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Spin-wave modes localized on isolated defects in a two-dimensional array
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A comprehensive analytical and numerical study of spin-wave (SW) modes localized on isolated defects in a
two-dimensional array of dipolarly coupled magnetic nanodots is presented. Two limiting cases of a defect dot
are considered: (i) pointlike defect—a dot having a different eigenfrequency, but the same magnetic moment; (ii)
“dipolar defect”—a dot having a different magnetic moment. It is shown, that the appearance of a localized SW
mode depends on the peculiarities of the bulk SW spectrum near its bottom or/and top boundaries. In the case
of a smooth parabolic spectrum, a localized mode can be created by a defect of a vanishingly small strength,
whereas in the case of a spectrum described by a nonanalytic function a localized mode can be created only
by a defect of a finite strength, exceeding a certain threshold value. In contrast to the pointlike defects, the
dipolar defects may lead to the formation of higher-order localized SW modes. In a case of a complex array
having several spin-wave branches (e.g., an array existing in an antiferromagnetic stationary state), the localized
SW modes may appear near some (or all) of the SW spectral branches, depending on the structure of the SW
spectrum, and on the defect properties.
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I. INTRODUCTION

Magnonics—a research field based on the use of spin
waves (SWs) (or magnons) as information carriers in mag-
netic materials for microwave signal processing—is attracting
a growing attention of researchers [1–4]. One of the important
advantages of SWs for information processing is the excellent
possibility to control the SW dispersion law by changing
the shape of the used magnetic sample and by varying the
direction and magnitude of the magnetic [5] or/and electric
bias [6,7] fields applied to this sample. Very interesting results
in the SW dispersion control can be achieved when the exter-
nal bias fields are nonstationary, i.e., are varied substantially
on the timescale that is comparable to the time of the SW
propagation in the studied sample [5,8]. The control of the SW
dispersion can be also effectively achieved in patterned mag-
netic structures containing layers of different ferromagnetic
(FM) materials, or/and in magnetic nanostructures [9–14],
that allow one to engineer a desirable form of the SW disper-
sion [15,16]. Finally, the SW dispersion in a magnetic sample
can be varied by reconfiguration of the static magnetization
state in a FM sample [17,18]. The last method of dispersion
control is convenient to apply in magnonic crystals based on
periodic arrays of interacting magnetic elements—nanodots
or nanowires. Since the ground state of an isolated FM
element of a magnonic crystal at a zero external bias field
is, at least, double degenerated, a nanodot array may have
several metastable collective states with different SW spectra,
different microwave properties, and nontrivial peculiarities in
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the SW propagation [19,20]. The collective metastable state
of an array can be reconfigured by the application of a short
pulse of a bias magnetic field, which opens the way for
the creation of magnetic devices for signal processing and
microwave applications with microwave properties that can
be reconfigured in real time [21–26].

Obviously, any real nanodot array will always contain
some defects. The important role of defects in dynamics of
usual crystals is well known, see, e.g., a detailed description
in Ref. [27]. For our case of artificial magnonic crystals, a rich
palette of different defects can be present. These could be the
fabrication defects, such as different geometries of the dots,
or a deviation of a dot positions from the ideal one, or even
the absence of some dots at their intended locations. Another
kind of defect in magnonic crystals could appear even in the
“atomically ideal” arrays. These defects, that are breaking the
ideal periodic static magnetic configuration of an array, could
be caused by the reversal of the spatial orientation of the
magnetic moments of some dots (or dot clusters) and aligning
them in the direction that is opposite to that of the other dots
in the array [28–30]. It is also possible to have the formation of
the so-called “linear defects,” forming a domain wall between
the dot clusters having the opposite directions of the dot
magnetic moments [31]. Frequently, such linear defects are
topologically protected, and they may appear in the course
of the array’s reconfiguration process, or may be created
by the thermal fluctuations [22,23]. Thus, it is important to
investigate the influence of various kinds of defects on the
dynamic properties of a nanodot array.

It should be noted that the defects in a an array of interact-
ing magnetic dots could find their own unique applications,
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such as the case for the defects in photonic crystals [32].
Such applications include: Controllable modification of the
local dynamic properties in an array due to the appearance
of localized defect modes and due to the scattering of the
bulk SW modes on a defect [20,33], appearance of the SW
waveguides formed by the line defects [34,35], modification
of the phase of a propagating SW using the interaction with
defect [35–37], etc. The multistability of the static magnetic
states of an array allows one to design magnetic arrays with re-
configurable defects (e.g., linear defect waveguides). Finally,
the investigation of a ferromagnetic resonance in an array
containing defects can give us valuable information about
the SW spectra in the array and the interaction between the
nanodots forming this array [33].

Previous studies of the SW modes in a nanodot array
with defects were limited to the numerical investigations of
the localized SW modes created by point defects in a two-
dimensional dot array [33], and studies of the magnon modes,
localized at an edge of a finite dot array [38–41]. An analytical
study of the localized SW modes in a magnetic dot array
existing in a ferromagnetic ground state performed in the
limit case of “weak” defects was presented in Ref. [42]. A
somewhat similar problem of defect modes in a ferromagnetic
film within the Heisenberg model was studied in Ref. [43].
The role of a nonideal periodicity on the dynamic properties
of “continuous” magnonic crystals and edge magnon states in
such crystals was studied in Refs. [44–47].

The aim of our current paper is to present a comprehensive
analytical and numerical study of the localized SW modes
associated with a single isolated defect in a two-dimensional
array of magnetic nanodots coupled by a magnetodipolar
interaction. Both conditions for the defect mode localization
and the peculiarities of the localized defect mode structure are
considered. Two kinds of isolated defects are considered: (i)
point defect (a dot with a different eigenfrequency but with
the same magnetic moment and, therefore, the unchanged
interaction with the other dots), and (ii) the dipolar defect, i.e.,
the dot having a different magnetic moment and, therefore,
the different strengths of the dipolar interaction with the other
dots in the array. Any real defect, if not belonging to one
of these limiting types, can be considered as a superposition
of point and dipolar defects. Note, that our analysis is not
limited to the case of an array having a simple lattice existing
in a ferromagnetic stable state (the same direction of static
magnetization in all the dots of the array), and arrays with a
complex static state of the dot static magnetization are also
considered. In particular, the antiferromagnetic state of mag-
netization of a square dot array, which is the true ground state
in this geometry at a zero-bias magnetic field [28], is discussed
in detail. For such a complex array, it is explained how the
interplay between the different SW dispersion branches may
affect the formation of the localized SW modes, and what
information about the array’s SW spectrum can be extracted
from the results of the investigation of the SW defect modes
in this array.

