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Dynamics of antiferromagnetic skyrmions in the absence or presence of pinning defects
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A theoretical study on the dynamics of an antiferromagnetic (AFM) skyrmion is indispensable for revealing
the underlying physics and understanding the numerical and experimental observations. In this work, we present
a reliable theoretical treatment of the spin-current induced motion of an AFM skyrmion in the absence and
presence of pinning defect. For an ideal AFM system free of defect, the skyrmion motion velocity as a function
of the intrinsic parameters can be derived, based on the concept that the skyrmion profile agrees well with the
360◦ domain-wall formula, leading to an explicit description of the skyrmion dynamics. However, for an AFM
lattice containing a defect, the skyrmion can be pinned and the depinning field as a function of damping constant
and pinning strength can be described by Thiele’s approach. It is revealed that the depinning behavior can be
remarkably influenced by the time-dependent oscillation of the skyrmion trajectory. The present theory provides
a comprehensive scenario for manipulating the dynamics of AFM skyrmion, informative for future spintronic
applications based on antiferromagnets.
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I. INTRODUCTION

Magnetic skyrmions [1] are topologically vortexlike spin
configurations, which are observable in a series of chiral
magnets [2–7] and heavy metal/ferromagnetic films [8–10]
with inversion symmetry breaking, particularly in frustrated
magnets [11,12]. The interesting characteristics of skyrmions
include nanoscale in size, topological protection character,
and ultralow critical driving current [13–17], make them
promising candidates for spintronic devices such as racetrack
memories where the skyrmion motion becomes the core issue.
Subsequently, other stimuli, such as gradient magnetic and
electric fields as well as spin waves, have been proposed to
effectively drive skyrmions [18–24], while the skyrmion Hall
effect prohibits a precise control of the motion and even goes
against their applications.

Alternatively, antiferromagnetic (AFM) skyrmions in
AFM systems have been theoretically predicted [25] and have
attracted extensive attention due to their particular merits.
Specifically, an AFM skyrmion is comprised of two coupled
spin structures with opposite topological numbers [25–27],
resulting in a perfect suppression of the skyrmion Hall effect
[28–33]. Thus, an AFM skyrmion can move straight along the
direction of driving stimulus without path deviation. More-
over, it has been revealed that the minimum driving current
density of an AFM skyrmion is much smaller than that for
a ferromagnetic (FM) skyrmion, and the velocity under the
same driving force is much larger [26,30]. In addition, a strong
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anti-interference capability is also expected in AFM systems
due to zero stray fields [34].

For the driving stimulus, besides electric current driv-
ing, temperature gradient and magnetic anisotropy gradient
[26,31,35] have also been theoretically uncovered to effi-
ciently drive the motion of the AFM skyrmion. For example, it
is revealed that an AFM skyrmion moves towards the region
of lower magnetic anisotropy under an anisotropy gradient.
Furthermore, the interplay of skyrmion dynamics with defects
in the system under consideration can be a core issue if the
defect can pin the skyrmion motion for spintronic device
operation, noting that inhomogeneity and lattice defects are
inevitable in realistic materials and they may influence the
magnetic dynamics by various pinning effects. Most recently,
the influence of defect induced by the local variation in
the magnetic anisotropy on the current-induced motion of
the AFM skyrmion has been numerically investigated [36],
and various behaviors of the skyrmion to these defects have
been revealed. The simulated pinning and depinning of the
skyrmion in response to the defects of various sizes and
pinning strengths have been qualitatively explained in regard
to the energy landscape.

These important works definitely provide useful informa-
tion for future AFM spintronic device design, while more
comprehensive understanding of the AFM skyrmion dynam-
ics is certainly necessary. A theoretical treatment benefits
essentially the understanding of the physics underlying exten-
sive numerical and experimental observations. For example,
earlier simulations have demonstrated a nearly linear relation
between the AFM skyrmion velocity and the Dyzaloshinskii-
Moriya (DM) interaction strength [32], while the underlying
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physics deserves further exploration. Fortunately, earlier the-
oretical calculation on the FM skyrmion confirmed that the
FM skyrmion profile agrees well with the 360◦ domain-wall
formula [37]. This equivalence allows a direct connection
between the skyrmion dynamics and magnetic domain-wall
dynamics. Certainly, to some extent, the theoretical treatment
on the FM skyrmion can be safely transferred to the case of
an AFM skyrmion, considering the similarity in Hamiltonian
between the FM and AFM skyrmion systems.

