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We report the magnetic structure and spin excitations of Mn3Ge, a breathing kagome antiferromagnet with
transport anomalies attributed to Weyl nodes. Using polarized neutron diffraction, we show the magnetic order
is a k = 0 coplanar state belonging to a �9 irreducible representation, which can be described as a perfect 120◦

antichiral structure with a moment of 2.2(1) μB/Mn, superimposed with weak collinear ferromagnetism. Inelas-
tic neutron scattering shows three collective Q = 0 excitations at �1 = 2.9(6) meV, �2 = 14.6(3) meV, and
�3 = 17.5(3) meV. A field theory of Q ≈ 0 spin waves in triangular antiferromagnets with a 120◦ spin structure
was used to classify these modes. The in-plane mode (α) is gapless, �1 is the gap to a doublet of out-of-plane spin
excitations (βx, βy), and �2, �3 result from hybridization of optical phonons with magnetic excitations. While
a phenomenological spin Hamiltonian including exchange interactions, Dzyaloshinskii-Moriya interactions,
and single-ion crystal field terms can describe aspects of the Mn-based magnetism, spin-wave damping
[� = 25(8) meV] and the extended range of magnetic interactions indicate itinerant magnetism consistent with
the transport anomalies.

DOI: 10.1103/PhysRevB.102.054403

I. INTRODUCTION

Noncollinear itinerant magnetism can give rise to anoma-
lous electronic transport through its impacts on the Berry
phase of itinerant electrons [1–5]. The resulting coupling of
electronic transport with magnetism presents important tech-
nological opportunities [6–11] and new fundamental physics
may arise from the impacts of Weyl points on magnetic inter-
actions, phase transitions, and excitations. This field of topo-
logical magnetism is driven by the discovery of new materials
with frustrated magnetic interactions that induce noncollinear
magnetism, strong spin-orbit coupling, and a semimetallic
band structure with topologically protected Dirac or Weyl
nodes near the chemical potential.

Fitting the bill, the hexagonal compounds Mn3X (X =
Sn/Ge) (space group P63/mmc, No. 194) are semimetallic
antiferromagnets where Mn atoms form close-packed breath-
ing kagome lattices with Sn/Ge atoms at the center of Mn
hexagons. Despite an apparent spontaneous magnetization
of only ≈0.007 μB/Mn, these antiferromagnets have large
anomalous Hall (AHE) and Nernst effects (ANE) at room
temperature with magnitudes comparable to strong ferromag-
nets [3–5,12].

Density-functional theory indicates these transport anoma-
lies arise from Weyl nodes near the chemical potential
[13–15]. Consistent with this, a chiral anomaly was dis-
covered in magnetotransport measurements [4,5]. While

their Weyl points are not pinned to the chemical poten-
tial, Mn3X display many of the characteristics of a time-
reversal symmetry-breaking Weyl semimetal [16]. Because
their anomalous transport properties are not accompanied
by a large ferromagnetic moment, they are formed from
earth abundant elements, and they function at room temper-
ature, Mn3Ge and Mn3Sn have serious application potentials
[17–22].

Previous diffraction studies notwithstanding [23–25], vari-
ous magnetic structures are discussed in the recent literature.
These are all based on an antichiral 120◦ structure but any in-
plane easy axis cannot be determined through diffraction from
a multidomain structure [26]. To overcome this problem, a
recent polarized neutron diffraction study was performed on a
field-cooled sample of Mn3Ge and an in-plane easy axis along
the [120] direction was found [27]. Here we specifically exam-
ine the in-plane magnetic spin order in the presence of a large
magnetic field within the basal plane. Angle-resolved pho-
toemission spectroscopy shows strong quasiparticle damping
in Mn3Sn indicative of electron-magnon interactions [16]
but information about the nature of magnetic excitations is
limited. Clearly, there is a need for precise knowledge of the
magnetic structure, interactions, and excitations in Mn3X to
understand and exploit the anomalous transport [14,28,29].