The article is organized as follows. In Sec. II, an analytical
theory formulating the conditions of the SW mode local-
ization and calculating the frequencies of the localized SW
defect modes is presented. In Sec. III, a numerical study of
the localized SW mode frequency and structure for the case

of an array in a ferromagnetic stable state is presented and
compared with the analytical predictions. A complex array
existing in the two-sublattice antiferromagnetic ground state
is discussed in Sec. IV for the cases of merged and separated
SW dispersion branches. Finally, conclusions are presented in
Sec. V.

II. THEORY

A. General equations

Let consider a two-dimensional planar array of magnetic
nanodots, which are located at the points r j (radius-vector r j

defines the positions of the dot centers on a plane). We assume
that all the dots are in a single-domain saturated state, and
their magnetic state is fully described by the magnetization
vector M j (t ). In other words, we use a macrospin approxi-
mation for the static magnetization of any dot in the array,
which is valid for nanodots of a sufficiently small size. The
limitations following from this macrospin approach can be
released by using the formalism from Ref. [48], but it should
be noted, that as soon as the static and dynamic magnetiza-
tions of a single dot become spatially nonuniform, the interdot
dipolar interaction becomes substantially smaller, and all the
collective phenomena in an array will be significantly weak-
ened [49,50]. Since below, we will consider only the linear
collective SW excitations in a dot array, it is possible to repre-
sent the magnetization of the jth dot as M j = Ms(μ j + m j ),
where Ms is the dot saturation magnetization μ j , |μ j | = 1 is
the unit vector in the direction of dot static magnetization, and
m j (m j⊥μ j , |m j | � 1) is the dimensionless small deviation
of the dot magnetization from its static value. In contrast to the
approach of Ref. [42] where the canonical magnon amplitudes
(magnon creation/annihilation operators) were used, here, we
will work directly with the vectors m j . This method allows
to work directly with the characteristics of a nanodot array
without the necessity of the preliminary diagonalization of the
Hamiltonian and is more convenient for numerical analysis
[20]. According to Ref. [20], the eigenfrequency ων and
corresponding profiles mν, j of collective SW excitation of an
array satisfy the following equation:

−iωνmν, j = μ j ×
∑

l

�̂ jl · mν,l , (2.1)

where

�̂ jl = γ Bjδ jl Î + γμ0Ms,l N̂ jl , (2.2)

Bj = μ j · (Be − μ0
∑

l Ms,l N̂ jl · μl ) is the modulus of the
static magnetic field of the jth dot, produced by the external
bias field Be, static demagnetization and anisotropy fields,
and stray fields from the other dots. The tensor N̂ jl is the
mutual demagnetization tensor [51], which describes the mag-
netodipolar interaction between the dots for j �= l and self-
demagnetization together with the material anisotropy [33]
for j = l . In a general case of a magnetic dot of an arbitrary
geometry, the tensor �̂ jl is real and satisfies the following
symmetry relation: VjMs, j�̂ jl = VlMs,l�̂l j , where Vj is the
volume of the jth dot [52].

Equation (2.1) is general and is valid for an arbitrary array
either periodic or nonperiodic. Now, we assume that the array
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is periodic and sufficiently large (formally, the number of
dots Nd → ∞), so the dot positions can be written as r j =
n1a1 + n2a2, where ai’s are the basis vectors of the array
lattice, and n1,2 are integers. For clarity of the derivation of
the main equation, here, we restrict our attention only to the
case of an array having a simple Bravais lattice (one dot
per a primitive cell) and being in the ferromagnetic static
state (static magnetization of all the dots is the same). This
assumption will be released below in Sec. II C. SW excitations
of a periodic array have the form of the Bloch states mk,
characterized by the wave-vector k, which lies within the first
Brillouin zone of the array lattice, resulting in the following
change in Eq. (2.1):

mν, j → N−1/2
d mkeik·r j . (2.3)

Then, the dispersion equation and the spatial structure of the
collective SW modes in the dot array can be determined from
the following equation:

−iωkmk = μ × �̂k · mk, (2.4)

where

�̂k =
∑

l

�̂ jl e
ik·(r j−rl ). (2.5)

The Bloch states are the normal magnon SW modes of an
array, so if the dynamic magnetization of dots is expanded
in a series over the Bloch states with amplitudes ck, m j =∑

k(ckmkeik·r j + c.c.), the quadratic part of the array’s mag-
netic energy in terms of ck assumes the following diagonal
form:

W (2) = MsVd Nd

γ

∑
k

Akωk|ck|2. (2.6)

Here, Ak = i(m∗
k · μ × mk) is the SW mode normalization

constant, appearance of which is related the ellipticity of the
magnetization precession in the SW mode [20], Vd is the
nanodot volume, and Nd is the number of dots in the array.

Now let us assume that a periodic array contains a defect
dot, which has geometrical or/and material parameters that
are different from all the other dots in the considered array.
For definiteness, we will choose the coordinate of the defect
dot as r j = 0. The presence of a defect in the array leads to

the change in the matrix �̂ jl → �̂
(0)
jl + ��̂ jl . It is clear, that,

generally, the presence of a defect can lead to two effects.
First, the eigenfrequency of the defect dot and the neighboring
dots can be changed due to the static demagnetization and
static stray fields of the defect dot. This effect is described
by the diagonal terms ��̂ j j . The second effect is the change
in the dynamical interaction between the defect dot and all
the other dots, which is described by the off-diagonal terms
��̂ j0 (describing the influence of defect dot on the jth dot)
and ��̂0 j (describing the influence of the jth dot on the defect
dot). The last term can appear, e.g., if the position of the
defect dot differs from the ideal one, or if the defect dot has a
different shape. Note that, in many physically important cases,
the role of ��̂0 j is much less important than the role of ��̂ j0.
For example, the variation of the saturation magnetization of
a defect leads to ��̂ j0 �= 0, but ��̂0 j = 0 [see Eq. (2.2)].
All the other components of �̂ jl remain unchanged because

within the macrospin approximation, the presence of a defect
dot cannot modify the dipolar interaction between the other
pairs of dots.