On the other hand, it would be even more important to
understand the depinning process for an AFM skyrmion under
pinning by some defect. Here, we consider the depinning
process by spin current, and therefore the depinning current
as a function of the system parameters such as damping
constant must be well understood. In fact, in our earlier work
on the depinning process of an AFM domain wall, it was
predicted that the depinning field is remarkably dependent
on the damping constant, attributed to the oscillation of the
AFM domain wall [38]. This prediction and the equivalence
mentioned just above suggests the possibility for a similar
dependence regarding the depinning process of an AFM
skyrmion under pinning. This is an essential issue to clarify
due to its importance in the AFM spintronics.

In this work, we focus on the spin-current-driven dynamics
of an AFM skyrmion and present a reliable theoretical treat-
ment. Then the predicted dynamic behavior will be compared
with the numerical simulations based on the Landau-Lifshitz-
Gilbert (LLG) equation. We start from a theoretical treatment
of the dynamics of an AFM skyrmion in an ideal AFM lattice
(without any pinning defect) and then the motion velocity in
dependence of the intrinsic physical parameters of the system
will be derived. Subsequently, we extend our treatment to the
case with the presence of pinning defect in the lattice, and
the depinning field of the skyrmion motion as a function of
the damping constant and pinning strength of the defect will
be obtained. The whole process of treatment constitutes the
theory on the dynamics of AFM skyrmion in the presence of a
pinning defect, which is highly valued for potential spintronic
applications.

II. MODEL AND METHODS

We consider an ultrathin AFM film on a heavy-metal
layer in the xy plane with two magnetic sublattices that have
magnetic moments m1 and m2 respectively [39], satisfying
condition |m1| = |m2| = S with spin length S. The total mag-
netization m and the unit Néel vector n are defined as m =
(m1 + m2)/2S and n = (m1 − m2)/2S, respectively, which
are used to describe the AFM skyrmion dynamics. Taking
into account the exchange energy, the anisotropy energy, the
interfacial DM interaction, and the constraints |n| = 1 and
m · n = 0, one has the total energy of the system given by
[36,40]

H =
∫

dV

{
A0

2
m2 + A(∇n)2

− D
[
nz∇ · n − (n · ∇)nz

] − Kn2
z

}
, (1)

FIG. 1. Schematic illustration of an antiferromagnet-heavy metal
bilayer configuration. Top layer: spin configuration along a radial
direction of an AFM skyrmion. Bottom layer: a perpendicular spin
current (coarse red solid arrow) is induced by a charge current (coarse
black solid arrow) and then a spin transfer torque acting on AFM
moment is generated.

where A0 = 8JS2/a2 is the homogeneous exchange constant
with AFM interaction J and lattice constant a, A = JS2 is
the inhomogeneous exchange constant, D = D0S2/a is the
interfacial DM interaction constant with constant D0 in the
discrete model, and K = K0S2/a2 is the anisotropy constant
along the z axis with constant K0 in the discrete model [41].

Here, the spin-polarized current (spin current) in the
perpendicular-to-plane geometry is induced by the spin Hall
effect generated by the in-plane charge current in the neigh-
boring heavy metal layer, as explicitly depicted in Fig. 1. In
this case, the AFM dynamics is described by the following
two coupled equations [42,43]:

ṅ = (γ fm − G1ṁ) × n + γ un × (m × p), (2a)

ṁ = (γ fn − G2ṅ) × n + (γ fm − G1ṁ)

× m + γ un × (n × p), (2b)

where γ is the gyromagnetic ratio, fm = −δH/δm and fn =
−δH/δn are the effective fields, G1 and G2 are the phe-
nomenological Gilbert damping parameters, p denotes the
unit vector along the electron polarization direction (x axis,
ex), u = jμBθSH/(γ eμstz ) is the effective field related to the
dampinglike spin torque with the Bohr magneton μB, the
effective spin-Hall angle θSH , the driving current density j,
the electron charge e, the saturation moment μs, and the
film thickness tz. Subsequently, the dynamics of the AFM
skyrmion can be analytically calculated by solving the two
equations.