In this manuscript, we determine the magnetic structure of
Mn3Ge through comprehensive polarized neutron diffraction
experiments in zero and applied fields and we probe the
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low-energy spin dynamics using time-of-flight neutron spec-
troscopy. As we searched for a minimal spin Hamiltonian to
describe the collective magnetism in Mn3Ge, we found it nec-
essary to include exchange interactions well beyond nearest
neighbors. The complexity of a lattice model with extended-
range interactions and the lack of collective magnons beyond
the � point make a direct microscopic approach impractical.
We thus took a different route to build a theoretical model
by focusing on long-wavelength magnons that we describe
through a field theory of spin waves in a continuous medium.
This allows us to classify three modes at the � point and
quantitatively establish an effective low-energy spin Hamil-
tonian for Mn3Ge. The analysis provides a template for un-
derstanding the long wavelength spin dynamics of triangular
antiferromagnets.

The outline of the main manuscript is as follows: The ex-
perimental results are summarized in Sec. III including high-
temperature specific heat measurements, polarized neutron
diffraction experiments to determine the magnetic structure
of Mn3Ge, and time-of-flight neutron-scattering experiments
probing magnetic excitations and phonons. In Sec. IV, we de-
scribe a field theory of triangular antiferromagnetism, which
is applied to Mn3Ge and used to constrain an effective spin
Hamiltonian in Sec. V B, before concluding in Sec. VI.

II. EXPERIMENTAL METHODS

Single crystals of Mn3Ge were obtained following a pre-
viously published protocol [4]. Polycrystalline samples were
prepared by arc melting the mixtures of manganese and ger-
manium in a purified argon atmosphere. Excess manganese
(2.5%) over the stoichiometric amount was added. The ob-
tained polycrystalline materials were used for the crystal
growth performed by the Bridgman-Stockbarger method. For
this growth, the sample was heated up to 1050◦C and main-
tained at this temperature for 48 h. Then, the sample was
cooled to 740◦C at a rate of 5◦C/h. The sample was annealed
for 7 days at 740◦C and quenched in room temperature
water to avoid precipitation of the low-temperature phase,
which has the tetragonal Al3Ti-type structure. The structure
of Mn3Ge was determined via single-crystal x-ray diffraction
collected on a SuperNova diffractometer from Rigaku Oxford
Diffraction and the data were refined using SHELXTL [30] at
room temperature.

Specific heat data were acquired on a 6.90(1)-mg single-
crystalline sample using the adiabatic method on a physical
properties measurement system. The sample was fixed to
the stage with Apiezon type H grease. The specific heat
of the grease was separately measured and subtracted as a
background to isolate the contribution from the sample.

Polarized neutron diffraction experiments in zero and
applied magnetic field were performed on the Triple-Axis
Spectrometer (BT-7) at the NIST Center for Neutron Re-
search (NCNR) [31]. Neutrons with energy of 14.7 meV were
selected for both incident and scattered beams. The single
crystals were cooled to 10 K using a closed-cycle-refrigerator
(CCR). Nuclear-spin-polarized 3He gas was used to polarize
the incident neutron beam and analyze the polarization of
the scattered beam [32]. Horizontal and vertical guide fields
(HF and VF) were present throughout the beam path to allow

measurements of neutron-scattering cross sections in two
different polarization configurations. The spin-flip (SF) and
non-spin-flip (NSF) scattering cross sections were measured
for incident neutron spins that are polarized parallel to the
momentum transfer Q (HF) or perpendicular to the scatter-
ing plane (VF). The flipping ratio measured through nuclear
Bragg diffraction from a pyrolytic graphite single crystal was
∼30–40 at the beginning of low field experiments and above
15 throughout the experiment.

Polarized neutron diffraction in a 2-T field perpendicular
to the scattering plane was performed using an asymmetric
split coil superconducting magnet resulting in a flipping ratio
of ∼6–8 for the pyrolytic graphite sample. The polarization
decay of the 3He cells was characterized as a function of
time and this information was used to make time-dependent
polarization corrections to the diffraction data [33].