The eigenfrequencies and spatial profiles of the collective
SW modes of an array containing a defect are described by
Eq. (2.1). The set of Bloch states Eq. (2.3) forms a complete
orthogonal basis for the collective SW excitation of an array,
and we can search the profiles of the SW modes associated
with the defect as a sum of these Bloch states with the
coefficients ψk,

m j =
∑

k

ψkmkeik·r j . (2.7)

In general, some other terms of the form of ψ̃km∗
−k could

appear in the expression (2.7), which is analogous to the famil-
iar u-v Bogolyubov transformation. These terms (if present)
describe the interaction with “formal conjugated” SW modes
having the spatial profiles m∗

−k and negative eigenfrequencies
−ω−k (see details on the formal conjugated solutions in
Refs. [20,48]). Note, however, that these terms are important
only if the defect dot has a significantly different anisotropy
in the plane perpendicular to the static magnetization (either
a shape anisotropy or a material anisotropy), or if the defect
dot has a static magnetization, that is noncollinear to that
for magnetization of the other dots in the array. Otherwise,
these terms can be neglected as is performed below. The
numerical calculations, presented below, confirm the validity
of this simplification in our case.

Using expansion Eq. (2.7) in Eq. (2.1), multiplying
Eq. (2.1) by e−ik′ ·r j m∗

k′ · μ×, taking the sum over r j , and

taking into account the relations
∑

j ei(k−k′ )·r j = Ndδkk′ and

m∗
k · �̂k · mk = Akωk, one can obtain the following equation

for the expansion coefficients ψk:

(ωk − ω)ψkAk + 1

Nd

∑
k′

(Uk,k′ + Vk,k′ )ψk′ = 0, (2.8)

where the term,

Uk,k′ =
∑

j

m∗
k · ��̂ j j · mk′ei(k′−k)·r j (2.9)

describes the changes in the dots eigenfrequencies due to the
presence of a defect, whereas the term,

Vk,k′ =
∑
j �=0

m∗
k · (��̂ j0e−ik·r j + ��̂0 je

ik′ ·r j ) · mk′ (2.10)

describes the changes in the dynamical interdot interaction.
The solution of Eq. (2.8) yields the same number of the SW
normal modes as in the case of an ideal array, but now these
modes have different properties. The general regulations, here,
are the same as for the electron or phonon states in nonideal
crystals (see, e.g., Ref. [53]). Most of the modes in a sys-
tem with a defect (except a few localized modes) have the
eigenfrequencies, which lie inside the same frequency bands
as for the spectrum of an ideal periodic array (bulk spectrum).
In our case, these bulk modes correspond to the propagating
magnons, and for a case of a sufficiently weak defect, they
can be treated within a perturbation theory (analysis of these
modes lies outside the scope of current paper). A few modes
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with the frequencies situated outside the bulk SW spectrum
correspond to the localized SW modes, associated with the
defect, i.e., these are the defect modes. Similar to the states
localized inside a potential well in a standard quantum me-
chanics, the states corresponding to these modes cannot be
described using any finite order in the perturbation theory, and
one should use the full dynamical equations for the analysis of
these modes [54].

B. Point defect of an array in the ferromagnetic state

A general solution of Eq. (2.8) cannot be found analyti-
cally. In this section, we consider the simplest case of a point
defect—a dot having different eigenfrequency but a nonmod-
ified interdot interaction. In practice, this case corresponds
to a dot with different material anisotropy. Mathematically,
this case is described by a modification of the term �̂00 →
�̂

(0)
00 + ��̂00, whereas all the other terms remain unchanged.

Thus, in Eq. (2.8) all Vk,k′ = 0 and Uk,k′ = m∗
k · ��̂00 · mk′ .

For a ferromagnetic static state of an array of identical dots
[recall, that in Eq. (2.9) the SW mode profiles for an ideal
array are used], one can use the approximation, that the vector
structure of the SW modes is almost independent of the SW
wave-vector mk /∈ f (k). This is related to the fact that the
precession ellipticity mk is mainly determined by the shape
and material anisotropy of the dots but not by the k-dependent
interdot interaction. This approximation fails only near the
points of instability of the array’s static state. Consequently,
we can approximate Uk,k′ = U0, Ak = A0, that allows one to
simplify Eq. (2.8) to

(ωk − ω)ψk + U0

A0Nd

∑
k′

ck′ = 0. (2.11)

This infinite set of equations for ψk′ has nontrivial solutions
if the condition,

1 +
∑

k

U0

A0Nd (ωk − ω)
= 0, (2.12)

similar to the familiar Lifshitz equation [53] is satisfied.
Replacing the summation by integration in the above pre-

sented equation, we get the final expression which describes
the frequency ωloc of a localized mode in an array existing in
a ferromagnetic static state and containing a point defect,

1 + U0 = 0, U0 = S0U0

A0(2π )2

∫
dk

ωk − ωloc
, (2.13)

where integration goes over the first Brillouin zone of the
array lattice and S0 in the area of the lattice unit cell.

From the equation presented above, it is clear, that in the
case U0 < 0 (often called a case of an attractive defect), a
localized defect mode can appear only below the bulk SW
spectrum, whereas in the opposite case of U0 > 0 (a repulsive
defect), a localized mode can appear only above the bulk
SW spectrum (recall, that the SW spectrum of a simple array
in a ferromagnetic static state consists of only one branch).
It is also clear, that the main features of the localized SW
defect mode, at least, for a relatively small defect strength
|U0|, are determined by peculiarities of the bulk SW spectrum
near its bottom for an attractive defect or near its top for

a repulsive defect. Depending on the array geometry, its
magnetic state and external conditions, the SW spectrum near
the its top (bottom) can be either smooth parabolic (as in the
standard quantum mechanics of usual particles) or linear with
a nonanalytic peculiarity of the type of ωk = ωext + C|k| (as it
is typical for the long-range dipolar interaction). We consider
both these cases below.

1. Parabolic SW spectrum

The SW dispersion law in a magnetic dot array having a
simple lattice and a ferromagnetic static state has an extremum
(minimum or maximum) at one of the symmetric points of the
first Brillouin zone of the array lattice. In all the symmetric
points except 	 = (0, 0) the SW dispersion is smooth and
parabolic and can be approximated as ωk = ωext ± D(k −
kext )2, where kext is the position of the extremum. In a general
case, the coefficient D depends on the direction of the SW
wave-vector k, reflecting the anisotropy of the SW spectrum.
Here, for simplicity, we consider the case of an isotropic
spectrum, which is realized, e.g., in an array with square
or hexagonal lattice. This assumption does not qualitatively
affect the behavior of a SW mode localized on a point defect,
which will be the same for any anisotropic parabolic spectrum
realized for lattices having a lower symmetry.

