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Pyrochlore S = 1
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Robin Schäfer ,1,* Imre Hagymási,1,2,† Roderich Moessner,1,‡ and David J. Luitz 1,§

1Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden, Germany
2Strongly Correlated Systems “Lendület” Research Group, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics,

Budapest H-1525 P.O. Box 49, Hungary

(Received 16 April 2020; revised 5 June 2020; accepted 15 July 2020; published 4 August 2020)

We use a combination of three computational methods to investigate the notoriously difficult frustrated three-
dimensional pyrochlore S = 1

2 quantum antiferromagnet, at finite temperature T : canonical typicality for a finite
cluster of 2 × 2 × 2 unit cells (i.e., 32 sites), a finite-T matrix product state method on a larger cluster with 48
sites, and the numerical linked cluster expansion (NLCE) using clusters up to 25 lattice sites, including nontrivial
hexagonal and octagonal loops. We calculate thermodynamic properties (energy, specific heat capacity, entropy,
susceptibility, magnetization) and the static structure factor. We find a pronounced maximum in the specific heat
at T = 0.57J , which is stable across finite size clusters and converged in the series expansion. At T ≈ 0.25J
(the limit of convergence of our method), the residual entropy per spin is 0.47kB ln 2, which is relatively large
compared to other frustrated models at this temperature. We also observe a nonmonotonic dependence on T of
the magnetization at low magnetic fields, reflecting the dominantly nonmagnetic character of the low-energy
states. A detailed comparison of our results to measurements for the S = 1 material NaCaNi2F7 yields a rough
agreement of the functional form of the specific heat maximum, which in turn differs from the sharper maximum
of the heat capacity of the spin ice material Dy2Ti2O7.
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I. INTRODUCTION

The pyrochlore lattice, composed of corner-sharing tetra-
hedra, is a common motif in materials chemistry; in the
context of magnetic materials, it has been prominent in a range
of rare-earth [1] and spinel compounds [2,3]. Pyrochlore mag-
nets and models have played a tremendously important role in
the history of frustrated magnetism and topological condensed
matter physics. One of the foundational publications, in 1956,
was Anderson’s identification of the classical pyrochlore Ising
magnet [4] as an interesting model system. Now called spin
ice [5], this is a topological magnet exhibiting an emergent
gauge field and fractionalized excitations [6].

The classical Heisenberg model on the pyrochlore lattice,
following a pioneering study by Villain [9], turned out to be
the first classical Heisenberg spin liquid [10]. This undergoes
a very delicate order-by-disorder transition for large spins,
as the zero-point energy induced by quantum fluctuations
favours a subset of collinear states [11,12]. Beyond this
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(semi)classical limit of large spin S → ∞, little is known re-
liably about the properties of the pyrochlore quantum Heisen-
berg model.

This is because the properties of the lattice conspire to
frustrate not only magnetic order, but also attempts to apply
standard theoretical and numerical approaches. The presence
of a macroscopic number (“flat band”) of gapless excita-
tions in most bare models precludes standard perturbative
schemes and mean-field theories. This reflects the fact that
fluctuations are typically very strong, the basic ingredient via
which frustrated magnets avoid ordering. For this reason, even
the relatively “high” dimensionality d = 3, often considered
almost homologous with proximity to mean-field behavior, is
a hindrance rather than a help: the most unbiased method,
exact diagonalization, breaks down already for small linear
system sizes L, as the Hilbert space dimension grows expo-
nentially with L3. Similarly, DMRG-based methods are well
known to struggle beyond d = 1, while geometric frustration
yields a sign problem in quantum Monte Carlo. In this sense,
the pyrochlore magnet is even less tractable than the notori-
ously enigmatic kagome S = 1

2 Heisenberg magnet, for which
decades of intensive interest have not yielded a consensus on
the nature of its ground state. For the pyrochlore lattice, even
a reliable ground-state energy estimate is lacking, and the
proposed ground states depend strongly on the method used
to study it [13–24].

The pyrochlore S = 1
2 Heisenberg magnet thus has many

ingredients that make it one of the most likely candidates for
realizing new and exotic phases of matter, inter alia, quantum
spin liquid states: it harbors both promise and obstacles, albeit
in a somewhat imbalanced way.

2469-9950/2020/102(5)/054408(20) 054408-1 Published by the American Physical Society

https://orcid.org/0000-0001-9728-2371
https://orcid.org/0000-0003-0099-5696
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.054408&domain=pdf&date_stamp=2020-08-04
https://doi.org/10.1103/PhysRevB.102.054408
https://creativecommons.org/licenses/by/4.0/


ROBIN SCHÄFER et al. PHYSICAL REVIEW B 102, 054408 (2020)

FIG. 1. Heat capacity per spin in different pyrochlore magnets,
for a detailed account see Sec. IV. The red curve represents the
converged part of our results from the NLCE for the S = 1

2 Heisen-
berg model. Results for a single tetrahedron for S = 1

2 (dashed) for
S = ∞ (classical case, dots) have T scaled to match in the high-
T limit. Symbols are for experiments on NaCaNi2F7 [7], a S = 1
(approximate) Heisenberg magnet, and the Ising spin ice Dy2Ti2O7

[8], both scaled in T such that their maxima coincide with that of the
S = 1

2 model (with a factor ln 2/ ln 3 to account for the larger S = 1
entropy). Inset similarly shows entropy per spin. We use natural units
in the paper kB = 1, h̄ = 1, J = 1.

In view of all the above-mentioned difficulties, the best
source for information on these low temperature phases are
experiments. In particular, since scattering neutrons off a
frustrated magnet is a priori no more involved than off an
unfrustrated one, d = 3 permits the straightforward study of
bulk samples. On the other hand, experiments bring their own
challenges, since it is often difficult to determine the best low
energy theory and to identify materials which are close to
theoretical models.

Up to now several compounds are known whose magnetic
properties can be described by Heisenberg-like models on the
pyrochlore lattice [25–27]. While a good realization of an S =
1 Heisenberg magnet is now available [7,28,29], an isotropic
nearest-neighbor-dominated S = 1

2 material still remains on
the wish list.

As experiments necessarily involve nonzero temperatures,
theory is compelled to study this setting. Our study is therefore
devoted to the S = 1

2 pyrochlore magnet at finite tempera-
ture. We focus on the thermodynamics—susceptibility and
in particular specific heat, Fig. 1, and we also consider the
spin correlations in the form of the momentum resolved static
structure factor.

The remainder of this account is structured as follows.
In Sec. I A we provide a summary of our results. Section II
introduces the model and observables. The bulk of the tech-
nical advances are bundled into Sec. III, with material on
canonical typicality, the numerical linked cluster expansion,
exact diagonalization, as well as DMRG. This may be skipped
on first reading (as well as by the reader not interested in
the underlying methodology). Our results on thermodynamics
(specific heat, susceptibility in zero and nonzero fields) as well
as spin correlators are presented in Sec. IV. We close with a
broader discussion and an outlook in Sec. V.

A. Summary of results

1. Methods

Our quest to make progress has a considerable purely tech-
nical component. This involves efforts along two, principally
computational, axes.

First, we devise a high-order numerical linked cluster
expansion (NLCE) [30–32] for the pyrochlore lattice. This
approach has been used before, and our contribution is to
push the expansion—based on tetrahedral clusters which were
shown to be well suited for the corner-sharing tetrahedra of
the pyrochlore lattice [33–38]—to significantly higher orders.
We reach clusters of up to eight tetrahedra, involving the full
solution of clusters of up to 25 spins. Previous works consid-
ered mostly NLCE up to n = 5 tetrahedra, corresponding to
clusters of up to 16 spins. Going to such high order allows
a significantly improved exploration of the low temperature
regime, in particular permitting a more extended and con-
trolled use of Euler transforms to extrapolate the results to
low temperature.

Indeed, high expansion orders are essential to cap-
ture a range of physical processes. Concretely, up to the
sixth nearest-neighbor hop, the pyrochlore (and, indeed, the
kagome lattice) is equivalent to a Husimi cactus [a Cayley
tree of tetrahedra (triangles)], and many series expansions
are “trivial” to high orders, e.g., with degeneracy lifting only
occurring at eighth order in perturbation theory in a high-
temperature kagome [39] or a strong-coupling pyrochlore
expansion [40]. In a similar vein, the importance of resonance
processes on more extended clusters is a recurring theme in
the study of frustrated magnets. The clusters included in our
expansion host not only the simplest hexagonal loop motifs
but also loops of eight spins and longer decorated versions
thereof (the longest loop consisting of eight tetrahedra cf.
Fig. 14), which crucially encode the three-dimensional struc-
ture of the lattice.

The second technical axis involves a finite-temperature
DMRG analysis of the pyrochlore S = 1

2 magnet using fi-
nite clusters. Our results demonstrate that finite-temperature
DMRG is a powerful approach, feasible even in this challeng-
ing three-dimensional setup down to nontrivial temperatures.
Here we use a “snake” path through the lattice to map the
system to one dimension with long-range interactions. We
take advantage of the SU(2) symmetry of the model and
keep SU(2) block states up to χ = 10 000 [∼40 000U(1)
equivalent] and consider clusters up to 48 sites with periodic
boundaries.

Taken together, these approaches permit us to reach con-
verged results at temperatures down to around T = 0.25
[where the exchange constant of the Heisenberg model has
been set to unity, Eq. (1)] for the NLCE, and down to T = 0.6
for DMRG.