In both zero and high-field diffraction experiments, two
single crystals of Mn3Ge were aligned on the same aluminum
mount for simultaneous access to the (h0�) and the (hh�) re-
ciprocal lattice planes. The (001) directions of the two crystals
were intentionally offset from each other to distinguish their
diffraction peaks. The Cooper-Nathans formalism was used
to calculate the resolution function of BT-7 [34] and convert
the integrated intensities of rocking scans to fully integrated
Bragg intensities.

Inelastic neutron scattering was measured using the fine
resolution Fermi Chopper Spectrometer (SEQUOIA) at Oak
Ridge National Laboratory (ORNL) [35]. Three single crys-
tals with a total mass of ∼5 g were coaligned on an aluminum
mount and installed in a CCR with a base temperature of
5 K. Inelastic neutron-scattering spectra were acquired for a
total sample rotation range of 194◦ in 2◦ increments for Ei =
22 meV and Ei = 40 meV, and a total sample rotation range
of 214◦ with 1◦ steps for Ei = 300 meV. Spectra with a total
proton charge of 73.5 C, 147 C, and 322.5 C were collected for
Ei = 22 meV, Ei = 40 meV, and Ei = 300 meV, respectively.
We used the coarse Fermi chopper throughout rotating at ν =
240 Hz, ν = 420 Hz, and ν = 600 Hz, respectively. The

inelastic neutron-scattering data were reduced using Mantid
[36] and visualized using Horace [37]. The four-dimensional
(4D) resolution function was simulated via Monte Carlo ray
tracing using McViNE [38,39].

III. RESULTS AND ANALYSIS

A. Crystal structure of Mn3Ge

The P63/mmc crystal structure of our Mn3Ge single crys-
tals was ascertained by single-crystal x-ray diffraction. The
hexagonal structure is represented in Fig. 1(a) where Mn ions
are dark orange and Ge ions are blue. The Mn ions form
kagome layers that are stacked along the c axis in an AB fash-
ion with a layer spacing of c/2. The room temperature lattice
parameters are a = b = 5.3315(5) Å and c = 4.3055(3) Å
and the ideal structure contains six symmetrically equivalent
Mn ions. Mn is one of the few atoms with a negative neutron-
scattering length so the contrast |( fGe − fMn)/( fGe + fMn)|
between Ge and Mn is much larger for neutrons (2.67) than
for nonresonant x-ray photons (0.12). We thus determined
the stoichiometry of our Mn3+xGe1−x crystal based on neu-
tron diffraction, which refined to Mn3.07Ge0.93. This becomes
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FIG. 1. (a) The refined antichiral magnetic structure of Mn3Ge
where the dark orange (blue) dots represent Mn (Ge) atoms. (b) The
specific heat and the associated entropy released between 300 K
and 400 K in Mn3Ge. (c) Rocking scans through the Q = (002)
Bragg peak for four different polarized neutron scattering cross
sections measured in an applied field of 2 T. (d) A neutron order
parameter measurement collected on the Q = (001) Bragg peak of
Mn3Ge sensitive to magnetic diffraction through a multiple scatter-
ing process that involves the magnetic (302) reflection. Calculated
and observed polarized beam Bragg diffraction cross sections for
Mn3Ge are shown in (e) for zero field and in (f) for a 2-T field. For
a closer inspection of these data see Table II. In (c), HF means the
neutron polarization vector is parallel to the momentum transfer Q,
VF means the polarization vector is perpendicular to the scattering
plane and +/− refers to the spin states of the incident or scattered
neutrons.

important in the magnetic structure refinement as magnetic
and nuclear scattering both contribute to non-spin-flip vertical
field diffraction [see Eqs. (A4) and (A5) in Appendix A].