Using the approximate SW dispersion relation ωk in
Eq. (2.13), one obtains the following expression:

�ω = ωloc − ωext = ω̃ exp

[
−4πA0|D|

S0|U0|
]
, (2.14)

where the parameter ω̃ > 0 for U0 > 0 and ω̃ < 0 for U0 < 0.
This parameter cannot be determined accurately within the
approximate model since the parabolic approximation is valid
only near the spectrum extremum, whereas integration in
Eq. (2.13) goes over the whole spectrum. It is clear, that the
appearance of a point defect of any, even a vanishingly small
strength leads to the appearance of a localized SW mode,
exponentially weakly separated from bulk SW spectrum as is
the case in a standard quantum mechanics [54].

2. Nonanalytic spectrum

Due to the long-range character of the dipolar interaction,
the SW spectrum at the point 	 (k = 0) is nonanalytic: ω =
ωext + C|k|. Similarly, as was performed above, we assume
that the SW spectrum near the point 	 is isotropic. In contrast
to the case of a parabolic SW spectrum, the integral in
Eq. (2.13) converges at ωloc = ωext, meaning that Eq. (2.13)
can be satisfied only for a finite defect strength U0. Thus, a
localized SW mode in this case can appear only if the defect
strength exceeds a certain threshold value of U0,crit ,

|U0,crit| = A0(2π )2

S0

(∫
dk

ωk − ωext

)−1

. (2.15)

The similar existence of the critical defect strength for a local
mode to appear is known for vibration modes in crystal lattices
[27]. Close to the threshold value of the defect strength,
the dependence of the defect mode frequency on U0 has a
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logarithmic peculiarity at U0 → U0,crit ,

U0 − U0,crit ∼ (ωloc − ωext ) ln
ω̃

ωloc − ωext
. (2.16)

C. Point defect of a complex periodic array

In this subsection, we consider a case of a complex dot
array for which the primitive cell of the array lattice, account-
ing for the static magnetic state of the array, contains P > 1
dots. This can be an array with a complex geometrical lattice
as well as an array with dots, equivalent geometrically, but
having a different magnetic state, e.g., an antiferromagnetic
state with P = 2 magnetic sublattices. It is worth noting that
the antiferromagnetic ground state is expected for arrays of
magnetic particles coupled by a magnetodipolar interaction in
a zero (or a sufficiently small) bias magnetic field (see, e.g.,
Refs. [28,55]). Similar to the case of all the other complex
periodic systems (e.g., crystals having several atoms per a
primitive cell), the SW spectrum of a complex array contains
P SW branches [20], which can overlap or be separated in the
frequency domain (see examples in Sec. IV).

The SW modes in the case of an array, containing P
magnetic sublattices and a single defect dot, are described
by the same Eq. (2.8). The only difference with the previous
case is that the summation should be performed over all
the SW wave-vectors k and all the P SW branches. In the
determination of the parameters Uk,k′ , Vk,k′ , Eqs. (2.9) and
(2.10), the summation goes over all the dots belonging to all
the sublattices in an array with corresponding SW amplitudes
mk,p in the pth sublattice. Similar to the previous section,
we consider, in detail, the case of point defect with the only
nonzero term ��̂00 �= 0.

In contrast to the case of a simple array, the assumption of
the constant SW profiles mk of all the SW modes can be wrong
for a complex array. Indeed, whereas the precession ellipticity
will be, still, mainly determined by the shape and material
anisotropies of the dots, the mutual relation between the
oscillation amplitude and phase in different sublattices will
be determined only by the interdot dipolar interaction, and,
therefore, will significantly depend on the SW wave vector.
Also, the mode ellipticity could be different for different SW
branches (see example below in Fig. 9).

In order to show qualitatively the main features of the SW
spectrum in such a case, we simplify the problem, assuming
that the SW structure mk is independent of the SW wave-
vector k within each of the SW branches, but it depends on the
SW branch number, i.e., mk,p = mp, p = 1, 2, . . . , P. Then,
the solvability conditions for Eq. (2.8) are simplified to

det[δpq + Upq] = 0, (2.17)

where we introduced a P × P matrix of the following form:

Upq = S0m∗
p · ��̂00 · mq

(2π )2Ap

∫
dk

ωk,p − ωloc
(2.18)

(compare Eq. (2.18) with Eq. (2.13)). In a general case,
Eq. (2.17) could have the number of solutions, that is equal
to the number of the separate SW branches, i.e., in the case
of an attractive (repulsive) point defect, a localized SW mode
could appear below (above) every SW spectral band. Thus, if

FIG. 1. A sketch of a square array of circular nanodots in the
ferromagnetic state (a) and a corresponding SW spectrum (c). Panel
(b) shows half of the Brillouin zone of the dot array with symmetric
points and the contour 	 → X → M → 	, used for the plot pre-
sented in (c). Calculation parameters are presented in the text.

all the P SW branches are separated, up to P localized SW
modes can appear per one defect. However, the number of the
localized SW modes could be smaller. Indeed, let us consider
the formation of a localized SW mode close to an extremum in
a parabolic SW dispersion for the pth SW branch in the case
of a vanishingly weak defect. In such a case, only one term
Upp, having a peculiarity at ωloc → ωp,ext, is important. This
simplifies Eq. (2.17) to the form

1 + Upp = 0, (2.19)

which is the same as for the case of a simple array lattice.
It should be noted, however, that there is one significant
difference with the case of a simple lattice: the value of Upp

is proportional not only to the defect strength, but also to the
amplitude of the SW mode having wave-vector k that is close
to the extremum point of the considered pth SW branch for the
corresponding magnetic sublattice, which contains the defect
dot. If the bulk SWs near the minimum (maximum) of the
pth SW branch has zero amplitude for a particular sublattice,
the presence of a weak point defect in this sublattice does not
lead to the appearance of a localized SW mode. In general,
there could be two possibilities depending on the structure
of the SW spectrum: Either a localized mode appears at a
defect that is not weak or a localized mode does not appear
at all. The realization of both of these cases takes place for a
complex array existing in the antiferromagnetic state with two
magnetic sublattices (see Sec. IV below).

