculate the dynamics driven by the microwaves, P@t) =
P (0)(e ™t 4 @'y, with frequency wy. In the chiral limit
I';; = 0 and at the FMR, the master equation in the rotating
frame becomes [31] (refer to Appendix A for construction)

*
FZ]

o =i o0 T i+ 8 |+ [5. 2 1m - T
1=1,2
Iy 4

Z 21 Liap+ 7521,0, (19)
/

where Q; = i(P, (0)) represents the drive amplitude and
Lijp = 2;‘3],0;31 ,3 /3],0 ,oﬂ ﬂ] is the Lindblad superoper-
ator that accounts for the relaxation. Denoting the average of
an operator as (Q(t)) = (Qp(t)), the driven magnon ampli-
tudes in the steady state become

(B1) = (P)/T,
(Bo) = (P,) /T — Iy (P) /T2, (20)

where ' =k /24 T. We assume that the excitation mi-
crowave is uniform with the same amplitude, (P = (B) =
i©2, and employ identical magnetic nanowires with small
intrinsic damping |I'| — |I'21|/2. The ratio of the steady-state
magnon populations in the two magnetic nanowires

A

(BiB2)/(BIB1) =5 — 4coslk.(Ry — R))] 1)
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and hence can be on the order of 10 and is tunable over a
wide range by changing their separation or k, by the Kittel
frequency. This amplification is caused by the chiral dissipa-
tive coupling between magnets, through which one magnet
can input energy to another without back action. This effect
can be enhanced by adding more magnets [23].

VI. DISCUSSION

In conclusion, we proposed a method to control spin wave
transport by weak magnetic fields based on the theory of
chiral pumping of spin waves. By exploiting two nanowires
that communicate by unidirectional spin waves, we achieved
functionalities such as magnon trapping, amplification, and
a valve/transistor effect. The spin pumping by active and
passive magnets is different from the conventional situation
as it gives quite different behavior of the pumped current. The
spatial distribution of magnons can be detected inductively via
microwave emission of a third magnetic wire (supposing weak
disturbance in the magnonic cavity) [13], Nitrogen-vacancy
center magnetometry [42], and Brillouin light scattering [43]
and electrically by the inverse spin Hall effect with a normal
metallic wire such as Pt [44]. Replacing the nanowires by
other objects such as magnetic spheres or qubits and the
unidirectional spin waves by other propagating quasiparticles
such as waveguide photons, surface plasmons, electrons, or
phonons, we envision our mechanism to be extended to other
fields, including optomagnonics, nano-optics [1], quantum
optics, plasmonics [2,3], spintronics, and spin mechanics.
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APPENDIX A: LONG-RANGE CHIRAL INTERACTIONS

In this Appendix, we derive the long-range chiral interac-
tion between remote magnets from the equations of motion,
based on which we construct an effective non-Hermitian
Hamiltonian for setting up the master equations used in the
main text. From the total Hamiltonian [Eq. (1) in the main
text], the equations of motion of the magnons f; and traveling
modes & read [31,32]

l.dB,(t) R , KFud

— ikR; », _ P %
o —wKﬁz(rHijgke Q1) — i——=Bi0)
ivJiey Pl @),
da(t N
i O;kt( ) =wk&k(t)+gk;e"‘Rfﬁl(t)—i%&m). (Al)

Here, k = 2agw is the intrinsic damping of the Kittel modes
in the magnets (e.g., the magnetic nanowire or the mag-
netic spheres) parameterized by the Gilbert coefficient o,
«k{D is the additional radiative damping induced by the mi-

crowave photons ﬁl(n), i.e., the coupling of the magnet with the

microwave antennas, and k; denotes the intrinsic damping of
the traveling waves with momentum k. Integrating the second
equation in Eq. (A1) yields

&k(t) — &k,ineﬂ(a)kflkk/Z)t _ E l-gkeflkR,
I

t
X f drB[(T)efi(a)kfikk/z)(lfr)

—0Q

(A2)

where & i is the input of the traveling waves that can be set
to be zero without direct excitation. This leads to

dpi(t) . K 5 2 ik(Ri—Ry)
— = kB =SB - ,Z; lgx|%e

t
x / By ()e @ i/DE=0) 4 py(tr), (A3)

(1) Al

where P(t) = — Kp pm)(t) and we have disregarded the

microwave-induced dissipative damping as usually « < «.
The third term on the right-hand side of Eq. (A3) gives the
effective interaction of magnons mediated by the traveling
waves. The magnons are assumed to move coherently within
Markov approximation, i.e., B;(t) = B;(t)e’®*~"). Thus,

t
f Pr()e T  ~ By (n) (Ad)
—00

i
w— wy + iy )2’
and Eq. (A3) becomes

dA B Yo .
;Z,t(r) = —iwxBi(t) — %ﬁ,a) _ ,-;Xk:em,,&,)

|gxl?
w — wi + ik /2

= i) — gﬁ,(t) — Ty(@)Bi@)
— Y Tu(@Br®) + bi(0).