Furthermore, the velocity and the depinning field of the
AFM skyrmion motion are also estimated using the LLG
simulations of the discrete model, in order to check the
validity of the theoretical treatment. The simulation details
and parameter choice are presented in the Appendix.

III. RESULTS AND DISCUSSION

A. Velocity for AFM skyrmion motion

In the earlier work [32], it was numerically revealed that
the velocity of an AFM skyrmion is proportional to the DM in-
teraction for a fixed current density. Here, we can analytically
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derive the relationship between the two parameters which is
nearly linear, in order to uncover the physical pictures behind
the earlier simulations.

By substituting Eq. (2a) into Eq. (2b) and neglecting the
nonlinear terms, one obtains the dynamic equation expressed
by the Néel vector n:

(1 + G1G2)ṅ = −A0γ m × n + γ G1fn + G1γ u(p × n), (3)

noting that the effective fields are time independent. Then, by
taking a derivative with respect to time and safely neglecting
small terms, we obtain

n̈
γ ∗ = A0

[
γ fn − G2ṅ + γ u(p × n)

]
, (4)

where γ ∗ ≡ γ /(1 + G1G2) ≈ γ .
Subsequently, we investigate the dynamics using the col-

lective coordinate approach [44,45], and obtain the velocity
v for an AFM skyrmion moving along the current direction
without the skyrmion Hall effect,

v = γ Ixyu

G2Dxx
, (5)

where Ixy and Dxx are the driving force tensor and dissipative
tensor, respectively. For the convenience of mathematical
treatment, the Néel vector at point r is described by n =
(sin θ cos ϕ, sin θ sin ϕ, cos θ ) with the polar angle θ (r) and
azimuthal angle φ = � (the azimuthal angle of r), considering
a skyrmion centered at r = 0. Thus, the tensors Ixy and Dxx,
respectively, read [46]

Ixy =
∫ (

∂nz

∂x
nx − ∂nx

∂x
nz

)
dxdy = π

∫
r

(
∂θ

∂r
+ sin 2θ

2r

)
dr

(6)

and

Dxx =
∫ [(

∂nx

∂x

)2

+
(

∂ny

∂x

)2

+
(

∂nz

∂x

)2
]

dxdy

= π

∫
r

[(
∂θ

∂r

)2

+ sin2θ/r2

]
dr. (7)

It is seen that the magnetization profile along the radial
direction of a FM or AFM skyrmion is equivalent to a 360◦
domain wall. Thus, the 360◦ domain wall could be used to
describe the skyrmion profile, as confirmed in earlier work on
the FM skyrmion size [37]. As a matter of fact, this conceptual
scenario can be safely transferred to the study of the AFM
skyrmion dynamics. By this equivalence, the skyrmion profile
reads in this case

θ (r) = 2 arctan

(
sinh(Rs/w)

sinh(r/w)

)
, (8)

where the wall width w = πD/4K and the skyrmion size Rs =
πD[A/(16AK2 − π2D2K )]1/2 with the constraint 16AK >

FIG. 2. The simulated (empty circles) and analytically calculated
(solid line) velocity v as functions of u for (a) D = 0.8 S2/a and
(b) as a function of D for u = 0.02 J/μs.

π2D2. One obtains by substituting Eq. (8) into Eqs. (6) and
(7)

Ixy = 2πw

∫ ∞

0

(
− sinh t2 cosh t1

sinh2t2 + sinh2t1
t1

− sinh t2 sinh t1(sinh2t2 − sinh2t1)

(sinh2t2 + sinh2t1)
2

)
dt1 (9)

and

Dxx = 2π

∫ ∞

0

(
2sinh2(t2)cosh2(t1)

[sinh2(t2) + sinh2(t1)]
2 t1

+ 2sinh2(t2)cosh2(t1)

[sinh2(t2) + sinh2(t1)]
2
t1

)
dt1, (10)

where t1 = Rs/w, t2 = r/w. For r � w, one has sinh(r) ≈
cosh(r) ≈ er . Thus, we obtain Ixy and Dxx:

Ixy = π2Rs,

Dxx = 2π

(
Rs

w
+ w

Rs

)
. (11)

Substituting Eq. (11) into Eq. (5) yields

v = 2DAπ2γ

(32AK − π2D2)G2
u. (12)

In order to check the validity of theory, a comparison
between the analytical calculations and numerical simulations
is indispensable. Figure 2(a) gives the calculated and LLG
simulated v as a function of u for D = 0.8 S2/a. The spin
transfer torque is enhanced with the increase in u, and drives
the skyrmion to move fast. The theory prediction coincides
well with the simulated ones, especially for the cases of small
u, confirming the validity of the theory. It is noted that the
AFM skyrmion could be deformed during its motion if the
driving current in the simulation is very large, resulting in the
discrepancy between the calculations and simulations in the
large u range. Similar to the AFM domain wall, the speed of
AFM skyrmion is also limited [47], attributed to the Lorentz
contraction. Furthermore, the DM interaction determines the
skyrmion size and in turn affects the skyrmion velocity. The
velocity increases monotonically with the DM interaction, as
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shown in Fig. 2(b) which presents the calculated and simu-
lated v as a function of D for u = 0.02 J/μs. The results are
quite consistent with each other (the discrepancy is less than
5%), further confirming the validity of the theory. Moreover,
for 32AK � π2D2, a nearly linear relation between v and D
is obtained, quantitatively explaining the earlier simulations
[32].

So far, the dependence of the AFM skyrmion velocity on
these internal and external parameters is clarified, allowing
one to estimate the velocity easily and to understand the
physics clearly. As a matter of fact, the dynamics of the AFM
skyrmion has attracted attention for many years, but a detailed
formulation for its velocity has remained ambiguous.

B. Pinning and depinning of AFM skyrmion

Subsequently, we investigate the AFM skyrmion dynamics
in a system with pinning defect, in particular the pinning and
depinning behaviors. Without loss of generality, the defect
is introduced by a local variation in the magnetic anisotropy
[36,48,49], expressed by K∗ = K{1 − λ exp[−(r − rd )2/R2

d ]}
[26], where λ denotes the defect pinning strength, rd is the
position of the defect center, and Rd is the defect size.

For our calculation, parameters K = 0.8 S2/a2 and D =
0.78 S2/a are selected to generate a skyrmion with small size
to suppress the defect induced skyrmion distortion. Thus, for
Rs < Rd , one may reasonably assume the defect potential to
be a parabolic one [38,50]:

V (r) =
{

1
2λ0|r − rd |2 (|r − rd | < Rp)
1
2λ0 R2

p (|r − rd | � Rp)
, (13)

where λ0 = cλλ is the pinning strength prefactor related to the
defect, and Rp is the radius of the potential well.

For simplicity, the skyrmion is assumed to be initially at the
defect center rd . It is noted that the skyrmion will be captured
by the defect in the low current region. By applying the Thiele
approach and considering Eq. (13), the equation of motion for
the skyrmion position q is obtained:

q̈ + 2εωq̇ + ω2q + C = 0, (14)

where 2ε = γ A0G2/ω,ω2 = γ cλλ/Dxx, and C =
−γ 2A0Ixyu/Dxx. Equation (14) clearly describes the
damping oscillation of the AFM skyrmion. Specifically,
for G2 < 2ω/γ A0, we have the solution representing an
underdamped oscillation:

q(τ ) = e−εωτ (C1 cos ωpτ + C2 sin ωpτ ) − C

ω2
, (15)

where C1 and C2 are parameters to be determined by initial
conditions, ωp = [ω2 − (γ A0G2)2/4]1/2 is the oscillating an-
gular frequency, and ωp ≈ ω due to ω2 � (γ A0G2)2/4. It is
noted that G1 is much smaller than G2 [42], which has been
safely neglected in the derivation of Eq. (15).