III. NUMERICAL ANALYSIS OF LOCALIZED DEFECT
MODES IN AN ARRAY IN THE FERROMAGNETIC STATE

In this and the following sections, the results of numerical
studies of the SW modes, localized on point and dipolar
defects, are presented. Here and below, we consider a simple
array of circular nanodots, arranged into a square lattice, and
having perpendicular-to-plane static magnetization as shown
in Fig. 1(a). The following parameters were used in numerical
calculations: the dot height-to-radius aspect ratio was h/R =
5, the lattice constant a = 5R (absolute value are not specified
since, within the macrospin approximation, both self- and
mutual demagnetization tensors depend only on the relative
sizes [51]), and the crystalline anisotropy was neglected. Note
that, for the zero-bias field, the ground state of such a dot
array is antiferromagnetic [28], but the static ferromagnetic
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state with all the dot magnetic moments parallel to each other
could be metastable [29] and easily achieved in practice [18].
In our calculation, we also assumed that external magnetic
field is absent. The interdot magnetodipolar interaction was
calculated within the point-like-dipole approximation [19].
We do not specify the saturation magnetization and present the
results below in dimensionless units ω/ωM with ωM = γμ0Ms

for the frequency and B/(μ0Ms) for fields.
The SW spectrum of an ideal periodic dot array in a fer-

romagnetic static state is shown in Fig. 1(c). The dependence
ωk has a minimum with a nonanalytic peculiarity at the point
	 of the first Brillouin zone (k = 0), and a maximum with the
parabolic dispersion at the point M [k = (±π/a,±π/a)].

To obtain frequencies and profiles of all the SW modes
in a dot array, including the localized defect modes, the
eigenproblem Eq. (2.1) was solved numerically for a N × N
nanodot array. In order to avoid the edge effects, periodic
boundary conditions were applied. A localized mode in the
simulations can be easily identified by its frequency, lying
outside the bulk SW spectrum, which was also calculated
numerically for the same size of the array and verified by
looking at the mode profile. A problem with the identification
may appear in the case of small defect strength and, conse-
quently, small separation �ω of the mode frequency from the
bulk spectrum. If this problem appears, we studied how this
frequency separation evolves with the size N of the simulated
array. If the product �ωN increases with N , the real localized
state is present; otherwise, it is a finite-size numerical artifact.
The defect strength for which �ωN is constant corresponds
to the critical defect strength required for a localized mode
formation. Array sizes up to 40 × 40 nanodots were used in
the simulations.

A. Point defects

A point defect of an array was simulated as a dot having
additional out-of-plane uniaxial anisotropy, characterized by
the anisotropy field Ban. This anisotropy field leads to the
modification of static internal field in the defect dot: B →
B + Ban, which contributes to the term ��̂00. Noting that the
SW vector structure in the considered square array of circular
nanodots is approximately equal to mk ≈ (1, i, 0), one can
find that the strength of the defect is described in Eq. (2.13)
by the term U0/A0 = γ Ban.

The frequencies of the localized defect mode as functions
of the additional defect anisotropy Ban are shown in Fig. 2.
In accordance with the theoretical prediction for Ban > 0
(repulsive defect), the local mode appears at vanishingly small
defect strength above the bulk SW spectrum, which demon-
strates the parabolic behavior near its maximum. For small
values of Ban, the frequency of the defect mode lies very close
to the bulk SW spectrum with exponentially weak separation.
In contrast, in the case of negative defect anisotropy Ban < 0
(attractive defect), the localized mode appears below the SW
spectrum only if the defect strength exceeds the threshold
value of |Ban,th| ≈ 0.034μ0Ms, in perfect agreement with
Eq. (2.15). In this case, the frequency of the defect mode
moves away from the bottom of the bulk spectrum much faster
than in the case of positive Ban. At a sufficiently large defect
strength |Ban|, the frequency of the localized mode depends

FIG. 2. Dependence of the frequency of a defect mode localized
on an anisotropic point defect inside an FM-state array on the
magnitude of the additional (defect) anisotropy field Ban: (dots)
numerical calculations; (lines in the main panel) full Eq. (2.13);
(lines in the insets) approximate expressions Eqs. (2.14) and (2.16),
respectively. The area shaded in green shows the position of the bulk
SW spectrum; symbols M and 	 near the top and bottom of the bulk
spectrum denote the symmetric point of the first Brillouin zone at
which the spectrum maximum and minimum are reached.

on the defect anisotropy almost linearly. In a general case
of a strong defect, the frequency of a localized mode can
be estimated as the frequency of an isolated defect dot in a
given static field, produced by all the dots in an array. In other
words, one can neglect dynamic dipolar interaction between
the dots [33]. For the case of an array of circular dots, this
approximation yields ωloc ≈ γ (B + Ban ) + ωMN (xx), where B
is the static field resulting from the external field and static
interdot interaction, and N̂ is the demagnetization tensor of the
defect dot. In all the ranges of defect anisotropy, the frequency
of the defect mode is well described by Eq. (2.13) where the
numerically calculated bulk SW spectrum (Fig. 2) is used.
The approximate expressions Eqs. (2.14) and (2.16) also give
correct dependencies of the frequency of the local mode in the
cases of small separation from the top or the bottom of the SW
spectrum, respectively (see the insets in Fig. 2).

The calculated profiles of the defect modes are shown in
Fig. 3 where significant qualitative difference between the
modes localized below and above the bulk SW spectrum
is clearly seen. As is clear from Eq. (2.11), the bulk SWs
close to the spectrum top or bottom contribute mostly to
the profile of the defect mode. Consequently, the profile of
the defect mode reflects the structure of bulk SWs at the
spectrum top or bottom. More rigorously, the spatial profile
of the localized mode is described by a localized envelope
multiplied by the carrier exp[ikext · r j], where kext is the point
of the minimum or maximum of the bulk SW spectrum,
respectively. This property is general and applies for dipolar
defects too, see below. In our case, the bottom of the bulk
spectrum corresponds to the point k = 0, and the amplitude
of the defect mode is simply monotonically decreasing away
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FIG. 3. Profiles of the localized defect modes for a point
anisotropic defect: (a) SW mode localized below the bulk spectrum
(Ban = −0.05μ0Ms) and (b) SW mode localized above the SW spec-
trum (Ban = 0.01μ0Ms). The defect dot is the central one denoted by
the thick edge.

from the defect dot [see Fig. 3(a)]. In contrast, the spectrum
maximum is located at kM = (π/a, π/a), which creates the
carrier eikM·r j = (−1) jx+ jy , so the magnetization in neighbor-
ing dots precesses with the π phase shift [see Fig. 3(b)]. Also,
the profile of the defect SW mode becomes more localized
with the increase in a defect strength.