2. Observables

In the zero-field specific heat we resolve a pronounced
maximum at T = 0.57. Crucially, at T = 0.25, where the
specific heat has dropped well below its maximum value, the
residual entropy is still around 0.33, i.e., 47% of the value of
a free spin of ln 2. This demonstrates the persistence of the
spectral weight downshift characteristic of frustrated magnets
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to this case. We discuss implications of this observation in
detail, in particular in comparison with the kagome magnet,
as well as two simple tetrahedral models, on top of the
experimental results on two pyrochlore magnets: the S = 1
Heisenberg antiferromagnet NaCaNi2F7 [7], and the classic
Ising spin ice Dy2Ti2O7 [8]. We find that our model at T =
0.25, Fig. 1, has a higher low-T entropy than all of these.

This entropy at T = 0.25 is in particular much greater than
that proposed for singlet subspaces in resonating valence bond
type effective theories, where pairs of spins at the endpoints
of a bond form a singlet bond, with resonance processes
supplying quantum dynamics between these valence bond
configurations [13,16,17,41]. Indeed, in this regime there is
considerable admixture of triplet components in each tetra-
hedral wave function, reflecting the inability of neighboring
tetrahedra to be in singlet states simultaneously. In the magne-
tization curves this is reflected in a nonmonotonic temperature
dependence for fixed intermediate fields: upon cooling from
the maximum magnetization, the entropy of the magnetic ex-
citations loses out to the singlet-dominated low-energy sector;
while at high temperatures, the magnetization assumes a con-
ventional asymptotic 1/T behavior. The maximum disappears
at zero field, where there is no magnetization in the absence
of time-reversal symmetry breaking; and at high fields, where
a conventional monotonic paramagnetic magnetization curve
is found.

For the magnetic-field dependence of the specific heat,
we find a continuous drift of the location of its maximum
to higher temperatures; at the same time, the amplitude of
the maximum changes nonmonotonically, first decreasing and
then increasing again.

The spin correlators in turn, exhibit the by now familiar
structure of incipient bowties, commonly found in various
magnets on the pyrochlore lattice [7,13,15,24,42,43]. These
reflect the emergent gauge field and while they become ar-
bitrarily sharp in the cases of classical magnets, their finite
width indicates the presence of a nonzero net moment on
the tetrahedra, on account of the above-mentioned inability to
have tetrahedra sharing a spin to be in a singlet configuration
simultaneously.

II. MODEL AND OBSERVABLES

We focus on the isotropic spin S = 1
2 Heisenberg antiferro-

magnet

H =
∑
〈i, j〉

�Si · �S j + h
∑

i

Sz
i . (1)

The spins reside on the sites i of the three-dimensional
(3D) pyrochlore lattice, which is a face centered cubic lattice
with lattice vectors �a1 = 1

2 (1, 1, 0)T , �a2 = 1
2 (1, 0, 1)T , �a3 =

1
2 (0, 1, 1)T and a tetrahedral basis given by �b0 = (0, 0, 0)T ,
�b1 = 1

4 (1, 1, 0)T , �b2 = 1
4 (1, 0, 1)T , �b3 = 1

4 (0, 1, 1)T , such
that each lattice point can be expressed by

�Rα,n1,n2,n3 = n1�a1 + n2�a2 + n3�a3 + �bα, (2)

with integer n1, n2, n3 and α ∈ {0, 1, 2, 3}.

The sum 〈i, j〉 in Eq. (1) runs over nearest-neighbor bonds
of the pyrochlore lattice. In the absence of a magnetic field
h = 0, the model is SU(2) symmetric.

In this work we focus on thermodynamic observables: the
heat capacity at fixed volume CV , the magnetic susceptibility
χ , and the entropy S. We also consider the static spin structure
factor S( �Q). In the following definitions we use the canonical
ensemble averages 〈•〉β = 1

Z Tr(e−βH•). As usual, β = 1/T
denotes the inverse temperature, and Z = Tr(e−βH ) is the
partition function.

The heat capacity is obtained either from the temperature
derivative of the internal energy 〈H〉β or from the fluctuations
of the energy:

CV = ∂〈H〉β
∂T

= β2
(〈H2〉β − 〈H〉2

β

)
. (3)

Similarly, we obtain the magnetic susceptibility χ , defined
by the change of the magnetization in z direction with respect
to a change of the field h in z direction from the fluctuations
of the magnetization:

χ = ∂〈mz〉β
∂h

= β
(〈

m2
z

〉
β

− 〈mz〉2
β

)
,

with mz =
∑

i

Sz
i .

(4)

In the SU(2)-symmetric case, the susceptibility can be also
expressed as

χ = β

3N

∑
i j

〈�Si · �S j〉β. (5)

The thermodynamic entropy S can be calculated using the
definition of the free energy:

S = ln Z + β〈H〉β . (6)

The static structure factor can be obtained from the Fourier
transformation of the spin-spin correlations (the factor 4/3
stems from the normalization 1/[S(S + 1)] for spin S = 1

2 ):

S( �Q) = 4

3N

∑
i j

〈�Si · �S j〉β cos
[

�Q ·
(

�Ri − �Rj

)]
, (7)

where �Ri denote the real-space coordinates of sites according
to Eq. (2).

III. METHODS

This section is devoted to a detailed exposition of the
methods used to obtain the results presented in the following
section. It can safely be skipped at first reading, as well
as by the reader primarily interested in the behavior of the
observables, rather than details on how they were obtained.

A. Canonical typicality

Calculating thermodynamic expectation values is possible
via the density matrix ρβ = 1

Z e−βH , which can be calculated
from all eigenvalues and eigenvectors of the Hamiltonian H .
Due to the exponential scaling of the Hilbert space dimension
with system size, this is impractical for systems with more
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than �25 spins (we discuss how to perform full diagonaliza-
tion for such systems in Sec. III D). The concept of quantum
typicality [44,45] permits a different approach, which has its
foundation in Lévy’s lemma. It can be summarized in the
statement that for the vast majority of wave functions |ψ〉,
the state |β〉 = e−β/2H |ψ〉 is typical [46–48] for the canonical
ensemble.

In practice, this means that, starting from a random wave
function |ψ〉, one can calculate finite temperature expectation
values of observables O by

〈O〉β = Tr(e−βH O)

Z
= 〈β |O|β〉

〈β|β〉 + O(e−N ). (8)

The statistical error of this replacement is exponentially small
in system size [49] and can be estimated (and reduced)
by sampling over random (infinite temperature) initial wave
functions |ψ〉. The application of e−(β/2)H corresponds to
imaginary time evolution up to β/2 (the factor 1/2 stems
from a symmetric splitting of the exponential) and can be
carried out efficiently using Krylov space techniques [48,50–
53], which is commonly known as the finite temperature
Lanczos method [52]. The main advantage of this technique
is that it can be carried out storing only the vectors of the
Krylov space spanned by |ψ〉, while the application of the
Hamiltonian to vectors during the Lanczos algorithm is either
performed using a sparse matrix representation, or an on the
fly generation of the corresponding matrix elements, making
very large system sizes accessible which are comparable to
Lanczos ground-state calculations.

We note that the same techniques for reducing the Hamil-
tonian to its symmetry sectors discussed in Sec. III D can be
readily applied here.

B. Finite temperature calculations with matrix product states

Matrix-product-state (MPS) [54,55] based algorithms also
provide a way to address the equilibrium thermodynamics of
many-body quantum systems [56–59]. One of the most widely
used methods is the purification of the finite-temperature
density matrix [56,59,60]. The idea behind this approach is
that one can interpret the density matrix ρP as a partial trace
of a Schmidt decomposition of a pure state |�〉 in an enlarged
Hilbert space:

|�〉 =
∑

α

sα|α〉P|α〉A → ρP = TrA|�〉〈�|, (9)

where P and A denote the physical and auxiliary system,
respectively. The state |�〉 can be easily constructed by simply
creating a copy (auxiliary system) of the physical system and
generating maximally entangled bonds between each physical
site and its auxiliary site. This can be achieved by creating an
entangler Hamiltonian whose ground state corresponds to the
maximally entangled initial state. In our case this Hamiltonian
simply reads

Hentangler =
∑

i

�Si · �Sa(i), (10)

where a(i) denotes the auxiliary site belonging to site i
and the sum is performed over the physical sites. One can
easily see that the density matrix calculated from this ground

state |�β=0〉 corresponds to infinite temperature. Any finite-
temperature density matrix can be obtained by performing an
imaginary time evolution on the physical system and tracing
out the auxiliary degrees of freedom:

|�β〉 = e−βH/2|�β=0〉 → ρβ = TrA|�β〉〈�β |. (11)

As a matter of fact, any expectation 〈O〉β can be directly
evaluated from |�β〉:

〈O〉β = 〈�β |O|�β〉
〈�β |�β〉 . (12)

This provides a great advantage of this method, since thermo-
dynamic quantities can directly be obtained by simulating the
density matrix, rather than averaging over low entanglement
pure states [57,58], and therefore results are free of statistical
errors. By design, this method is most efficient in one dimen-
sion. In order to use it for a three-dimensional system, one
has to put a “snake” path through the lattice sites to map the
original problem to a one-dimensional equivalent one, which
contains long-range couplings between the lattice sites. This
is the main difficulty of this approach, since the MPSs need
to encode a large amount of entanglement, i.e., if we think
of the area law for a moment (valid only for ground states),
the bond dimension should scale exponentially in 	2 (	 is the
linear size of the 3D system) to accurately represent the many-
body state. This obviously limits the feasible system sizes
and the accessible temperatures. The presence of long-range
couplings in the one-dimensional topology poses another dif-
ficulty regarding the choice of the time evolution method [61].
The time-evolving block decimation (TEBD) [62,63] is very
effective if the couplings are short ranged, otherwise one has
to subsequently apply a series of swap gates to move distant
sites next to each other so that the time evolving operator can
be applied. This swapping procedure is extremely slow and
becomes very inefficient as the bond dimension is increased.
The Krylov method [64] is capable of handling long-range
interactions by default, but already in the early stages of the
imaginary-time evolution the Krylov vectors become strongly
entangled, making the calculation unfeasible. To reach phys-
ically relevant temperatures, we demonstrate that the time-
dependent variational principle (TDVP) [65,66] provides an
effective way. Although it introduces another source of error
by projecting the evolution vector onto the MPS manifold, this
error is usually much smaller than the truncation error. At this
point we also have to mention that it is not straightforward to
evolve |�β=0〉 directly with TDVP [61]. Since the initial state
is essentially a product state a naive evolution with TDVP
would be simply wrong due to the loss of long-range inter-
actions already in the first projection step. To overcome this
difficulty we apply the same trick that has been successfully
applied in real-time evolution [61], namely, we generate an
initial state with an artificially enlarged bond dimension. This
is achieved by finding the ground state of the Hamiltonian:

HDMRG = Hentangler + aH (h = 0), (13)

where the parameter a is being varied. We start with a = 1
and perform 20 sweeps, then we reduce it by a factor of 10
each time. During the sweeps a single-site version [67] of
the density-matrix renormalization group (DMRG) algorithm
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[55,68–70] is applied with subspace expansion and setting the
truncation error to zero. Five stages are performed altogether.
In the last stage we set a = 0 and perform three additional
sweeps. We demonstrate that this procedure removes the
above bottleneck of TDVP also for imaginary-time evolution.
In addition, to encode the large amount of entanglement, the
compression of the many-body states must be very efficient.
To this end we exploit the SU(2) symmetry of the model and
keep block states up to ∼10 000 [∼40 000 U(1) equivalent]
to minimize the truncation error as much as possible [71,72].
It is worth mentioning that higher bond dimensions can be
achieved in a ground-state search [73], where one can take
advantage of single-site DMRG as well as parallelizing the
computation in real space to reduce memory usage and com-
putation time, respectively. In our case, however, the two-site
TDVP update scheme needs to be used and the serial solution
of the TDVP equations is crucial.

C. Numerical linked cluster expansion

For studying three-dimensional frustrated quantum mag-
nets most controlled algorithms are restricted to a small
number of spins and thus have a hard time capturing the three-
dimensional structure and its correlations. Using a systematic
high temperature series expansion opens up the possibility to
obtain reliable results in the thermodynamic limit. The numer-
ical linked cluster expansion (NLCE) is able to determine any
extensive property P in the high temperature regime. NLCE
has been applied to various geometries like the square lattice,
kagome lattice, or pyrochlore lattice and has provided new
insights into these systems [30–32,34,74,75] such as the tran-
sition of different phases in quantum systems [36,38,76] or a
deeper understanding of real materials [33,35,37]. Moreover,
the generality allows the application of this algorithm to a
variety of other systems [75,77–80].

In general, the systematic expansion can be applied to
any lattice, the crucial part is the choice of building block,
which builds up the infinite lattice by translational symmetries
t . All generated configurations are extended by adding the
building block in each step of the expansion. There are two
main aspects that need to be considered for the choice of
building block. First, the number of generated clusters scales
superexponentially with the order of the expansion. Second,
the complexity of solving these clusters scales exponentially
with systems size, which limits the maximal size of practically
solvable clusters. Choosing a building block with a large
number of sites induces a relatively small number of clusters
which are still solvable; a building block with a small number
of sites induces a very large number of solvable clusters to a
degree that one may not be able to reach the largest solvable
cluster size. Common choices of the building block in the
square lattice is a single site or a complete square. Physically
motivated, most NLCE approaches in the pyrochlore lattice
use a tetrahedra expansion, based on clusters of complete
tetrahedra, such that no dangling spins or triangles occur. In
the following we discuss the cluster expansion for multisite
unit cells and compare expansions in the pyrochlore lattice
based on three different building blocks, in particular the
single site expansion, the unit cell expansion, and the tetrahe-
dra expansion. The latter turns out to yield the most reliable

results and represents the optimal expansion in that our results
include full exact diagonalization of all clusters consisting
of up to eight tetrahedra. The largest included clusters thus
consist of 25 spins 1

2 , which host crucial loops of six and eight
spins in the lattice.

1. Basic recipe

NLCE generates all possible subclusters c (subject to the
choice of building blocks) which are embedded in the infinite
lattice structure L and contribute to the thermodynamic limit
P(L)/N per site. The contribution of each cluster c is given
by its weight WP(c), describing the new (i.e., not included at
lower order) contribution of c to P, and its multiplicity L(c),
describing the number of possible embeddings of c in L.

The generality of this idea allows the definition of various
building blocks. For the pyrochlore lattice studied here we
include (a) all clusters built from single lattice sites, (b) all
clusters built from complete (tetrahedral) unit cells, and (c) all
clusters built from complete tetrahedra.

All possible configurations of clusters at order n, subject
to the choice of building blocks, are expanded further in
each step of NLCE from n → n + 1 by adding building
blocks in all possible ways. The initial cluster given by the
building block (or multiple clusters given by inequivalent
building blocks) have to respect translational symmetries t
and cover the whole infinite structure L by applying these
symmetries t . It is important to point out the crucial difference
between translational t and nontranslational symmetries s
such as rotation or reflection. Translational symmetries are
used to compare possible configurations of clusters. The
systematic NLCE expansion considers only clusters that are
independent/inequivalent by translational symmetries since
the number of embeddings in L is counted per lattice site.
Two clusters are equivalent if translational symmetries map
one cluster to the other. Hence, translational symmetries are
used to compare all generated configurations of clusters and
ensures that each cluster is only used once in the expansion.
On the other hand, nontranslational symmetries can be applied
to obtain a reduction in the number of clusters, which is
however not mandatory for the correct result.

Each step of the expansion (at expansion order n) generates
a set of connected clusters Cn. This large set can be reduced to
the set of clusters which are not related by lattice symmetries
Sn, and subsequently to topologically distinct clusters Tn of
size n (number of building blocks). The set of connected
clusters Cn includes all possible clusters which are embedded
in L that are not related by any translational symmetry t to
each other. The set of clusters not related by lattice symmetries
Sn are given by a subset of Cn; each cluster in Sn is neither
related by translational t nor nontranslational symmetry s to
each other. Applying all nontranslational symmetries s to Sn

generates all connected clusters Cn. Moreover, the set Sn can
be reduced further. Even though clusters are not related by
any symmetry, they can exhibit the same interaction topol-
ogy and hence, generate the same Hamiltonian matrix. We
describe each cluster by its interaction graph G, where its
nodes i ∈ NG correspond to the spins included in the clus-
ter and its edges (i, j) ∈ EG correspond to nearest-neighbor
interaction terms of the Hamiltonian (1). Two clusters are
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topologically equivalent if there is a graph isomorphism π :
NG1 → NG2 (bijective) mapping G1 on G2 while preserving
its structure; that means if (i1, j1) ∈ EG1 is an edge of G1, then
[π (i1), π ( j1)] ∈ EG2 needs to be an edge of G2. Hence, the set
of topologically distinct clusters Tn is a subset of Sn. Using
building blocks including more than one lattice site (like the
tetrahedron) requires us to check the topological structure on
the full connectivity graph including all sites.

The multiplicity L(c) assigned to each cluster c describes
the number of possible embeddings in the infinite structure L.
All possible clusters (subject to the choice of building blocks)
of size n are included in Cn; hence, the multiplicity of each
cluster is one. Nontranslational symmetries s reduce the set
of connected cluster to Sn and summarize multiple clusters
in Cn to one representative cluster c ∈ Sn. The multiplicity of
each cluster in Sn is given by the number of nontranslational
symmetries s that transform the cluster to another cluster that
is not related to the first one by any translation t . Again, multi-
ple clusters in Sn are summarized to one representative cluster
c ∈ Tn, its multiplicity given by the number of topologically
equivalent clusters. Hence, the multiplicity of topologically
invariant clusters is simply the sum of the multiplicities of all
topologically equivalent clusters in Sn. Summing all multi-
plicities of clusters in Sn or Tn equals the number of connected
clusters: ∑

c∈Sn

Lsym(c) =
∑
c∈Tn

Ltop(c) = |Cn|. (14)

For clarity we will drop the index top in what follows, i.e.,
L(c) = Ltop, etc. The basic recipe to expand the clusters by
one building block (n → n + 1) is equivalent for all geome-
tries and building blocks:

(i) Starting from all clusters not related by lattice sym-
metries of size n in Sn, we generate new clusters by adding
a building block to every free nearest neighbor. Again, we
only consider clusters that are distinguishable by translational
symmetries t .

(ii) Nontranslational symmetries s are used to reduce the
set of all newly generated expansions to create the set Sn+1.
Applying all nontranslational symmetries s to Sn+1 generates
the full set of connected clusters Cn+1 with respect to transla-
tional equivalence.

(iii) Clusters in Sn+1 are further reduced to obtain all
topologically distinct clusters in Tn+1.

Each cluster in Tn contributes to the expansion according
to its multiplicity L(c) and weight WP(c). The nth order of
NLCE is given by

P(L)/N |n =
n∑

m=0

∑
c∈Tm

L(c)WP(c). (15)

The weight assigned to a cluster c is defined with respect to
all smaller subclusters s ⊂ c (subject to the choice of building
blocks) which can be embedded in c; hence, it extracts contri-
butions of c to P which are not covered by smaller clusters:

Wp(c) := P(c) −
∑
s⊂c

WP(s). (16)

In practice, the thermodynamic observable P needs therefore
to be calculated for all topologically invariant clusters. The

TABLE I. Nontranslational symmetries in the pyrochlore lattice.

s1: id s7: 2 (0, ȳ, y)
s2: 3+ (x, x, x) s8: 2 (x̄, 0, x)
s3: 3− (x, x, x) s9: 2 (x, x̄, 0)
s4: m (x, y, y) s10: 1̄ (0, 0, 0)
s5: m (x, y, x) s11: 3̄+ (x, x, x; 0, 0, 0)
s6: m (x, x, z) s12: 3̄− (x, x, x; 0, 0, 0)

extensive property of P induces a zero weight for discon-
nected clusters [32] which do not have to be considered in
(16). Expanding clusters only by nearest neighbors guarantees
connected clusters in Cn, Sn, and Tn. The recursive definition
of the weight ensures the convergence towards the infinite
structure L which is the thermodynamic limit.