As a matter of fact, the underdamped oscillation has been
confirmed by the LLG simulations, as shown in Fig. 3(a),
which presents the simulated q(τ ) curves for various G2. For
a fixed G2, the skyrmion oscillates around its equilibrium
position with an attenuating amplitude. It is noted that at the
equilibrium position, the driving torque is well cancelled out
by the retarding torque caused by the defect, and the position

FIG. 3. The skyrmion position as a function of time (a) for
various G2 for λ = 0.4 and (b) for various λ for G2 = 0.03a under
u = 0.012 J/μs.

hardly depends on G2. Interestingly, the oscillation magnitude
is highly related to the damping constant, which significantly
affects the pinning and depinning of the skyrmion. Actually,
one may define the maximum displacement of the skyrmion
from its initial position as |�q|max, which is approximately
given by

|�q|max = e−γ A0G2 arctan(C2/C1 )
/

2ωp

√
C2

1 + C2
2 − C

ω2
. (16)

The simulated |�q|max for various G2 are summarized in
Fig. 4(a), in which the excellent fitting of the simulated data
based on Eq. (16) confirms the validity of the theory.

When a large current is applied, the AFM skyrmion will be
depinned from the defect, benefiting from the strong driving
torque. The critical depinning field could be theoretically
estimated based on the condition that the maximum displace-
ment of the skyrmion equals the radius of the potential well,
|�q|max = Rp. Substituting the condition into Eq. (16), one

FIG. 4. Numerical (empty circles) and analytical (solid line)
calculated for (a), (c) |�q|max and (b), (d) udepin as functions of (a),
(b) G2 for λ = 0.2 and (c), (d) λ for G2 = 0.01a.
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obtains the critical depinning field:

udepin = (Rp − e−γ A0G2 arctan(C2/C1 )
/

2ωp

×
√

C2
1 + C2

2 )ω2Dxx
/
γ 2A0Ixy. (17)

The simulated udepin as a function of G2 are plotted in
Fig. 4(b), which reveals a significant dependence of udepin on
G2 in its small region. Specifically, udepin gradually increases
with G2 until the large G2 region where udepin becomes
saturated, similar to the depinning of the AFM domain wall
in notched nanostructures [38]. Importantly, the simulated
results are quite consistent with Eq. (17), revealing that the
oscillation of the AFM skyrmion plays an important role in its
depinning, regardless of the defect type.

Unlike the damping constant, the defect strength λ also
affects the equilibrium position of the skyrmion, as revealed in
Eq. (15). For example, for a small λ, the skyrmion moves to an
equilibrium position far away from its initial position to make
the torque from the defect cancel out the driving torque, as
shown in Fig. 3(b), which presents the simulated q(τ ) curves
for various λ. In this case, the oscillation magnitude hardly
depends on λ for the small damping constant, allowing one
to fit the simulated |�q|max by |�q|max = C∗ − CDxx/cλλγ

where the constant C∗ represents the first term on the right
side of Eq. 16. The updated equation of |�q|max coincides
well with the simulated results, as shown in Fig. 4(c), which
presents the LLG-simulated |�q|max as a function of λ for
G2 = 0.01a. Similarly, the equation of udepin could be updated
to udepin = (Rp − C∗)cλλ/Ixyγ A0, revealing a linear relation
between udepin and λ. This relation has been verified by the
fitting of the simulated udepin as a function of λ, as shown in
Fig. 4(d).

C. Brief discussion

In Sec. III A, the dependence of the skyrmion velocity on
the internal parameters including the exchange interaction and
DM interaction is predicted, based on the fact that the AFM
skyrmion profiles agree with the 360◦ domain-wall formula.
In Sec. III B, the critical depinning field of the AFM skyrmion
is discussed, based on Thiele’s theory, and its dependence on
the damping constant and pinning strength is derived. The
theory predictions are very consistent with the simulation
results based on the LLG equation, confirming the validity of
the theory.

On one hand, the deformation of the AFM skyrmion in
shape could be induced during the motion or by the inter-
action with the defect. For simplicity, the deformation [32]
is completely ignored in our derivation of the dynamics,
resulting in the small deviation between the simulations and
analytical calculations. It is noted that the skyrmion size
significantly depends on the exchange and DM interactions
which could be also changed in the defect region. Their effects
on the depinning of the skyrmion have been numerically
investigated in earlier numerical simulations [36], which is
beyond the scope of this theory. Moreover, the defect potential
could be complex when the defect size is smaller than the
skyrmion size. Thus, the present theory could work well for
the skyrmion with a small and stable size [51].