B. Dipolar defects

A dipolar defect, the dot with modified interdot magnetic
dipolar interaction, appears if the defect dot has different ge-
ometry and/or saturation magnetization. In a general case, the
variation of these parameters leads also to the modification of
the dot eigenfrequency. In this subsection, we are considering
a specific case when only the interdot interaction with the
defect dot is modified, whereas its eigenfrequency remains
unchanged. Such a case can be achieved if a defect dot has
the same saturation magnetization and shape but different
volume. Within the point-like-dipole approximation of the
interdot interaction, used here, the tensor N̂ j0 depends on the
volume of the defect dot V0—it is proportional to the magnetic
moment M = MsV0 of the defect dot, whereas the tensor N̂0 j

is completely independent of V0 so that the static field in
the defect dot, created by its neighbors, remains unchanged
[outside of the applicability range of the point-like-dipole
model, e.g., for dense arrays, a dependence of N0 j (V0) is
present, but it is much weaker than the dependence Nj0(V0)].
This model allows us to ignore the effects related to the change
in the defect dot eigenfrequency and to consider a pure effect
of the local modification of the interdot dipolar interaction.

A dipolar defect creates a spatially nonuniform distribution
of the static magnetic field in the neighboring dots, field well,
or field hill in which defect modes could be localized. The
above described point defect also creates a well or hill (in
magnetic energy profile), but they are pointlike—only the
defect dot lies within the well or hill. In contrast, a dipolar
defect creates an extended well or hill with many dots inside
it. The calculated frequencies of the localized modes caused
by the dipolar defect are shown in Fig. 4. The main difference
comparing to the case of the point defect is that the dipolar
defect can lead to the appearance of several localized modes,
similar to the well-known case of a finite-depth potential well
in quantum mechanics [54]. In the case of positive change in
the magnetic moment of the defect dot �M > 0, the static
internal field in neighboring dots decreases, and the local

FIG. 4. Dependence of the frequency of a SW mode localized
on a dipolar defect inside a FM-state dot array on the defect
strength characterized by the relative change in the magnetic moment
�M/M0 of the defect dot (numerical calculation). The area shaded
in green shows the position of the bulk SW spectrum.

modes appear below the bulk SW spectrum. Similar to the
situation seen for a point defect, a localized mode appears
only at sufficiently large magnitudes of the defect strength
�M, which should exceed a certain threshold value. This
property is a consequence of a nonanalytic behavior of the
SW spectrum at its minimum. The corresponding defect mode
has a simple monotonic profile in all the dots except for the
defect one [Fig. 5(a)], which reflects the structure of the bulk
SWs at the bottom of the spectrum (k = 0). At a higher defect
strength (�M/M0 � 3), the higher-order localized defect
modes appear, but such a large magnitude of �M is hard to
realize in experiment, and, therefore, the region of so large
�M values is not shown in Fig. 4.

The case of negative �M is of particular interest because
it includes the situations that can be easily realized in practice:
An array with one dot having reversed magnetization (which
corresponds to �M = −2M0) or the absence of one dot

FIG. 5. Profiles of localized defect modes caused by a dipo-
lar defect: (a) localized SW mode appearing below the bulk SW
spectrum (for �M = 2M0), (b) first (highest in frequency) local-
ized mode appearing above the SW spectrum (�M = −0.8M0),
(c) frequency-degenerate second and third localized modes appear-
ing above the spectrum (�M = −0.8M0) having the same instant
profiles but opposite sense of the profile rotation, clockwise and
counterclockwise, respectively. The color scale is the same as in
Fig. 3; the defect dot is denoted by the thick edge.
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FIG. 6. (a) Frequencies of localized defect SW modes for a dipo-
lar defect in an array having a rectangular lattice. (b) and (c) Profiles
of the second (b) and third (c) localized modes for �M = −0.7M0.
The green area in (a) denotes the position of the bulk SW spectrum;
color scale is the same as in Fig. 3.

(�M = −M0). The defect dot with �M < 0 creates a field
hill in the neighboring dots, and the localized modes appear
above the bulk SW spectrum. As for the case of the point
defect, the first localized mode appears at a vanishingly small
defect strength. In contrast, higher-order local modes appear
at a finite defect strength. Thus, we can conclude that the
behavior of the first local mode in the case of dipolar defect
is the same as that of the local mode in the case of the point
defect and it reflects the structure of the SW spectrum at its
top/bottom in the same manner. Namely, for the parabolic
SW spectrum, the first local mode exists at any nonzero
defect strength, whereas for the nonanalytic spectrum, the
localization happens only at finite defect strength exceeding
a certain threshold. The higher-order localized modes in both
cases appear at the certain finite strength of the dipolar defect:
The stronger the defect is, the more modes appear. A similar
feature is also known in quantum mechanics [54].

The profiles of the localized modes above the bulk SW
spectrum reflect the fact that the spectrum maximum takes
place at k = (π/a, π/a) and, thus, have the carrier (−1) jx+ jy .
The first mode has a zero azimuthal number and a standing
profile, shown in Fig. 5(b). The second and third modes in the
considered case are degenerated. They have the same instant
profile with the nodal line [Fig. 5(c)], but these nodal lines
are rotating in the opposite azimuthal direction, clockwise and
counterclockwise, respectively. Thus, these are modes having
the azimuthal number nφ = 1. At a larger defect strength,
one can expect the formation of higher-order azimuthal local
modes.

The frequency degeneracy of the local modes in the studied
array is caused by a high in-plane symmetry of array, which
results in an isotropic SW spectrum close to its maximum.
If this symmetry is broken, the mode degeneracy is lifted.
To prove that, we simulated an array of circular nanodots
arranged into a rectangular lattice (lattice constants ax =
5.5R, ay = 4.5R). As one can see from Fig. 6, the mode
degeneracy is lifted in this case, and two standing modes with
nodal lines along either x or y directions appear instead of the
above-mentioned rotating azimuthal modes.