It is not necessary to use all (or any) nontranslational
symmetries in the NLCE. A lower number of nontranslational
symmetries increases the number of clusters |Sn| such that
each cluster has a lower multiplicity. In fact, it is possible to
consider the identity id as the only nontranslational symmetry,
then Cn = Sn. However, checking the topological structure of
these clusters generates the same set of topologically distinct
clusters Tn. The computational effort can increase drastically
with a low number of symmetries, since the number of clusters
grows exponentially.

2. Pyrochlore lattice and building blocks

The underlying Bravais lattice is given by a fcc structure
with a tetrahedral unit cell (four sites). Hence, in order to
respect the translations, all expansions we use focus on the
tetrahedral unit cell and converge to the thermodynamic limit
per unit cell and not per site, thus accounting for an extra
factor of four.

Its symmetries are described by the space group Fd 3̄m
(227); it contains 192 symmetry operations. However, only 12
symmetries are purely nontranslational and used in the NLCE,
see Table I.

s2, s3 and s7, s8, s9 describe threefolded and twofolded
rotations, respectively. Reflections are given by s4, s5, s6, and
s10 represents the inversion. s11 and s12 combine a threefold
rotation with the inversion.

As discussed earlier, the choice of building block is crucial.
In principle, various geometries (such as dimers, hexagons, or
multiple tetrahedra) can be used as building blocks as long
as they respect the translations t and cover the whole lattice.
Each expansion we use is embedded in the fcc structure of
the pyrochlore with either equivalent (unit cell expansion) or
multiple inequivalent (single site and tetrahedra expansion)
building blocks.

An efficient implementation of translational symmetries is
essential due to the exponentially increasing complexity. La-
beling lattice sites along the translational axes automatically
describes the translational symmetries t by a simple index
shift.

a. Single site expansion: As pointed out earlier, the sin-
gle site expansion generates a large number of clusters of
relatively small size. The advantage of this approach is its
complete generality. In contrast to the single site expansion in
Bravais lattices (e.g., square or triangular lattice [31,32,74]),
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the unit cell in the pyrochlore lattice consists of four sites,
which need to be treated inequivalently. Hence, the starting
point of the single site expansion are four sites arranged in
the unit cell/tetrahedron, which covers the whole lattice by
translations. Applying translation symmetries to these four
sites generates the full pyrochlore lattice. Here all symmetries
in Table I can be applied to find clusters which are related by
lattice symmetries to reduce the complexity.

b. Unit cell expansion: The unit cell expansion is related
to the single site expansion in the fcc lattice, substituting each
site in the obtained clusters by the tetrahedral unit cell. How-
ever, working within the pyrochlore lattice, the symmetries
in Table I have to be examined more carefully: We require
the symmetries to preserve the unit cell structure such that
only entire unit cells are mapped to each other. Only the
symmetries s1 to s6 in Table I, which are a subset of the
fcc-lattice symmetries, are unit cell conformal. As mentioned
before, working with a lower number of symmetries produces
the same results. Since the building block includes more than
one site, the topological structure has to be compared on the
level of the full connectivity graph including all lattice sites.
The advantage of this approach is the consideration of larger
clusters due to a much slower growth of the number of clus-
ters with the number of unit cells. However, the connection
between the unit cells are dangling bond that do not reflect the
geometrical frustration. In the presence of magnetic fields, the
Hamiltonian has bond and site terms. Therefore, we include a
single site (yielding the simplest contribution of the site terms)
as the 0th order in the expansion (m = 0) in (15), which is
embedded four times in the unit cell.

c. Tetrahedra expansion: The central motif of the py-
rochlore lattice is the tetrahedron. An examination of the
lattice shows that there are two types of tetrahedra: up point-
ing tetrahedra (these are the unit cells) and down pointing
tetrahedra, which correspond to the interaction of each spin in
the unit cell to three neighboring spins in different unit cells.
Both the single site and unit cell expansion do not respect
this structure, leading to dangling bonds in the case of most
clusters in the single site expansions and incomplete down
pointing tetrahedra in the case of the unit cell expansion.

For this reason we use an expansion including all clusters
with complete tetrahedra [33–37,76]. The systematic expan-
sion focuses on an hourglass structure composed by two
inequivalent building blocks of tetrahedra (up/down pointing)
which are placed in the underlying fcc lattice and expands
these as described before. Our comparison of results for the
heat capacity and the magnetic susceptibility demonstrates
that this intuition is correct and that this expansion is indeed
superior (cf. comparison in Appendix A).

It is important to note that the physical size (number of
spins) of each cluster is not uniquely related to the order
of the expansion, due to an overlap of up- and down-facing
tetrahedra. This means that at an expansion order (given by the
total number of tetrahedra) ntetra clusters of different sizes are
included. Similarly to the unit cell expansion, this expansion
leads to a relatively small number of large clusters. Again, we
need to consider the 0th order contribution of a single site.
We did not apply any symmetry due to the small number
of edges of each tetrahedron and the low order of expan-
sion and rely on the automatic identification of topologically

equivalent clusters by directly comparing their interaction
graphs.

In Appendix B we provide a comparison of the number
of clusters generated at each order in the three expansions
discussed here. We list the number of connected |Cn|, not re-
lated by lattice symmetries |Sn| (if present), and topologically
distinct clusters |Tn| in Tables II, III, and IV. The visualization
of these results is shown in Fig. 12, clearly showing that the
number of clusters with at most n sites is smallest in the
tetrahedra expansion, leading to a tractable number at the edge
of feasibility of full diagonalization (the maximal symmetry
block dimension of the Hamiltonian is 228592) for clusters
with 25 sites (full Hiblert space 3.355 × 107)). Additionally,
all topologically distinct clusters of the tetrahedra expansion
can be found in Appendix B.

3. Resummation algorithms

Correlations are increasingly long ranged as temperature
is lowered. Hence, contributions of larger cluster have to be
taken into account to converge to the thermodynamic limit.
Accessing these orders is limited due to the exponentially
increasing complexity regarding the number of clusters or
Hilbert space dimension.

One effective tool to obtain reliable data for lower
temperature are resummation algorithms like Euler’s trans-
formation [81] which can accelerate the convergence of
NLCE. Detailed descriptions and examples can be found in
Refs. [30,32,74,75,77–80].

Resummation algorithms rely on a systematic usage of
lower orders of the series and are most effective if many terms
are included. They are guaranteed to converge to the limiting
value of the underlying series, or not at all. In this work we
use the Euler transform of our NLCE data for the expansion
up to n = 8 tetrahedra and compare the highest order Euler
transform of the Euler transform up to expansion orders n = 7
(and also n = 6), to ensure convergence of our results.

Euler’s transformation is particularly useful for alternating
series, which are transformed according to [81]

∞∑
s=0

(−1)sus =
∞∑

s=0

(−1)s

2s+1

[
�su0

]
, (17)

where �s is the s fold application of the forward difference
operator �, defined by �un := un+1 − un. Euler’s method can
be derived by repeated application of summation by parts [82].

In the present work we find that the Euler transformation of
our NLCE series up to n = 8 tetrahedra (i.e., containing eight
terms) yields a significant improvement of convergence at low
temperatures. We always compare the Euler transformation
of the first n = 7 and n = 8 terms of the series to ensure
that the results are indeed converged, yielding reliable results
down to T ≈ 0.25 for thermodynamic properties of the S = 1

2
pyrochlore antiferromagnet as shown in detail in what follows.

D. Exact diagonalization of clusters

1. Cluster symmetries from graph automorphisms

The numerical linked cluster expansion (NLCE) expresses
thermodynamic observables as a series expansion in terms of
the exact solution of a large number of finite size clusters.
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Since the number of clusters grows factorially with the num-
ber of constituents, it is useful to use an automatic strategy
to identify cluster symmetries, which are used for block
diagonalizing the Hamiltonian. Here we provide a practical
description of the method with only minimal reference to
graph and group theory to make it accessible. A similar
pedagogical description for the exploitation of translational
symmetry can be found in Ref. [83]. In all of the following
discussion we use the computational Sz basis, in which each
basis state |σ1, σ2, . . . 〉 is an eigenstate of all local Sz

i operators
and labeled by their eigenvalues σi.

As described in the NLCE part, we identify a finite cluster
with its interaction graph G, where its nodes i ∈ NG corre-
spond to the spins and its edges (i, j) ∈ EG correspond to
nearest-neighbor interaction terms of the Hamiltonian (1).
Hence, the Hamiltonian is defined by

H =
∑

(i, j)∈EG

�Si · �S j + h
∑
i∈NG

Sz
i . (18)

The sum (i, j) ∈ EG runs over all edges (i, j) of the graph
G, the sum i ∈ NG runs over all sites. We notice that any au-
tomorphism of the graph G leaves the Hamiltonian invariant,
since an automorphism is a permutation π of nodes which
maps the graph onto itself, such that for any edge (i, j) ∈ EG,
the mapped edge has to be in G as well: [π (i), π ( j)] ∈ EG.

This means that graph automorphisms are symmetries of
the Hamiltonian and commute with it, which implies that
we can simultaneously diagonalize the automorphism and the
Hamiltonian.