174

Br + B(t)

(A5)

Here, we have defined the damping by pumping the traveling
wave (I’ = 1)

2
I)(w) = iz gkl
k

(g 1> + Ig—k,1%)
(A6)

and the traveling-wave-mediated effective interaction (I # )

. (R — lgxl*
(@) = i oK RI—Ry)
(@) Z w — wi + ik /2

w— a)k-l-lKk/Z 2v (k )

S 8w, 1€ KRl when R > Ry,

ﬁ“|g_kw|ze”‘w|R”Rﬂ|, when R; < Ry, (A7)
where v(k) is the group velocity of the traveling waves and
k,, 1s the positive root of wy = w. In Eqgs. (A6) and (A7), we
have assumed «; — 0, by assuming a high quality of, e.g.,
magnetic film or microwave waveguide. With two identical
magnets R, > R;, the Heisenberg equation of motion (A5)

is recovered when we define the effective non-Hermitian
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Hamiltonian

2
Hee = Z(U)K — ik /2 — iT)B B — iT12B{ Br — iT21 B B1.
=1
(A8)
The chiral dynamics is then governed by a non-Hermitian
Hamiltonian, which may be separated into Hermitian Hj, and
anti-Hermitian H,;, parts as

g i)
ﬁh _ Heff + Heff

2
2
PN ,F* —Flz/\,.,\ F 21,\ N
=Y kBB + i plp + i =B,
=1
~ ﬁeff _ﬁeff
nh = )
2
s T+ TG +
= —i) TBB — i plh — =2~ Bipa,
=2
(A9)

where ' =« /2 +T. The coupling between magnons has
both coherent and dissipative components. The dissipative
coupling between magnons is responsible for the collective
damping. The master equation used in the main text is con-
structed based on H;, and H,,,.

APPENDIX B: CHIRALLY COUPLED SYSTEM

1. Coupled magnetic wire and film

The first chirally coupled system we shall address is the
dipolarly coupled magnetic nanowire and film [12-14]. We
assume the nanowire magnetization is along the wire —2
direction, antiparallel to the film one. The Fourier components
of the dipolar field generated by a circularly polarized Kittel
mode in the wire are chiral. Considering a nanowire of thick-
ness d and width w, the magnetic fluctuations are the real part
of

M,y (r, 1) = fit, , O (x)O(—x + d)O(y + w/2)O(—y + w/2)
x et (B1)

where ©(x) is the Heaviside step function. The magnon
amplitudes read [14]

[ ~ [D ®)
*“NVapwa® "™ T TV qwa’

where, by the applied magnetic field H,,, and demagnetiza-
tion factors Ny ~ w/(d + w) and Ny, = d /(d + w) [12],

Happ + Nxst

D= —. (B3)
Happ + NyyM;
The corresponding dipolar magnetic field
1 My (', t)
hg(r,t) = 8,38 ——dr’, (B4)
r —r|

and below the nanowire (x < 0) the Fourier components

{lx(k,x, D\ _ —ie'k‘x(l B e—\kld)z sin(kw/2)
hy(k, x,t) 4 klk|

<|k| ik )(m) y
x| e (B5)
ik —|k| ] \m,

A perfectly left-circularly polarized wire dynamics
(7, = —im,) implies that the Fourier components of h
with £ < 0 vanish. The Fourier component with k£ > 0 is
perfectly right-circularly polarized (ﬁy = ih,). However, a
pure chiral coupling still arises even with an elliptically
polarized Kittel mode as long as the spin waves in the film
are perfectly circularly polarized (see below). We assume
a magnetic film of thickness s is sufficiently thin (tens of
nanometers) such that the dipolar-exchange spin waves are
circularly polarized. With the film magnon operator &; and
amplitude m(k) the film magnetization feels the dipolar field
from the /th nan0w1re centered at R; via the Zeeman coupling

[?int = _/VLO/ d'XdIOMﬁ(X’ p)fll.ﬂ(x’ 10)7 (B6)
0

leading to the coupling Hamiltonian between magnons &; and

B,

Ho=hY Y aik)Ba+He., (B7)
Ik
with the coupling constant [14]

- ZMOVVMsMskl_B sin (%)e’“’(l — e 1H)

) k| ik i,
_ ,—lkls (k) (k)*
x (1= e ) (m! ,m| )(ik —|k|> (ﬁzv)

(B8)

gi(k) =

The Kittel mode in the nanowire couples with the spin
waves with right-circular polarization (m{®) = im®)) propa-
gating perpendicular to the nanowire with perfect chirality.