Finally, it is worth noting that, in the case of a dipolar
defect, the localized modes are located much closer to the

FIG. 7. (a) A sketch of a square array of the circular nanodots
array in the CAFM state; (b) half of the magnetic Brillouin zone of an
array in the CAFM state demonstrating the symmetric points and the
contour 	 → X → M → 	 in (c) (arrows); (c) bulk SW spectrum of
a dot array in the CAFM state at a zero external bias field. Calculation
parameters are described in the text.

bulk SW spectrum, compared to the case of a point anisotropic
defect of the comparable strength (�M = �BanVd/μ0); but a
dipolar defect could create several local modes. This feature
allows one to discuss the properties of the local modes for a
real case of a “combined” defect where both eigenfrequency
and dipolar interactions are modified. An important example
of this case is the defect dot made with the material having
different saturation magnetization. For such a general case,
one should expect the formation of one well-separated local
mode, associated with the modified eigenfrequency, which
can be studied in the approximation of a point defect, and
a set much closely located to the bulk spectrum dipolar
local modes. Such a case was observed in Ref. [33] for a
dot with reversed magnetization. Note, however, that if the
modifications of both the eigenfrequency and the magnetic
moment of a defect dot are small, only one localized SW mode
will be formed, and its behavior will be the same as discussed
above.

IV. LOCAL MODES IN COMPLEX ARRAYS:
ANTIFERROMAGNETIC STATE OF A SQUARE

NANODOT ARRAY

A. Case of merged SW branches (zero-bias field)

The peculiarities of the defect mode formation in a com-
plex magnetic nanodot array are considered, here, on the
example of circular nanodot array, arranged into a square
lattice, existing in a chessboard antiferromagnetic (CAFM)
state, which is the true ground state of such arrays in a
zero field (i.e., it corresponds to the global energy minimum)
[19,20,28]. A sketch of a CAFM state is shown in Fig. 7(a).
An array in the CAFM state has two magnetic sublattices
with opposite static magnetizations [shown by different colors
in Fig. 7(a)]. Consequently, the bulk SW spectrum consists
of two branches with the magnon wave vectors lying inside
the magnetic Brillouin zone, i.e., the Brillouin zone for one
sublattice, see Fig. 7(b). For the calculations, we use the
same nanodot parameters as above (h/R = 5) and the reduced
lattice constant of a = 4R.

Depending on the external magnetic field, the SW branches
can overlap or not, creating, thus, one or two SW bands. For
any of these branches, both analytical (parabolic) and non-
analytical behavior of the dispersion relation can take place
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FIG. 8. Dependence of the frequency of the defect SW mode
localized on an anisotropic point defect in a dot array existing in
the CAFM state in the zero-bias field (numerical calculations). The
green-shaded area denotes the position of the bulk SW spectrum. The
insets show the profiles of the corresponding localized defect modes.
The color scale is the same as in Fig. 3.

near the points of extrema. First, let us discuss the case of
overlapping SW branches, which is realized in small external
fields, in particular, in the case of the zero external field,
considered here. The bulk SW spectrum in this case is shown
in Fig. 7(c). Both the minimum and the maximum of the bulk
SW spectrum are located at point M of the magnetic Brillouin
zone [k = (0, π/a) or, equivalently, point k = (π/a, 0)] (for
more information, see Ref. [20]). In this case, the nonanalyt-
ical behavior of the magnon spectrum appears to be hidden
inside the energy band, and both spectrum minimum and
maximum demonstrate a smooth parabolic behavior in their
vicinities.

A point defect of an array was simulated in the same
manner as in previous section; a dot having additional out-
of-plane anisotropy is characterized by the anisotropy field
Ban. If the external magnetic field is absent, the sublattices
of the array are equivalent, that leads to the merging of the
branches at symmetrical points [19]. Thus, it does not matter
in which particular sublattice the defect dot is located—the
properties of the defect mode will be the same. The calculated
dependence of the defect mode frequency is shown in Fig. 8.
As expected, a localized mode appears at a vanishingly small
defect strength, and it is exponentially weakly separated from
the bulk spectrum at small Ban. It is interesting to note that
the localized modes both below and above the bulk SW
spectrum have similar profiles (see the insets in Fig. 8). This
similarity follows from the fact that both the minimum and the
maximum of the bulk SW spectrum are located at the same
point M in the first Brillouin zone of the array.

B. Case of a gap between SW branches (non-zero-bias field)

When a sufficiently large bias magnetic-field Be = Bzez is
applied to the considered array existing in the CAFM state,
the SW branches become separated, and two distinct SW

FIG. 9. (a) Bulk SW spectrum of a dot array in a CAFM state
for the bias magnetic-field Be = 0.035μ0Ms; (b) Intensity of the
magnetization oscillations in the “parallel sublattice” for both up-
per (solid line) and lower (dashed line) branches of the bulk SW
spectrum. For the case of an “antiparallel sublattice,”the behavior of
the SW amplitudes is reversed: The upper and lower curves in panel
(b) describe the SW amplitudes in the lower and upper SW bands,
respectively.

bands are formed as shown in Fig. 9(a) for the case of Bz =
0.035μ0Ms. In this case, the points with the nonanalytical
dispersion relation could either correspond to the real extrema
(as for the higher band) or be hidden (as for the lower band),
see Fig. 9(a). Similar to the previous subsection, we calculate
the frequencies of local modes for a point anisotropic defect.
At a non-zero-bias field, the sublattices of an array having
opposite static magnetization directions are not equivalent
anymore. Thus, the behavior of the defect modes depends on
which sublattice the defect dot belongs to. We will call the
sublattice having static magnetization in the field direction
(opposite to the field direction) the parallel sublattice (antipar-
allel sublattice). Both these cases are analyzed in the following
subsection, and the results are presented in Fig. 10.

FIG. 10. Dependence of the frequency of the SW mode localized
on a point anisotropic defect in an array existing in the CAFM
state at Be = 0.035μ0Ms (numerical calculations) in the case of a
defect dot located into the parallel (having static magnetization in the
direction of the external bias magnetic-field Md,z > 0) and into the
antiparallel sublattices (static magnetization opposite to the external
field Md,z < 0). The green-shaded area denotes the position of the
bulk SW spectrum.
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1. Defect in the parallel sublattice

First, let us consider the case when the defect dot belongs to
the sublattice with the static magnetization parallel to the bias
field. In the upper spectrum branch, the bulk SW always have
nonvanishing amplitude in the parallel sublattice [Fig. 9(b)].
Thus, according to the theory presented in Sec. II C, a defect
dot in this case should lead to the formation of localized
SW modes both below and above the upper SW branch. The
calculations confirmed this prediction. At a positive defect
anisotropy, a localized mode appears for a vanishingly small
defect strength above the upper SW branch since the maxi-
mum of this branch is parabolic [M point, see Fig. 9(a)]. For
a negative defect anisotropy, the localized mode appears at a
finite value of Ban below the upper SW branch, that reflects
nonanalytical spectrum behavior at the branch bottom (the 	

point). With the increase in the defect strength, the frequency
of the defect mode slowly approaches the lower SW band and
merges with it at Ban ≈ −0.31μ0Ms.