The matrix representation A of a graph automorphism A
(which necessarily is a permutation πA of graph nodes) can be
obtained by noticing that any basis state is transformed as

A|σ1, σ2, . . . , σN 〉 = |σπA(1), σπA(2), . . . , σπA(N )〉. (19)

A is a permutation matrix on the set of basis states and AT A =
1, i.e., A is orthogonal with eigenvalues on the complex unit
circle. Since A is a permutation matrix, it is idempotent with a
certain order NA < |NG|: ANA = 1. Therefore, its eigenvalues
are given by the NAth roots of unity: ei2πnA/NA , with nA ∈
{0, . . . , NA − 1}.

This means we can block diagonalize H into nA blocks,
labeled by the eigenvalues ei2πnA/NA of A. We denote the order
o(π ) of an automorphism π by the minimal number n ∈ N
such that πn = 1.

2. Identification of largest commuting automorphism subgroup

Typical interaction graphs G have a large number of (inde-
pendent) graph automorphisms. However, typically not all of
them commute! Since only commuting graph automorphisms
can be used together to further reduce the block size of the
Hamiltonian, we want to find the largest Abelian (commuting)
subgroup of the complete automorphism group of G.

In order to do so, we start by generating the automorphism
group of the graph. In the next step we check for each pair
of automorphisms if they commute. This can be interpreted
by a new graph C, in which each automorphism of G corre-
sponds to a node and two nodes are connected if and only
if the corresponding automorphisms commute. What we are
looking for is a subgroup U ⊂ NC in which each node in

U is connected to all other nodes of the subgroup. Hence,
each element in U commutes with each other. This is called
a clique in graph theory. Finding the largest Abelian subgroup
of the automorphism group is therefore identical to finding
the largest clique in C. In general, the largest clique is not
uniquely determined.

After determining the largest clique U of automorphisms,
we need to identify a minimal set H of independent generators
of the Abelian subgroup. Each element of the clique U has to
be generated uniquely by elements of H. Assume H includes
m := |H| elements h ∈ H of order o(h), then there is exactly
one tuple (nh1 , . . . , nhm ) of integers for each element u of the
subgroup, which generates u from the corresponding integer
powers of the generators:

∀u ∈ U : ∃! (nh1 , . . . , nhm ) ∈ Nm with 0 � nhi < o(hi ),

such that u =
∏
h∈H

hnh . (20)

The product in EQ. (20) refers to the composition of permuta-
tions. The ordering is arbitrary since all generators commute.
Each element in U is represented uniquely by a multi-index
(nh1 , ..., nhm ) ∈ Nm where each number is smaller than the
corresponding order of the generator. This multi-index deter-
mines a phase in the symmetrized basis (cf. Sec. III. D. 3). The
bijective mapping from U to Nm, respecting the order o(hi ) of
the generators hi, induces the following relation between the
cardinality of the Abelian subgroup |U | and the orders of its
generators:

|U | =
∏
h∈H

o(h). (21)

In practice we create the minimal set of generators by starting
with the elements exhibiting the highest order in the commut-
ing subgroup U . First, one element with the highest order will
be added in H. A new element g is added to H if it does not
violate the bijective mapping described through (20). That is,
all possible compositions gn ◦ h, for n = 0, . . . , o(g) − 1 and
h ∈ H, generate uniquely a new element in the subgroup U .
The generating set H is not uniquely determined.

In Fig. 2 we show an illustration for an example interaction
graph (hourglass composed of two corner sharing tetrahedra,
corresponding to the n = 2 cluster in NLCE) along with
its 71 nontrivial automorphisms and their commutation rela-
tions. The largest clique for this example has eight nontrivial
automorphisms with two generators A and B [e.g., given
by the node permutations πA = (2, 0, 1, 3, 5, 6, 4), πB =
(2, 0, 1, 3, 6, 4, 5)], generating independent C3 rotations of
the upper and lower tetrahedron. In the present work we
rely on established algorithms for the identification of graph
iso- and automorphisms bundled in the package nauty [84]
and used the clique maximization algorithm described in
Ref. [85].

3. Symmetrized basis

Once we have obtained a set of independent generators H
and the multi-indices referring to the largest Abelian subgroup
U of the graph automorphism group, we can proceed with the
block diagonalization of the Hamiltonian. A subgroup of size
|U | induces the same number of blocks, each is uniquely iden-
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FIG. 2. Left: Example interaction graph G of an hourglass com-
posed by two corner sharing tetrahedra. Right: Resulting automor-
phism graph C, where each node represents one automorphism,
and commuting automorphisms are connected by an edge. The red
colored nodes represent the largest clique in the graph, in which
all automorphisms commute (red edges). The identity (0,1,2,3,4,5,6)
commutes with all automorphisms and has therefore been omitted
from the graph C. It is part of the largest clique. The largest clique
consists of the following eight nontrivial permutations: (2, 0, 1, 3, 5,
6, 4), (1, 2, 0, 3, 6, 4, 5), (2, 0, 1, 3, 6, 4, 5), (0, 1, 2, 3, 6, 4, 5), (1, 2,
0, 3, 4, 5, 6), (2, 0, 1, 3, 4, 5, 6), (1, 2, 0, 3, 5, 6, 4), (0, 1, 2, 3, 5, 6,
4), which are marked in red, the blue edges indicate a smaller clique
with five nontrivial permutations.

tified by m (number of minimal generators) quantum numbers
given by multi-indices described in (20). Each index refers to
the phase of the eigenvalue of the corresponding generator;
the commutation relations of the generators allows the simul-
taneous diagonalization of all generators and the Hamiltonian.
Each computational basis state |�σ 〉 = |σ1, . . . , σN 〉 has to be
replaced by a symmetrized state induced by the quantum
numbers ε = (ε1, . . . , εm) ∈ Nm which is given by

|σ1, . . . , σN ; ε〉

= 1√
N ε

�σ

∑
u∈U

m∏
i=0

ei2πnu
i εi/o(hi ) u |σ1, . . . , σN 〉, (22)

where N ε
�σ is the normalization constant of the state, nu =

(nu
1, . . . , nu

m) ∈ Nm is the multi-index referring to u ∈ U de-
fined by (20), and o(hi ) is the order of the generator hi ∈ H.
The eigenvalue of each generator hi ∈ H is obtained (using
the properties of the generators and the complex roots of
unity) from

hi|σ1, . . . , σN ; ε〉 = ei2πεi/o(hi )|σ1, . . . , σN ; ε〉. (23)

It is important to note that multiple unsymmetric basis
states |�σ 〉 typically generate the same (apart from a phase)
symmetric state. This is in fact true for any basis state which
is in the set

F�σ = {u|�σ 〉 | u ∈ U}, (24)

which we call the “family of the state |�σ 〉” generated by the
commuting subgroup U of the graph automorphism group.
Therefore, each symmetric basis state has to be added only
once to the symmetric basis. This is typically ensured by using
a parent state of the family, for example the state |�σ 〉 with the

lowest binary representation; this parent state is denoted by
p(F�σ ).

Crucially, some unsymmetric basis states |�σ 〉 do not gener-
ate any symmetric state in a given symmetry sector. This hap-
pens if the basis state is incompatible with the symmetry sector
and the sum of phase factors cancels, leading an unnormaliz-
able state. An example is the state | ↑↑↑ · · · ↑〉. For any graph
and any automorphism u, it is mapped to itself. Therefore,
its family is F↑↑···↑ = {| ↑↑↑ · · · ↑〉}. In the symmetry sector
0m := (0, . . . , 0), we obtain | ↑↑ · · · ↑; 0m〉 = | ↑↑ · · · ↑〉. In
all other sectors, however, we get | ↑↑ · · · ↑; n �= 0m〉 = 0,
i.e., this state does not appear in other sectors. As in the
general example, this mechanism leads to an imbalance of the
size of sectors, the sector 0m always being the largest.

It is crucial to ensure the correct normalization of the
symmetric basis states |�σ 〉 and |�σ ′〉 introduced in Eq. (22).
We require

〈 �σ ; n | �σ ′; n′ 〉 = δnn′δp(F�σ ),p(F�σ ′ ), (25)

i.e., states are orthogonal if they correspond to different par-
ents (and therefore families), or if they correspond to different
symmetry sectors n.

We note that in addition to the graph automorphisms, the
Heisenberg model we study has additional spin symmetries.
Here we exploit the conservation of the total z component
of the spin, because [

∑
i Sz

i , H] = 0. Since all computational
basis states we use are already eigenstates of the total z com-
ponent

∑
i Sz

i , and since
∑

i Sz
i also commutes with the graph

automorphisms, this symmetry is trivial to exploit: A simple
reordering of basis states by their z magnetization makes the
Hamiltonian block diagonal. Additionally, we exploit the spin
inversion symmetry [Q, H] = 0 with Q := ∏

i Sx
i in the sector

mz = 0. The spin inversion is also used to deduce the results
for the −Sz sector from an already solved Sz sector.

4. Hamiltonian submatrix in symmetry sectors

Before we can fully diagonalize the Hamiltonian, we need
to represent each block of H (labeled by the quantum numbers
ε) in the symmetric basis. For simplicity we only focus on
the graph automorphisms and ignore symmetries defined by
Sz and Q (which are a trivial extension). Hence, we need to
construct the matrix elements 〈 �σ ; ε |H |�σ ′; ε〉; note that by
construction the interblock matrix elements ε �= ε′ are zero.