2. Coupled magnetic sphere and microwave waveguide

Another chiral system is the magnets in a microwave
waveguide along the ¥ direction [23]. Focusing on the lowest
(TEp) mode of a rectangular waveguide with dimensions
a > b, the magnetic fields read

Hix =0,
/ «/ 71 yr
Hky - d Z)a
Howy a
—sgn(k),/ ,/ wk
b powy

where Ay = fiwy/(2€p). The sign of the z component of the
magnetic field depends on the propagation direction. Particu-
larly, the magnetic field becomes circularly polarized when
[Hi,y| = |Hk.z|, leading to the chiral line with positions zo

(B9)
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determined by

W\ 2 TN\2 . /T2 T T Z0
(%) () s (72) = s (%2)
C a a a a

At the chiral line the polarization of the microwaves is
locked to the momentum. The waveguide is loaded with
N identical YIG spheres with gyromagnetic ratio —y, sat-
uration magnetization My, and volume V; at r; = p + R;§
with [ € {1,2, ..., N}. The submillimeter spheres are much
smaller than the photon wavelength of O(cm), so they can
be treated as point particles. The static magnetic field H,p, =
(Happ, 0, 0) is sufficiently strong to saturate the magnetization
in the X direction. The photons and magnons are coupled by
the Zeeman interaction

(B10)

~

A, = —o f i) - Nmdr =13 Y giopf + He,
1 k
(B11)

with the coupling constant

y M,V

¢ Hey(0) = iHi(p)),

which depends on the position of the magnetic particles. It is
chiral, where one of g and g_ vanishes when the magnets
are put on the chiral lines.

gi(k) = —puo (B12)

APPENDIX C: MICROMAGNETIC SIMULATION

We carried out micromagnetic simulations by the public
object-oriented micromagnetic framework (OOMMF [45]) in
order to justify the single-mode approximation in the mag-
netic nanowire and to confirm that the excited spin waves
flow into one direction in half of the film. The dimensions
of the YIG film are set to 20 um x 20 um x 20 nm (xyz). A
100 nm x 20 um x 20 nm (xyz) Co nanowire is on top of the
YIG at x = 10 um. The saturation magnetizations are 1200
and 140 kA/m, and the exchange constants are 13 x 107'2
and 3 x 107!2 J/m for Co and YIG, respectively. The Gilbert
damping of YIG is set to 8 x 107>, We include only the
interlayer dipolar interaction and set the interlayer exchange
interaction to zero. We created antiparallel magnetization of
Co and YIG by first applying a magnetic field of —500 mT
to saturate the magnetization of Co and YIG, followed by
a +50 mT field that switches only the YIG magnetization
because the large shape anisotropy stabilizes the Co magneti-
zation. We excite the magnetic nanowire by a monochromatic
and uniform magnetic-field pulse that matches the mode
frequency of the magnetic nanowire that depends on the width
w and thickness d via the demagnetization factors N, =~
w/(d + w) and Ny, ~ d/(d + w) [12-14],

WK = MOV\/(Happ + NyyMs)(Happ + Nxst)~

The resonance frequencies of the Co nanowire are extracted
by a fast Fourier transform with 1000 time steps (10 ps) from
the simulation. The simulated FMR frequency in Fig. 4 for
isolated Co nanowires of thickness d =20 and 30 nm and
widths from w = 100 to 400 nm agrees with the above Kittel
formula. Next, we apply an oscillating field of poHex =
0.2 x sin(27 ft) mT with f = 15.1 GHz to excite the FMR or

(ChH

20

) . m d=20nm
Simulation: d=30nm

.—d=20nm |
= Theory: —d=30nm

15f

10

f (GHz)

100 200 300 400
w (nm)
FIG. 4. Simulated (red and black squares) and analytical (red and

black lines) results for the FMR frequencies of a Co nanowire for
thicknesses d = 20 and 30 nm and widths w from 100 to 400 nm.

a Co wire on top of the YIG with d = 20 nm and w = 100 nm.
The spatial map of the YIG film magnetization m, is recorded
after 1 ns as shown in Fig. 5, where the red bar indicates the
Co nanowire (top view). The line plot for the black dashed
line (x from 8 to 12 wm) in Fig. 5(a) is shown in Fig. 5(b).
These results confirm the chiral excitation of exchange spin
waves by magnetodipolar coupling between the Co nanowire
and YIG film [11].

At the FMR, the excited spin waves in Fig. 5 have a single
wavelength that matches the frequency of the microwave
pulse. This validates the single-mode approximation used
in our analytical treatment. An accurate simulation of the
magnon trapping by two wires cannot be done with the present
setup. It requires a large device and a constant microwave
drive and an expensive effort that is beyond the scope of this

work.
C
| 1
|
-1
0 20

8 9 10 11 T2
X (Hm)

m_ (arb.units)
o

FIG. 5. Simulation on the chiral excitation by OOMMF. Parame-
ters used for the simulation are given in the text.
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