B. Magnetic structure of Mn3Ge

The temperature dependence of the specific heat [Fig. 1(b)]
indicates a second-order phase transition at TN = 365 K with
a change in entropy of �Sm = 2.1 J/mol/K per formula unit
that only amounts to 4.7(1)% of the total entropy of three
spin-5/2 manganese atoms (3R ln 6). The sharp nature of the
anomaly and the fact that resolution limited magnetic Bragg
peaks appear at the same critical temperature shows that the
specific heat peak is associated with the majority phase. For
comparison, the critical temperature of the tetragonal minority
phase is 800 K [40]. The reduced �Sm is consistent with
the reduced ordered moment of Mn3Ge (see below) as both
can result from a partial gapping of the Fermi surface in
an itinerant description of the magnetism. Alternatively, the
reduction in �Sm could result from persistent short-range
spin correlations above TN that can arise from competing
interactions.

Consistent with previous findings [23,24], the onset of
spin-flip (SF) diffraction at structural Bragg peaks for T < TN

indicates k = 0 antiferromagnetic (AFM) ordering. We obtain
the order parameter critical exponent β = 0.21(1) from the
temperature dependence of the Bragg scattering intensity in
the critical regime [Fig. 1(d)]. Similar values have been mea-
sured in other noncollinear antiferromagnets with triangular
lattices such as CsMnBr3 [β = 0.21(2)] [41], VCl2 [β =
0.20(2)] [42], K2CuF4 (β = 0.22) [43], and Mn(HCOO)2 ·
2H2O [β = 0.23(1)] [44]. The critical exponent is close to the
U (1) × Z2 universality class with β = 0.25–0.28 [45] which
is, however a 2D model while Mn3Ge is clearly a 3D system.
Monte Carlo simulation of a 3D stacked triangular antifer-
romagnet with 3D Heisenberg interactions found a critical
exponent β = 0.221(9), which is within error bars of our
experimental value [46].

The second-order nature of the phase transition ensures
the magnetic structure forms an irreducible representation
(IR) of the space group. Of the 10 IRs listed in Table IV,
only �9 is consistent with an in-plane ferromagnetic mo-
ment [4,5] and our observation of magnetic diffraction at
Q = (002) [Fig. 1(c)]. The �9 magnetic structures can be
described as a superposition of a perfect antichiral triangular
structure that has no net magnetization with a ferromag-
net polarized within the basal plane. This decomposition is
depicted in Fig. 2. �9 accommodates separate continuous
rotations of the antichiral and the ferromagnetic structures
within the basal plane. The structure can thus be parametrized
by (Mχ , M f ; θχ , θ f ). Mχ > 0 and M f > 0 are the moment
sizes of the antichiral component and the net ferromagnetic
moment per Mn atom respectively. As defined in Fig. 2(a),
θχ describes the counterclockwise in-plane rotation of every
antichiral spin component relative to the perfect antichiral
version of the structure shown in Fig. 1(a) while θ f describes
the counterclockwise in-plane rotation of the ferromagnetic
(FM) component. Assuming equal volume fractions of the
rotational domains generated by the original sixfold symmetry
and twofold symmetry about [001] and 〈110〉, respectively, of
the ordered state, the Bragg diffraction cross section depends
only on Mχ , M f , and θχ + θ f . Thus, magnetic structures in the
U (1) manifold (Mχ , M f ; θχ + θ, θ f − θ ) are indistinguish-
able through diffraction from a multidomain state. The actual
zero-field domain distribution of our Mn3Ge sample could not
be refined based on the available data. However, the magnetic
domains are energetically equivalent and a multidomain is
favored by dipole-dipole interactions. A significant deviation
from an equiprobable distribution of the magnetic domains is
thus unlikely.