Let us apply the Hamiltonian to a symmetrized basis state,
exploiting the fact that H commutes with u ∈ U :

H |�σ ; ε〉 = 1√
N ε

�σ

∑
u∈U

m∏
i=0

ei2πnu
i εi/o(hi ) u H |�σ 〉. (26)

The Hamiltonian is expressed as a sum of nonbranching
terms: H = ∑

b hb; note that the permutations u ∈ U commute
with each single term hb. The operators hb can be divided
into diagonal operators (which do not change the state |�σ 〉)
and off-diagonal operators, which yield a different state |�σb〉
together with the corresponding matrix element by hb|�σ 〉 =
h�σ �σb

b |�σb〉. |�σb〉 is in general not a parent state. It is however
related to its parent state by a symmetry operation | �pb〉 =
u0|�σb〉 = p(F�σb ). Note that u0 is not determined uniquely;
multiple permutations can fulfill this mapping. Also, the new
state is not necessarily a valid state in the symmetry sector ε,
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in which case it will be canceled by later terms. The parent
state is assigned to an index of the basis; the referring matrix
element can be calculated as follows:

〈 �pb; ε |hb|�σ ; ε〉

= 〈 �pb; ε | 1√
N ε

�σ

∑
u∈U

m∏
i=0

ei2πnu
i εi/o(hi ) u hb |�σ 〉

= 1√
N ε

�σN
ε
�pb

∑
u,u′∈U

m∏
i=0

ei2π (nu
i −nu′

i )εi/o(hi )〈 �pb |u′u| �σb〉h�σ �σb
b .

(27)

Terms in Eq. (27) only have a nonzero contribution if and only
if |�σb〉 is mapped by u′u to its parent state | �pb〉. The matrix
elements of the Hamiltonian in the symmetrized basis are
therefore given by the unsymmetrized matrix elements h�σ �σb

b
multiplied by symmetry sector dependent phase factors and
normalization constants. We note in passing that the sums over
phase factors can yield the normalization constant N ε

�pb
[83].

IV. RESULTS

Using the combination of the methods described in Sec. III,
we address thermodynamic properties of the pyrochlore quan-
tum Heisenberg antiferromagnet. We start by considering the
SU(2) symmetric case without an applied magnetic field and
present our results for the heat capacity (Sec. IV A), the
magnetic susceptibility (Sec. IV B), and the thermodynamic
entropy. We compare the results for different orders in the
numerical linked cluster expansion (NLCE) and their Euler
transform to show that the high temperature regime down
to T ≈ 0.25 is converged to the thermodynamic limit. We
furthermore compare the NLCE results to the solution of finite
size clusters obtained using canonical typicality and finite
temperature DMRG.

We also present results obtained from DMRG for the static
spin structure factor at finite temperature (Sec. IV C), as well
as NLCE results for the heat capacity and the magnetization
at finite applied magnetic field h (Sec. IV D).

Figure 3 shows by example of the specific heat how the
converged results were obtained. The blue curve shows the
heat capacity for a finite size cluster with N = 32 sites (8 unit
cells, inset) in comparison with the results of the numerical
linked cluster expansion for different orders n (top panel),
indicating the number of complete tetrahedra in the clusters
included in the expansion. To accelerate the convergence of
the NLCE series at lower temperatures, we apply the Euler
transformation up to order n in the series (cf. Sec. III. .C. 3).
We have furthermore calculated the specific heat capacity for
a larger cluster with N = 48 sites and periodic boundary con-
ditions using our SU(2) symmetric finite temperature DMRG
method with finite bond dimensions ranging from χ = 2000
to χ = 10 000. These results were obtained from a numerical
derivative of the (spline interpolated) energy as a function
of inverse temperature. For T > 2, the results are converged
with bond dimension and agree with the NLCE and finite
N = 32 cluster results (bottom panel). At lower temperatures,
the dependence of the results on the bond dimension becomes
significant and we extrapolate to infinite bond dimensions
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FIG. 3. Comparison and convergence of heat capacity of the
spin- 1

2 pyrochlore Heisenberg model determined via different meth-
ods. Top: Numerical linked cluster expansion (NLCE) with clusters
of n = 2, . . . , 8 complete tetrahedra, as well as their Euler transform
for NLCE orders n = 6, 7, and 8 (red curves). These results appear
to be converged down to temperatures of about T = 0.25. The blue
curve shows the result for a 32 site (8 unit cells) cluster with
periodic boundaries obtained from canonical typicality. The error
bars (shaded blue area) reflect variations in results obtained from
sampling over different random vectors. Bottom: DMRG results
obtained from the numerical (spline) derivative of the energy 〈H〉β

for different bond dimensions χ obtained by finite temperature
DMRG (purification) and the blue crosses represent their extrapola-
tion to χ → ∞ using a quadratic polynomial in 1/χ . The error bars
indicate the distance of the extrapolated from the χ = 10 000 results.
Typicality and Euler transform of NLCE results as in top panel.

using a quadratic polynomial in 1/χ yielding a very good
match with the N = 32 and NLCE results within the acces-
sible temperature range (T > 0.62). The error bars indicate
the distance of the extrapolated value from the largest bond
dimension (χ = 10 000).

A. Heat capacity in zero field

The specific heat capacity quantifies the change of the
internal energy as a function of temperature and is directly
accessible in experiment. Our results and a comparison to
experimental results are summarized in Fig. 1.

Starting at high temperatures T � 1, the heat capacity
decays as 1/T 2, as required in the leading order high temper-
ature expansion. In the regime down to T = 2, all orders of
the NLCE with n > 5 agree with each other, and also with the
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finite size N = 32 result from typicality. The Euler transform
of our NLCE results agrees between orders n = 7 and n = 8
down to T ≈ 0.25, which we take to indicate that the series is
converged over this range.

Crucially, this allows us to resolve unambiguously the
maximum of the heat capacity located at T ≈ 0.57. In the
proximity of the maximum, the results for the finite size
cluster N = 32 deviate significantly from the NLCE, which
indicates that in the regime T < 2 the correlations beyond
the size of the N = 32 cluster start playing a discernible role.
From the strong dependence of the DMRG results on the bond
dimension around the location of the maximum of the heat
capacity, as well as from the visible discrepancy of the specific
heat for finite size clusters compared to the converged NLCE
results close to the maximum, we conclude that the system
enters a nontrivial quantum regime at temperatures T ≈ 1,
where it exhibits entanglement beyond what is representable
faithfully by χ = 10 000 matrix product states.

The heat capacity of the N = 32 cluster exhibits a sec-
ond maximum at low temperatures, similarly to what was
observed previously in a different pyrochlore model [86].
However due to the divergence from converged results of
the NLCE in this regime, which is not subject to finite-size
effects of this kind, we conclude that this feature is likely not
representative for the thermodynamic limit.

Indeed, the converged part of our NLCE data shows a
rapid decrease of the heat capacity as T is lowered from the
maximum. Therefore, if there is an additional feature, it must
be well separated from the maximum we have found.

In order to gain further insight into the low-T regime, we
have calculated the thermodynamic entropy as a function of
temperature,

S(T2) − S(T1) =
∫ T2

T1

dT
CV

T
, (28)

with S(∞) = ln 2. A direct calculation of the entropy per site
in NLCE using Eq. (6) shown in Fig. 4 indeed agrees with
this temperature integral down to the lowest temperatures for
which our (Euler transformed) NLCE is converged.

Interestingly, we find that just over half the total entropy
is released down to T ≈ 0.25, where the entropy is S/N ≈
0.33 ≈ 0.47 ln 2. This in turn means that the spectral weight
below the maximum is huge, and there is plenty of scope
for further interesting behavior, the nature of which we are
unfortunately unable to determine from our approach. (In sev-
eral classical models [6], as well as some fine-tuned quantum
models [87–89], not all the entropy is released even at T = 0,
but in real systems, the third law of thermodynamics stipulates
that this is not what actually happens. For instance, for the
finite size N = 32 cluster, a steep decrease at low T � 0.1 is
associated with its low-T peak in the specific heat.)

We will return to more detailed comparisons of this behav-
ior with other models and experimental systems in the final
discussion, Sec. V.

B. Magnetic susceptibility at h = 0

We consider the magnetic susceptibility χ/N [90] per
lattice site in Fig. 5 as a function of temperature. As in the
case of the heat capacity, we perform NLCE calculations up
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FIG. 4. NLCE results for the thermodynamic entropy per lattice
site S/N as a function of temperature T . The yellow through dark
blue curves show raw NLCE data for different expansion order n
up to n = 8 tetrahedra. The brown, black, and red curves are the
corresponding Euler transform, showing converged entropies down
to T ≈ 0.25 for n = 8. These results agree with the temperature
integral (light blue curve) of CV /T of the Euler n = 8 data for the
specific heat from Fig. 3. We also show the entropy obtained from
the finite size 32 site cluster obtained from canonical typicality in the
black curve.

to clusters of eight tetrahedra and apply the Euler transform
to these results. Figure 5 shows the raw NLCE results at order
n = 8 to be converged down to temperatures of about T ≈
0.8. The Euler transform improves the convergence of the
series significantly, again down to a temperature of T ≈ 0.25.

At high temperatures T � 1, the susceptibility obtained
by the various methods agrees: typicality for N = 32 site
cluster, the N = 48 cluster result obtained in finite tempera-
ture DMRG, extrapolated to infinite bond dimension using a
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FIG. 5. Magnetic susceptibility χ/N as a function of temperature
T . We show raw data from different NLCE orders (yellow, green)
as well as their Euler transform (red). The blue curve shows the
result in the finite size cluster with N = 32 spins and the black
crosses with error bars indicate the diagrammatic Monte Carlo results
from Ref. [91]. We also show DMRG results for the N = 32 site
cluster (blue crosses) and for the N = 48 site cluster (green crosses)
extrapolated to infinite bond dimension, where the error bars indicate
the distance of the extrapolated value to the largest bond dimension
χ = 10 000.
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quadratic polynomial in inverse bond dimension. At T ≈ 0.6
the finite size magnetic susceptibility exhibits a pronounced
maximum and decays rapidly to zero at lower temperatures.
The Euler transform for the largest NLCE order clearly reveals
a decrease of the magnetic susceptibility after a maximum at
T = 0.54 in the thermodynamic limit.