On the other hand, the spin current, as an example, is used
to drive the motion of the AFM skyrmion in this work. How-
ever, the theory could be easily transferred to other proposed
schemes for driving the AFM skyrmion motion through re-
calculating the effective field. More interestingly, a parabolic
potential is also expected for other types of defects such as
notches [38,52], and the derived formula for calculating the
depinning field could also work in notched nanostructures,
which deserves to be checked in future simulations and/or
experiments [53].

Thus, the present theory not only strengthens the earlier
conclusions, but more importantly helps one to understand the
physical picture behind the numerical simulations, providing
useful information for future application design.

IV. CONCLUSION

In conclusion, we have studied theoretically the spin-
current-induced dynamics of the AFM skyrmion, and have
confirmed the validity of the theory through a detailed com-
parison between the theory and numerical simulations based
on the LLG equation. The dependence of the skyrmion veloc-
ity on the intrinsic physical parameters are uncovered, allow-
ing a quantitative and clear understanding of the dynamics.
Moreover, the depinning field of the AFM skyrmion depend-
ing on the damping constant and the defect’s pinning strength
is derived theoretically, demonstrating the effect of the time-
dependent oscillation of the skyrmion on the depinning. Thus,
the present work helps one to understand clearly the velocity
and defect depinning of the AFM skyrmion, benefiting future
experiment designs and AFM spintronics applications.
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APPENDIX: NUMERICAL SIMULATIONS OF THE
ATOMISTIC SPIN MODEL

In order to check the validity of the theory, we also perform
the numerical simulations of the discrete model. Here, the
two-dimensional Hamiltonian of the atomistic spin model is
given by

H = J
∑
〈i, j〉

Si · S j

− D0

∑
i

(Si × Si+x · ŷ−Si × Si+y · x̂)

− K0(Sz
i )2, (A1)

where the first term is the exchange interaction with J = 1
between the nearest-neighbor spins, the second term is the
DM interaction, and the last term is the anisotropy energy.
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The dynamics of the AFM skyrmion driven by the current is
investigated by solving the LLG equation

∂Si

∂τ
= −γ Si × Hi + αSi × ∂Si

∂τ
+ γ uSi × (Si × p), (A2)

where α is the damping constant and Hi = −μs
−1∂H/∂Si is

the effective field. Without loss of generality, u = 0.02 J/μs,
K0 = 0.8J and α = 0.03 are selected. Generally, we use the

fourth-order Runge-Kutta method to solve the LLG equation
on a 50 × 50 square lattice. The position of the skyrmion q is
estimated by

q =
∫

[xn · (∂xn × ∂yn)]dxdy∫
[n · (∂xn × ∂yn)]dxdy

. (A3)

Then, the velocity is numerically calculated by v = dq/dτ

with time τ .
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A. Locatelli, T. O. Menteş, A. Sala, L. D. Buda-Prejbeanu, and
O. Klein, Nat. Nanotechnol. 11, 449 (2016).

[11] Z. Hou, Q. Zhang, G. Xu, S. Zhang, C. Gong, B. Ding, H. Li,
F. Xu, Y. Yao, E. Liu, G. Wu, X.-x. Zhang, and W. Wang, ACS
Nano 13, 922 (2019).

[12] Z. Hou, Q. Zhang, X. Zhang, G. Xu, J. Xia, B. Ding, H. Li, S.
Zhang, N. M. Batra, and P. M. Costa, Adv. Mater. 32, 1904815
(2020).

[13] F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W.
Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, and R. A.
Duine, Science 330, 1648 (2010).

[14] X. Yu, N. Kanazawa, W. Zhang, T. Nagai, T. Hara, K. Kimoto,
Y. Matsui, Y. Onose, and Y. Tokura, Nat. Commun. 3, 988
(2012).

[15] A. Fert, N. Reyren, and V. Cros, Nat. Rev. Mater. 2, 17031
(2017).