To determine θχ and θ f [26], we performed polarized neu-
tron diffraction experiments with a 2-T magnetic field applied
along the [010] and the [11̄0] directions respectively to shift
the domain population. The magnetic field was perpendicular
to the (h0�) and (hh�) scattering planes, respectively. Four
polarized cross sections were measured for each Bragg peak
corresponding to the incident and scattered neutrons polarized
either parallel (+) or antiparallel (−) to the applied magnetic
field. Excluding Bragg peaks with contributions from multiple
scattering [such as (001) and (101)], we then combined
in-field polarized diffraction data with the VF and HF
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FIG. 2. The magnetic structure of Mn3Ge, which is associated
with the �9 irreducible representation and can be decomposed into
(a) an antichiral component and (b) a ferromagnetic component.
The in-plane orientation of each component of the spin structure is
defined by a global rotation angle for all spin, which we define as θχ

and θ f for the antichiral and ferromagnetic components respectively,
and as indicated on the figure. The dark orange (blue) dots represent
the Mn (Ge) ions. Calculated and observed polarized beam Bragg
diffraction cross sections for Mn3Ge are shown in (c) for zero field
and in (d) for a 2-T field. For a closer inspection of these data see
Table II. HF means the neutron polarization vector is parallel to the
momentum transfer Q, while VF means the polarization vector is
perpendicular to the scattering plane, while +/− refers to the spin
states of the incident or scattered neutrons.

cross sections of the multidomain state to determine
(Mχ , M f ; θχ , θ f ).

The comparisons between the observed and the best fit
structure factors in 0 T and 2 T are shown in Fig. 2(c) and

Fig. 2(d), respectively, and in Appendix A. We note that for
a few Bragg peaks in the (hhl ) plane there are relatively
large discrepancies between measurements and calculations,
which we associate with multiple scattering as described in
Appendix A. From the multidomain data we obtain Mχ =
2.2(1) μB per Mn and M f = 0.2(1) μB per Mn3Ge for the
ferromagnetic component. Mχ is consistent with previous
neutron diffraction results while M f is almost two orders of
magnitude greater than the value obtained from magnetization
measurements [4,5]. Figure 3 shows the χ2 goodness of fit
versus the angular parameters for two field orientations. A
macroscopic sample will in general contain symmetry restor-
ing domains that map onto each other through the action of
paramagnetic space group symmetry operations that remain
in the presence of any applied magnetic field. For B‖[120]
there are four domains indexed as 11, 12, 21, and 22, which
are related by θ

(2)
χ, f = −θ

(1)
χ, f . The corresponding expressions

for B‖[010] are θ
(2)
χ, f = −60◦ − θ

(1)
χ, f . In the refinement of the

high field polarized diffraction data, we superimposed contri-
butions from each of these domains. For both field directions,
the antichiral spin state consists of domains of the type shown
in Fig. 1(a). The three Mn spins on the vertices of each triangle
are generally oriented at 120◦ to each other with one spin
bisecting the triangle. Even in the presence of a field along
[010] a single domain θχ = 90◦ state is inconsistent with the
data. This result is consistent with a recent neutron polariza-
tion experiment on a field-cooled sample of Mn3Ge [27].

The ferromagnetic component refines to be perpendicular
to the applied field for both field directions. This transverse
nature of the uniform magnetization inferred from the po-
larized diffraction data and reported in Figs. 3(c) and 3(e)
is surprising. Figure 1(c) shows the relevant rocking scans
at Q = (002) for four different polarization channels after
correction for finite beam polarization effects. Bragg diffrac-
tion in the two spin-flip channels is clearly present at (002).
Possible extraneous sources of spin-flip scattering at (002) are
discounted based on the following considerations.

(i) Multiple scattering at (002) is forbidden for 14.7-meV
neutrons when the incident and scattered momenta lie in the
(h0�) plane. To confirm this we rotated the sample around
(002) in a χ scan and found the spin-flip Bragg scattering to