We note that the magnetic susceptibility for very large sys-
tem sizes was previously calculated in diagrammatic quantum
Monte Carlo simulations in Ref. [91], corresponding to the
black crosses with error bars in Figs. 5. These results agree
with our NLCE and finite size results at temperatures above
the maximum of the susceptibility. At low temperatures,
however, they suggest a steady increase or plateau of the
susceptibility instead of the maximum that we find. It would
be desirable to push both our and the diagrammatic Monte
Carlo method to higher orders in order to see which of the
two apparently irreconcilable behaviors is the correct one.

C. Static spin structure factor at zero field

The static spin structure factor quantifies the spin correla-
tion patterns present at a given T :

S( �Q) = 4

3N

∑
i j

〈�Si · �S j〉β cos
[

�Q ·
(

�Ri − �Rj

)]
. (29)

Here we use finite temperature DMRG on the two clusters
with 32 sites and full cubic symmetry and 48 sites with
reduced symmetry, to investigate the static spin structure
factor at finite temperature. Figure 6 shows the result in the
32 site cluster (top rows) and for the 48 site cluster (bottom
rows), in the the (h, h, l ) plane (i.e., Qx = Qy, rows 1, 3) and
the (h, l, 0) plane (Qz = 0, rows 2, 4) of momentum space,
extended over several Brillouin zones for different tempera-
tures (columns). Both figures show the clear emergence of a
correlation structure already at high T . This becomes more
pronounced as T is lowered, without acquiring much addi-
tional structure: certainly, as expected for a highly frustrated
magnet, no sharp Bragg peaks appear, which would have been
indicative of magnetic ordering.

Indeed, with decreasing temperature, the weight in the
center of the Brillouin zone ( �Q = 0) decreases and moves to
the boundary of the extended Brillouin zone, the most visible
location of increasing intensity being at (0, 0,±4π ).

At this location, alongside (±2π,±2π,±2π ), one finds
the incipient pinch points, well known from other pyrochlore
magnets [7,13,15,24,42,43], as well as settings with an emer-
gent U(1) gauge field more generally.

As seen in Fig. 6 top row, incipient bowties emerge in
the spin correlation. These are a characteristic feature of the
pyrochlore lattice antiferromagnets, reflecting the tendency
to the formation of momentless tetrahedra. In contrast to
the classical magnets, where individual tetrahedra can si-
multaneously be momentless, we observe a finite width of
pinch points (within the limitations of our finite resolution),
indicating the persistence of a nonzero net moment on the
tetrahedra, reflecting the inability of the quantum system to
host simultaneous singlet configurations of tetrahedra sharing
a common spin.

Due to the low resolution in k space our finite system sizes
up to N = 48 do not permit us to investigate more closely
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FIG. 6. Static spin structure factor S( �Q) for different tempera-
tures calculated with finite-T DMRG in the N = 32, upper rows
(N = 48, lower rows) site cluster using bond dimension of χ = 8000
(χ = 10 000). Even rows show the (h, h, l ) plane in momentum
space, odd rows the (h, l, 0) plane. The DMRG ansatz for the two
different clusters has a different symmetry.

how sharp the pinch points become, since the associated
lengths at low temperatures may become longer than our
linear cluster sizes. However, a very rough idea can be gleaned
by considering the T dependence of the energy. The reason for
this is that the energy simply encodes the total spin of each
tetrahedron,

E =
∑
tet

1

2

(∑
i∈tet

�Si

)2

+ const. (30)

The pinch points become infinitely sharp in the limit of
vanishing tetrahedral magnetic moment

∑
i∈tet

�Si = 0 [42].
This condition is known to be met in classical Ising (where

it is known as the ice rule [4–6]), XY, and Heisenberg models,
but it cannot hold in the quantum realm, since a spin which
is part of two tetrahedra cannot enter singlet bonds in both
of them simultaneously. The deviation of the energy from the
minimal value is hence a proxy for the possible sharpness of
the pinch points. The total spin of a tetrahedron is plotted in
Fig. 7 from our various methods. Eyeballing an extrapolation
of this curve to T = 0, one finds

∑
i∈tet

�Si ≈ 1, which confirms
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FIG. 7. Total spin 〈∑tet
�Si〉β of a tetrahedron in the 32 (blue) site

cluster as a function of temperature T . The red curves show the Euler
transform of NLCE results and the black curve is the total spin of a
single tetrahedron (four site cluster) for comparison.

that frustration precludes that all tetrahedra are in singlet states
and hence a finite width of the pinch points; for an estimate of
the pinch-point width based on PF-FRG, see Ref. [24].

D. Heat capacity and entropy in a magnetic field

We complement the above discussion by a further analysis
of the behavior of the pyrochlore Heisenberg magnet in the
presence of a finite field. For readability of our figures, we
only show the converged part of eighth order NLCE results us-
ing the tetrahedra expansion. As before, we use the agreement
of eighth and seventh order Euler transform as convergence
criterion.

Figure 8 shows the heat capacity and entropy per site as a
function of temperature for a range of different fields h applied
in the [001] direction. We observe a shift of the maximum of
the specific heat to higher temperatures at strong fields, as well
as a nonmonotonic change of the height of the maximum.

An overall upward shift of the weight is not particularly
surprising given the presence of an additional term in the
Hamiltonian. Indeed, at high fields, the curve resembles an
unspectacular paramagnet.

However, the structure of the low-energy spectral weight
and its rearrangement at intermediate fields is complex. The
weight at lowest energies is in large part due to nonmagnetic
states which are not favored by the magnetic field. At the same
time, the more numerous states with nonzero magnetization
spread out as the field is applied. The failure of the Euler trans-
form to converge to similarly low temperatures at intermediate
fields is presumably due to a more complex behavior of the
specific heat in this intermediate field regime.

E. Magnetization at h > 0

We finally consider the effect of a magnetic field on
the magnetization per site mz/N . At zero field there is no
net magnetization in the absence of spontaneous symmetry
breaking. Figure 9 shows converged NLCE results (with
the highest order Euler transform) for the finite temperature
magnetization (solid lines) in comparison with the result for a
single tetrahedron (dashed lines). At high temperatures, these
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FIG. 8. Magnetothermodynamics of the S = 1
2 pyrochlore

Heisenberg magnet. Top: heat capacity CV /N per lattice site at
varying fields as a function of temperature. We show data obtained
from the Euler transform of the n = 8 tetrahedra from NLCE. The
shown temperature range corresponds to the part of the curve where
the n = 7 Euler transform agrees with the n = 8 result to ensure
convergence. Red crosses indicate the position of the maximum of
the specific heat and the inset shows the temperature of the maximum
as a function of the applied field h. Bottom: Entropy per site S/N
at varying fields as a function of temperature. We show only the
converged part of the n = 8 Euler transform of our NLCE results.
Legends for magnetic field h apply for both panels.
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FIG. 9. Magnetization mz/N as a function of T . We show results
obtained from the n = 8 Euler transform of the NLCE including data
from clusters of up to n = 8 tetrahedra, in the range where they agree
with the n = 7 Euler transform. At low fields h = 0.4, h = 0.8, we
observe a local maximum of the finite temperature magnetization
(inset). The dashed lines correspond to the magnetization per site
for a single tetrahedron.
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FIG. 10. Convergence comparison of different NLCE expan-
sions. Left: Expansion using clusters with complete tetrahedra up
to eighth order. Center: Expansion using complete unit cells up to
sixth order (100 clusters with n = 6 unit cells: included 48 clusters
completely with ED and 8 clusters in combination with canonical
typicality). Right: Expansion using single sites, up to 14th order. For
all expansions the highest order Euler series acceleration is shown.
The expansion based on complete tetrahedra consistently yields
superior convergence and is used in this work. Dashed lines show
the height and position of the Schottky anomaly as extracted from
the left panel for comparison. The red dashed lines correspond to the
eighth order Euler transform of the tetrahedra expansion, showing
that all expansions agree with this result in the converged regime.

results agree and yield a Curie law. At intermediate tempera-
tures, a difference due to the finite size of the tetrahedron is
noticeable, with the selection of different total magnetization
ground states in the low-T limit, with mz/N being 0, 0.25, and
0.5, respectively, depending on the field [92].

Interestingly, a nonmonotonic dependence of the magne-
tization on T can be observed at low fields, Fig. 9, both in
the NLCE results (emphasized in the inset) as well as—more
visibly—in the single tetrahedron case: the magnetization
vanishes at both low T , because the weak-field low-energy
states are dominantly nonmagnetic; and at high T , for the
usual entropic reasons. At intermediate T , by contrast, the
large weight of magnetic states oriented by the fields domi-
nates, hence the maximum.

V. DISCUSSION AND EXPERIMENT

Having laid out the results, we now place them in the
broader context of other highly frustrated model systems on
one hand, and experiments on magnetic materials on the
other. Here we focus on the specific heat, not only because
it is a quantity which is readily available across the board;
but also because it allows for a relatively straightforward
comparison between different platforms thanks to the integral
1
N

∫ ∞
0 dT ′ CV (T ′)/T ′ = ln(2S + 1), which is the total entropy

of a spin S system. This relation allows for a direct comparison
of different S specific heat curves, by an appropriate rescaling
to remove the different factors ln(2S + 1).

We have collated the data for a number of models and
materials in Fig. 1. There we compare (i) our converged results
with what is found for single tetrahedra with (ii) S = 1

2 or
(iii) in the classical limit S = ∞; as well as experiments on
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FIG. 11. Convergence comparison of different NLCE expansions
for the susceptibility. Left: Expansion using clusters with complete
tetrahedra up to eighth order. Center: Expansion using complete unit
cells up to sixth order (100 clusters with n = 6 unit cells: included 48
clusters completely with ED). Right: Expansion using single sites,
up to 14th order. For all expansions the highest order Euler series
acceleration is shown. The expansion based on complete tetrahedra
consistently yields superior convergence and is used in the remainder
of this work. Dashed lines show the height and position of the
Schottky anomaly as extracted from the left panel for comparison.