A different situation takes place near the lower SW band.
Whereas, in the M point, corresponding to the band minimum,
the bulk SWs have a finite amplitude in the parallel sublattice,
in the X point (the band maximum), the SW amplitude in the
mentioned sublattice is zero. Consequently, the defect mode
appears only below the lower SW band for Ban < 0, whereas
no localized mode exists in the spectral gap above the lower
band at any defect strength. Thus, there is an asymmetry of
the defect mode appearance: Two defect modes are present
for an attractive defect and only one for a repulsive defect.
This asymmetry reflects the structure of the bulk SWs near the
extrema of SW bands and may be used for the identification
of the defect location in this or that sublattice.

2. Defect in the antiparallel sublattice

In the case when a defect dot belongs to an antiparallel
sublattice, the behavior of the defect modes is similar. The
only difference is the fact that the SW amplitudes in the lower
bulk SW dispersion branch are nonzero in the antiparallel
sublattice. Consequently, localized defect SW modes appear
both below and above the lower SW band (see the red squares
in Fig. 10). It is interesting to note that, for the case of Ban > 0,
a localized defect SW mode approaches the upper bulk SW
band and disappears inside it much faster than in the case of
a parallel sublattice. This difference is, evidently, related with
the peculiarity of the bulk SW spectrum near its extrema.

Near the upper SW band, one can see the asymmetry
of the defect mode formation, similar to the one discussed
above for the defect dot in the parallel sublattice: A localized
mode appears only above the upper band for positive defect
anisotropy. The defect mode is absent for the same reason
because the SW amplitude in the antiparallel sublattice at
point 	, which corresponds to the band minimum, is very
small (but, strictly speaking, still nonzero). Consequently, the
effective defect strength m∗

p · ��00 · mp in Eq. (2.18) is also
small, and it is not sufficient to overcome the critical value
for the defect formation, which is finite due to nonanalytic
peculiarity of the bulk SW spectrum. With an increase in |Ban|,
this threshold value also becomes larger due to the interaction
with the lower SW band. Therefore, a localized defect SW

mode below the upper bulk SW band is absent at any strength
of the attractive defect.

3. Dipolar defects

In the case of dipolar defects in complex dot arrays, one
should expect the behavior of the localized defect modes that
is qualitatively similar to the one described above for simple
dot arrays. Namely, the appearance of the first localized mode
at vanishingly small or finite defect strength for the cases of
parabolic and nonanalytic bulk SW spectra, respectively, as
well the existence of higher-order defect modes at a larger
defect strength. Since the dipolar field is long ranged, a dipolar
defect dot interacts with all the sublattices. Thus, the proper-
ties of the defect SW modes should be much less sensitive to
the position of the defect dot in a certain sublattice. However,
in the considered case of an array existing in a CAFM ground
state, a dipolar defect creates a field well in one sublattice and
a field hill in the other sublattice. This counterplay results in
a very weak separation of the defect mode frequencies from
a bulk SW spectrum for the defects of a reasonable strength,
so the observation of the corresponding localized defect SW
modes in experiment should be challenging.

V. SUMMARY

In this paper, the conditions of the formation and the basic
properties of the SW modes localized on isolated defects in
dipolarly coupled arrays of magnetic nanodots were studied.
It is shown, that a number and properties of localized defect
SW modes depend on whether a particular defect affects the
interdot magnetodipolar interaction or not.

In an array with a simple lattice existing in a ferromag-
netic static state, the presence of a point defect can lead
to the appearance of only one localized defect SW mode.
The conditions of the localized mode appearance depend on
the peculiarities of the bulk SW spectrum near its minimum
or maximum. If the bulk SW spectrum is analytic (with a
parabolic dependence on k), a vanishingly small defect creates
a localized defect mode with exponentially weak separation
from the bulk SW spectrum at a small defect strength. In
the case of a nonanalytic bulk SW spectrum, a defect mode
appears only if the defect strength exceeds a certain threshold
value, determined by the whole bulk SW spectrum.

In contrast, a dipolar defect may lead to the appearance
of several localized defect SW modes. The conditions of the
appearance of the first localized defect mode are the same as
in the case of a point defect and depend on the peculiarities
of the bulk SW spectrum near its minimum or maximum.
With an increase in the defect strength, higher localized defect
SW modes may appear, and they differ by the azimuthal
symmetry. Quantitatively, the gap between the frequencies of
these localized SW modes and the bulk SW spectrum is much
less than for the SW modes localized on a point defect of a
comparable strength.

In a complex array having several distinct bulk SW bands,
a point defect may lead to the appearance of localized de-
fect modes near each of the bulk SW bands, and the same
conditions, depending on the analytic or nonanalytic proper-
ties of the bulk SW spectra near their extrema, govern the
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appearance of the localized defect SW modes. Sometimes,
however, the number of the localized defect SW modes may
become smaller than expected because the amplitude of the
bulk SWs on a sublattice containing a point defect may be
abnormally small (or even zero) near an extremum of some
of the bulk SW bands. In such a case, a localized defect
SW mode near this bulk SW band may not appear at all.
Moreover, the absence of a localized SW mode may result
in the asymmetry of the number of localized SW modes for
attractive and repulsive point defects as was discussed above
for the case of a square nanodot array in the CAFM ground
state. Also, in a complex dot array, a localized SW mode
between the bulk SW bands exists only in a certain range of
the defect strength. For a sufficiently strong defect, a localized
defect mode, created by one bulk SW band, could disappear
in the neighboring bulk SW band.

In all these cases, the spatial profile of a localized defect
SW mode reflects the structure of bulk SWs in the vicinity of
the extrema of the bulk SW spectrum. In particular, at a small
defect strength, the profile can be considered as the bulk SW

at the spectrum extremum multiplied by a localized envelope,
which is simple monotonic in the case of the point defect and
more complex in the case of higher-order local modes created
by the dipolar defect.
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