FIG. 3. Angular parameters associated with the antichiral (θχ ) and the ferromagnetic (θ f ) components of the magnetic order in Mn3Ge in a
2 T field [(a)–(c)]B‖[010] and [(d)–(f)]B‖[120] as determined by polarized and unpolarized neutron diffraction. Panels (a) and (f) show the χ2

goodness of fit for the two field directions as a function of the angular parameters θχ and θ f that define the magnetic structures as depicted in
Fig. 2. The white lines in (a) and (f) indicate the experimental constraints on θχ and θ f . Panels (b) and (d) represent the antichiral components
of the magnetic structure refined for each of the two field directions, while (c) and (e) are the corresponding refined ferromagnetic components.
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FIG. 4. Time-of-flight neutron-scattering data for Mn3Ge collected for Ei = 40 meV [(a), (b), (c), (d), (f), and (h)] and for Ei = 300 meV
[(e) and (f)]. (a) inelastic neutron scattering from Mn3Ge acquired for Ei = 40 meV for wave vector transfer along high symmetry trajectories
of the hexagonal Brillouin zone. (b) The energy transfer weighted neutron-scattering cross section at low energies and for momentum transfer
near the zone center. Both (a) and (b) show data averaged over ±0.05 Å−1 in the perpendicular Q directions. (c) Shows a constant energy slice
within the (h0�) plane centered at Q = (101), and (d) within the (hk0) plane. Data from (c) and (d) were averaged over ±0.07 Å−1 in the
perpendicular momentum directions. High-energy inelastic neutron scattering acquired for Ei = 300 meV and wave vector transfer along high
symmetry trajectories of the hexagonal Brillouin zone. (f) Energy cuts at 4 different symmetry points are plotted in (f) where the horizontal
line represents the FWHM energy resolution. Panel (g) shows the (00�) dependence of inelastic neutron scattering between two magnetic zone
centers, which reveals acoustic phonon dispersion. The momentum dependence of the neutron-scattering cross section from phonons is shown
in (h), where the black dashed line is proportional to |Q|2. The error bars in (h) and in all other figures of the paper correspond to 1 standard
deviation. The data in panels (e)–(h) were averaged over ±0.1 Å−1 in perpendicular Q directions.

be independent of 0◦ < χ < 14◦, which is inconsistent with a
multiple scattering process [Fig. 8(d)].

(ii) Depolarization effects caused by the guide field con-
figuration surrounding the 2-T superconducting magnet were
checked by measuring the flipping ratio for a PG sample
placed at the sample location during the experiment. The
resulting flipping ratio was found to be 8 at the beginning of
the polarized experiments, which is consistent with the value
used in the polarization corrections.

(iii) The effects of sample depolarization were investigated
by performing a refinement of the polarized diffraction data
with a sample depolarization factor chosen such that the
intrinsic spin-flip scattering at (002) is zero. This refinement
gives the best fit with a zero ferromagnetic moment, but with
a χ2 value that is 8% larger than for a fit without sample
depolarization. This indicates that neutron spin-flip scattering
at (002) is an intrinsic property of our sample.

Intrinsic magnetic Bragg diffraction at Q = (002) arises
from a ferromagnetic moment within the basal plane of
Mn3Ge. As apparent in the polarized neutron scattering cross
sections listed in the SI, a difference between the −− and ++
cross sections is directly proportional to the squared compo-
nent of magnetization along the applied field. In Fig. 1(c),
the rocking scans for the −− and ++ polarization con-
figurations are indistinguishable. This is consistent with the
magnetization of just 0.007 μB/Mn along the applied field

determined by SQUID magnetometry [4,5]. Spin-flip Bragg
scattering at (002) on the other hand, probes uncompensated
magnetization perpendicular to the applied field within the co-
herence volume of each basal plane. The sample averaged per-
pendicular uncompensated magnetization of 0.2(1) μB/Mn
that we detect is not inconsistent with the much smaller
longitudinal magnetization component seen in SQUID mag-
netometry. It could result from a minority phase or an orbital
moment as discussed in Appendix B.

C. Magnons and phonons in Mn3Ge

Figure 4(a) shows the momentum (Q) and energy depen-
dence of the inelastic neutron-scattering cross section for Q
traversing high symmetry trajectories through the Brillouin
zone and for energy transfer up to 30 meV. The data show
that most of the long-wavelength low-energy magnetic spec-
tral weight is associated with linearly dispersive excitations
emanating from each magnetic zone center �.