[16] R. Wiesendanger, Nat. Rev. Mater. 1, 16044 (2016).
[17] R. E. Troncoso and A. S. Núñez, Phys. Rev. B 89, 224403

(2014).
[18] J. Iwasaki, A. J. Beekman, and N. Nagaosa, Phys. Rev. B 89,

064412 (2014).
[19] C. Psaroudaki and D. Loss, Phys. Rev. Lett. 120, 237203

(2018).
[20] L. Kong and J. Zang, Phys. Rev. Lett. 111, 067203 (2013).
[21] J. Liang, J. Yu, J. Chen, M. Qin, M. Zeng, X. Lu, X. Gao, and

J. M. Liu, New J. Phys. 20, 053037 (2018).
[22] J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nat. Commun. 4,

1463 (2013).

[23] X. Wang, W. L. Gan, J. Martinez, F. N. Tan, M. Jalil, and W. S.
Lew, Nanoscale 10, 733 (2018).

[24] R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri,
and G. Finocchio, Sci. Rep. 4, 6784 (2014).

[25] X. Zhang, Y. Zhou, and M. Ezawa, Nat. Commun. 7, 10293
(2016).

[26] J. Barker and O. A. Tretiakov, Phys. Rev. Lett. 116, 147203
(2016).

[27] X. Zhang, Y. Zhou, and M. Ezawa, Sci. Rep. 6, 24795 (2016).
[28] P. F. Bessarab, D. Yudin, D. R. Gulevich, P. Wadley, M. Titov,

and O. A. Tretiakov, Phys. Rev. B 99, 140411(R) (2019).
[29] H. Velkov, O. Gomonay, M. Beens, G. Schwiete, A. Brataas, J.

Sinova, and R. A. Duine, New J. Phys. 18, 075016 (2016).
[30] H. Xia, C. Jin, C. Song, J. Wang, J. Wang, and Q. Liu, J. Phys.

D 50, 505005 (2017).
[31] L. Shen, J. Xia, G. Zhao, X. Zhang, M. Ezawa, O. A. Tretiakov,

X. Liu, and Y. Zhou, Phys. Rev. B 98, 134448 (2018).
[32] C. Jin, C. Song, J. Wang, and Q. Liu, Appl. Phys. Lett. 109,

182404 (2016).
[33] X. Zhao, R. Ren, G. Xie, and Y. Liu, Appl. Phys. Lett. 112,

252402 (2018).
[34] X. Chen, X. Zhou, R. Cheng, C. Song, J. Zhang, Y. Wu, Y. Ba,

H. Li, Y. Sun, and Y. You, Nat. Mater. 18, 931 (2019).
[35] R. Khoshlahni, A. Qaiumzadeh, A. Bergman, and A. Brataas,

Phys. Rev. B 99, 054423 (2019).
[36] X. Liang, G. Zhao, L. Shen, J. Xia, L. Zhao, X. Zhang, and Y.

Zhou, Phys. Rev. B 100, 144439 (2019).
[37] X. Wang, H. Yuan, and X. Wang, Commun. Phys 1, 31

(2018).
[38] Z. Y. Chen, M. H. Qin, and J.-M. Liu, Phys. Rev. B 100,

020402(R) (2019).
[39] K. M. D. Hals, Y. Tserkovnyak, and A. Brataas, Phys. Rev. Lett.

106, 107206 (2011).
[40] E. G. Tveten, T. Müller, J. Linder, and A. Brataas, Phys. Rev. B

93, 104408 (2016).
[41] K. Pan, L. Xing, H. Y. Yuan, and W. Wang, Phys. Rev. B 97,

184418 (2018).
[42] E. G. Tveten, A. Qaiumzadeh, O. A. Tretiakov, and A. Brataas,

Phys. Rev. Lett. 110, 127208 (2013).
[43] T. Shiino, S.-H. Oh, P. M. Haney, S.-W. Lee, G. Go, B.-G. Park,

and K.-J. Lee, Phys. Rev. Lett. 117, 087203 (2016).
[44] O. A. Tretiakov, D. Clarke, G.-W. Chern, Y. B. Bazaliy, and O.

Tchernyshyov, Phys. Rev. Lett. 100, 127204 (2008).
[45] D. J. Clarke, O. A. Tretiakov, G.-W. Chern, Y. B. Bazaliy, and

O. Tchernyshyov, Phys. Rev. B 78, 134412 (2008).
[46] M. E. Knoester, J. Sinova, and R. A. Duine, Phys. Rev. B 89,

064425 (2014).
[47] A. Salimath, F. Zhuo, R. Tomasello, G. Finocchio, and A.