(iv) the Ising spin ice pyrochlore magnet Dy2Ti2O7 and (v)
the S = 1 Heisenberg antiferromagnet NaCaNi2F7, rescaled
by ln 2/ ln 3 to take into account the greater maximal entropy
per site for S = 1 compared to S = 1

2 . The T axes of the
experimental data, (iv) and (v), have been scaled so that the
temperature of their respective maxima coincide with the one
of our data; while the single tetrahedron results (ii) and (iii)
were scaled to agree in the asymptotic limit of high T .

All of these have in common a considerable spectral weight
downshift—at T = 0.25, all of them exhibit a significant
residual entropy, see inset of Fig. 1. There are, however,
considerable differences of detail [leaving aside case (iii)
on account of the unbounded classical entropy]. The single
S = 1

2 tetrahedron, (ii), releases its entropy more swiftly at
low T than our NLCE results on account of its singlet gap
coupled with a small residual entropy S(0) = 1

4 ln 2. The spin
ice experiment (iv), with a slightly higher residual entropy
of around Sp = 1

2 ln 3
2 , in fact releases its entropy even more

swiftly, with the peak in the specific heat peak being the most
narrow on the low-T side.

The NaCaNi2F7 experiment (v) shows an initial high-T
release of the entropy remarkably close to that of our S = 1

2
results. However, already above the peak in CV , the release
in NaCaNi2F7 is comparatively considerably greater, meaning
that the spectral weight downshift in our results is stronger.

Indeed, the breadth of the peak in CV we find for the
S = 1

2 Heisenberg model is broader not only than all the cases
(ii)–(v), but also than the other paradigmatic highly frustrated
S = 1

2 Heisenberg model, that on the kagome lattice. By
comparison with the high order series expansion results in
Ref. [93], we find that in the isotropic S = 1

2 Heisenberg
antiferromagnet on the kagome lattice, the residual entropy of
0.475 ln 2 is reached already at a higher temperature of T ≈
0.30, whereas in the pyrochlore lattice our results suggest that
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TABLE II. Number of connected |Cn|, symmetrically distinct
|Sn|, and topologically distinct clusters |Tn| per unit cell listed with
the order of expansion n (equals system size) for the single site
expansions.

n |Cn| |Sn| |Tn|
1 4 2 1
2 12 2 1
3 44 8 2
4 182 19 3
5 816 84 5
6 3856 338 10
7 18916 1650 19
8 95436 8026 41
9 492124 41370 88
10 2582256 215564 207
11 13743828 1147137 483
12 74022676 6170524 1216
13 402692008 33567270 3049
14 2209562820 184140685 8002

this entropy is retained at a lower temperature of T ≈ 0.254,
corresponding to the larger spectral downshift in pyrochlore.

It should be emphasized that this is not at all
what would obviously have been expected. Generally,
low dimensionality is considered to favor spectral
weight downshift, as encoded, e.g., by the Mermin-
Wagner theorem. Also, in the Ising setting, triangular
motifs are considerably more frustrated—Skagome =

1
24π2

∫ 2π

0 dxdy ln {21 − 4[cos x + cos y + cos(x + y)]} ≈
0.50183 [94] for the kagome Ising magnet, much larger than
in the pyrochlore case SPauling ≈ 1

2 ln 3
2 ≈ 0.2027 [4,95].

This implies that there is huge scope for unusual behav-
ior of this model at low T . Alas, our results provide little
indication of the detailed nature of the low-energy space
of states. Indeed, many proposals for the behavior of this
magnet have been made, and it is hard to choose between
them based on presently available information, as there is
not even compelling evidence in favor of a particular phys-
ical picture. The concurrent lack of a pristine experimental
realization goes a long way towards explaining the divergence

TABLE III. Number of connected |Cn|, symmetrically distinct
|Sn|, and topologically distinct clusters |Tn| per unit cell listed with
the order of expansion n and system sizes N for the unit cell
expansions.

n N |Cn| |Sn| |Tn|
0 1 4 2 1
1 4 1 1 1
2 8 6 2 1
3 12 50 12 3
4 16 475 90 8
5 20 4881 844 25
6 24 52835 8912 100
7 28 593382 99252 466
8 32 6849415 1142759 2473

TABLE IV. Number of connected |Cn|, symmetrically distinct
|Sn|, and topologically distinct clusters |Tn| per unit cell listed with
the order of expansion n and system sizes N for the tetrahedra
expansions.

n N |Cn| |Tn|
0 1 4 1
1 4 2 1
2 7 4 1
3 10 12 1
4 13 44 2
5 16 182 3
6 18, 19 796 6
7 21, 22 3612 10
8 24, 25 16786 24
9 26, 27, 28 79426 49

of theoretical predictions [15–17,24,89,96] so that different
methods arguably come up with the conclusion most suited to
them.

We are therefore left with the twin higher-level insights,
namely that the pyrochlore S = 1

2 Heisenberg magnet is at
least as frustrated, and arguably interesting, as the one on
the kagome lattice; and that it is at least as intractable. We
hope that future work will be able to build on the advances
reported in this work. And, of course, that the low-T regime
will become accessible experimentally in a suitable magnetic
material.

Note added: As we were concluding this work, a preprint
[97] appeared which also studied the thermodynamic prop-
erties of the pyrochlore S = 1

2 Heisenberg model using a
combination of methods including canonical typicality, high
temperature series expansion, and the entropy method. It
placed particular emphasis on extrapolation schemes in order
to access the low-T regime.
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FIG. 13. All six topologically distinct clusters with six tetrahedra.
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APPENDIX A: COMPARISON OF NLCE EXPANSIONS

The NLCE expansion is general in that it permits in
principle a wealth of different cluster expansions based on
constraints on the included class of clusters. Since the number
of clusters grows factorially with the number of constituents, it
is often wise to constrain the class sufficiently in order to get
a manageable number of clusters at the largest cluster sizes
which are still solvable in full diagonalization.

These constraints should respect the underlying physi-
cal properties of the system as much as possible to get a
rapidly converging series expansion. We show a comparison
of three different NLCE expansions for the pyrochlore lattice
in Figs. 10 and 11: the single site expansion, the unit cell
expansion (i.e., clusters on the fcc lattice, decorated by the
tetrahedral unit cell), and the tetrahedral expansion used in
the main text.
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FIG. 14. All 24 topologically distinct clusters with eight tetrahedra.

All expansions converge to the same curve at high temper-
atures, however the highest order single site expansion does
not reach temperatures low enough to resolve the maximum
of the specific heat, even after the Euler transform is applied.
The unit cell expansion includes in principle much larger
clusters (up to 6 unit cells correspond to 24 site clusters),
however it is barely possible to obtained converged results
for lower temperatures than in the single site expansion,
while the tetrahedral expansion yields convergence to much
lower temperatures and a clear resolution of the specific heat
capacity maximum.

There are several reasons for this superior behavior: First,
the central motif of the pyrochlore lattice is the tetrahedron. It
is crucial to avoid dangling bonds and incomplete tetrahedra,
which are present in both the unit cell and single site expan-

sion. Second, due to the construction of unit cell clusters, the
clusters used here do not include similarly large loops as in the
tetrahedral expansion, which are crucial at low temperatures.
Third, and this is purely technical, due to unfavorable symme-
try properties of the n = 6 unit cell clusters, we were unable to
solve all 100 topologically distinct clusters with full diagonal-
ization, since the largest remaining symmetry blocks were too
large. Finally, the Euler transform for the unit cell expansion
can only rely on five complete expansion orders, which is
far less than in the case of the single site and tetrahedral
expansion.

Therefore, we conclude that the tetrahedral expan-
sion is far superior to any other approach in the py-
rochlore lattice and allows us to access the lowest
temperatures.
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FIG. 15. 48 site cluster used in our finite temperature DMRG
simulations. We use periodic boundary conditions (periodic bonds
not shown for clarity).

APPENDIX B: NLCE CLUSTERS

As mentioned in the previous Appendix, a successful
NLCE scheme needs to limit the growth of the number of
clusters to an extent that the number of largest tractable
clusters (using full diagonalization) is not too large.

In Tables II through IV we list the number of clusters
appearing at each order n in the single site, unit cell, and
tetrahedral expansion. The order n refers to the number of
sites, unit cells, or tetrahedra, respectively. The numbers listed
correspond to the total number of clusters |Cn|, the number

of clusters which are not identical under application of non-
translational symmetries |Sn|, and the number of topologically
distinct clusters |Tn|, which is computationally relevant since
this is the number of clusters for which the Hamiltonian has
to be diagonalized. The growth of the number of clusters with
order n is depicted in Fig. 12.

It should be noted that it is computationally challenging to
check the topological equivalence of two clusters, since their
interaction graphs need to be checked for an isomorphism,
which is an NP hard problem. Therefore, e.g., the reduction
of 184140685 symmetrically distinct clusters at n = 14 in
the unit cell clusters to 8002 topologically distinct clusters
is already difficult and limits severely the access to higher
orders.

For the tetrahedral expansion there is only one topologi-
cally distinct cluster for the orders 1 to 3 and two clusters with
four tetrahedra. At the highest order we could reach, there are
24 clusters composed of eight tetrahedra, which have either
24 or 25 spins, just at the limit of what can be solved with full
exact diagonalization using all symmetries of the clusters. We
show all topologically distinct clusters included in the NLCE
up to eight tetrahedra in Figs. 13 and 14.

APPENDIX C: FINITE SIZE CLUSTERS

In the present study we consider two finite size clusters, the
first being standard 32 site cluster consisting of two unit cells
in direction �a1, �a2, �a3 studied, e.g., in Refs. [86,97], which we
depicted in the inset of Fig. 3. The second cluster we study is
the 48 site cluster shown in Fig. 15 .
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