Manchon, Phys. Rev. B 101, 024429 (2020).

054419-6

https://doi.org/10.1016/0029-5582(62)90775-7
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nmat2916
https://doi.org/10.1126/science.1166767
https://doi.org/10.1103/PhysRevLett.108.267201
https://doi.org/10.1038/s41535-017-0034-7
https://doi.org/10.1038/s41535-019-0150-7
https://doi.org/10.1038/ncomms14761
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/nnano.2015.315
https://doi.org/10.1021/acsnano.8b09689
https://doi.org/10.1002/adma.201904815
https://doi.org/10.1126/science.1195709
https://doi.org/10.1038/ncomms1990
https://doi.org/10.1038/natrevmats.2017.31
https://doi.org/10.1038/natrevmats.2016.44
https://doi.org/10.1103/PhysRevB.89.224403
https://doi.org/10.1103/PhysRevB.89.064412
https://doi.org/10.1103/PhysRevLett.120.237203
https://doi.org/10.1103/PhysRevLett.111.067203
https://doi.org/10.1088/1367-2630/aac24c
https://doi.org/10.1038/ncomms2442
https://doi.org/10.1039/C7NR06482A
https://doi.org/10.1038/srep06784
https://doi.org/10.1038/ncomms10293
https://doi.org/10.1103/PhysRevLett.116.147203
https://doi.org/10.1038/srep24795
https://doi.org/10.1103/PhysRevB.99.140411
https://doi.org/10.1088/1367-2630/18/7/075016
https://doi.org/10.1088/1361-6463/aa95f2
https://doi.org/10.1103/PhysRevB.98.134448
https://doi.org/10.1063/1.4967006
https://doi.org/10.1063/1.5034515
https://doi.org/10.1038/s41563-019-0424-2
https://doi.org/10.1103/PhysRevB.99.054423
https://doi.org/10.1103/PhysRevB.100.144439
https://doi.org/10.1038/s42005-018-0029-0
https://doi.org/10.1103/PhysRevB.100.020402
https://doi.org/10.1103/PhysRevLett.106.107206
https://doi.org/10.1103/PhysRevB.93.104408
https://doi.org/10.1103/PhysRevB.97.184418
https://doi.org/10.1103/PhysRevLett.110.127208
https://doi.org/10.1103/PhysRevLett.117.087203
https://doi.org/10.1103/PhysRevLett.100.127204
https://doi.org/10.1103/PhysRevB.78.134412
https://doi.org/10.1103/PhysRevB.89.064425
https://doi.org/10.1103/PhysRevB.101.024429


DYNAMICS OF ANTIFERROMAGNETIC SKYRMIONS IN … PHYSICAL REVIEW B 102, 054419 (2020)

[48] S.-Z. Lin, C. Reichhardt, C. D. Batista, and A. Saxena, Phys.
Rev. B 87, 214419 (2013).

[49] Y.-H. Liu and Y.-Q. Li, J. Phys.: Condens. Matter 25, 076005
(2013).

[50] F. Büttner, C. Moutafis, M. Schneider, B. Krüger, C. Günther,
J. Geilhufe, C. v. K. Schmising, J. Mohanty, B. Pfau, and S.
Schaffert, Nat. Phys. 11, 225 (2015).

[51] X. Gong, H. Y. Yuan, and X. R. Wang, Phys. Rev. B 101,
064421 (2020).

[52] E. Martinez, L. Lopez-Diaz, O. Alejos, and L. Torres, Phys.
Rev. B 77, 144417 (2008).

[53] A. Vasiliev, O. Volkova, E. Zvereva, and M. Markina, npj
Quantum Mater. 3, 18 (2018).

054419-7

https://doi.org/10.1103/PhysRevB.87.214419
https://doi.org/10.1088/0953-8984/25/7/076005
https://doi.org/10.1038/nphys3234
https://doi.org/10.1103/PhysRevB.101.064421
https://doi.org/10.1103/PhysRevB.77.144417
https://doi.org/10.1038/s41535-018-0090-7