Figure 4(b) shows the energy transfer weighted scattering
cross section near the magnetic zone center. Three distinct
modes are observed at �1 = 2.9(6) meV, �2 = 14.6(3), and
�3 = 17.5(3) meV, but a single linearly dispersive branch is
observed above ≈20 meV. 12 meV constant energy maps in
the (h0�) plane [Fig. 4(c)] and the (hk0) plane [Fig. 4(d)] near
Q = (101) show a single well-defined ellipsoid in momentum
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space. The eccentricity of the ellipsoid in Fig. 4(c) indicates
1.8(1) times faster magnon velocity within than perpendicular
to the basal plane while Fig. 4(d) indicates isotropic dispersion
within the basal plane at low energies. From the principal axis
lengths, we obtain cL

β = 92(8) meV Å along the out-of-plane
(00�) direction, while we get cH

α = 170(12) meV Å for the
in-plane (h00) direction. Here the (00�) and (h00) directions
respectively correspond to the �-A and �-M directions within
the first Brillouin zone of the hexagonal structure.

Figure 4(e) shows the continuation of the spin excitations
to high energy where a flat band of scattering is centered
around 75 meV and magnetic spectral weight is observed up
to at least 100 meV. The corresponding high-energy spectra
for select symmetry points within the Brillouin zone are
in Fig. 4(f). A broad maximum centered between 70 and
75 meV is observed at all high symmetry points. By fitting
the energy cut data to a Lorentzian, an intrinsic half-width at
half maximum relaxation rate of 25(8) meV was obtained. For
comparison the full width at half maximum (FWHM) energy
resolution [horizontal black bar in Fig. 4(f)] is 8.8 meV.

Parts of the phonon dispersion relations for Mn3Ge were
also characterized by inelastic neutron scattering. Linearly
dispersive acoustic phonon branches originating from each �

points are apparent in the (00�) dependence of the neutron-
scattering spectrum between two magnetic zone centers
[Fig. 4(g)]. The top of the acoustic phonon band is near
15 meV, where optical phonons are also detected. The vi-
brational nature of these excitations is indicated by the |Q|2
dependence of their intensity [Fig. 4(h)], which is consistent
with the one-phonon scattering cross section and contrary to
a magnetic cross section that decreases with |Q| due to the
magnetic form factor.

IV. THEORY

A. Origin of noncollinear magnetism in Mn3Ge

Insights into the magnetism of Mn3Ge can be obtained by
considering the following spin Hamiltonian, which we shall
denote as the JDK model:

HJDK =
∑
〈i, j〉

Ji j Si · S j +
∑
〈i, j〉

Di j · (Si × S j )

−
∑

i

K (n̂i · Si )
2. (1)

Mn ions in Mn3Ge form a breathing kagome plane; however,
we shall assume exchange interactions are unaffected by the
small breathing amplitude (∼0.02 Å). The first term describes
Heisenberg exchange interactions between Mn spins. For
Mn3Ge, the first nearest neighbor is out-of-plane (Fig. 5) and
the second nearest neighbor is in-plane. We shall denote the
corresponding exchange interaction constant by J1 and J2, re-
spectively. We note that the introduction of longer range inter-
plane interactions is necessary to account for spin dynamics in
Mn3Ge. J3 describes interplane interactions between Mn ions
such as r1 and r′

1 [dashed lines in Fig. 5(a)]. The effects of J3

on the spin-wave dispersions of Mn3Ge are similar to J1 so we
ignored J3 in our analysis. The J4 interlayer interactions are
indicated by black dotted lines in Fig. 5(b). The second term
in Eq. 1 describes Dzyaloshinskii-Moriya (DM) interactions
between the in-plane nearest-neighbor Mn spins. Symmetries

FIG. 5. Interlayer exchange interactions (dashed and dotted
lines) between blue spins in the blue bottom layer and red spins in the
red top layer. Spins are oriented as in the long-range ordered structure
of Mn3Ge. (a) J1, which is weak and antiferromagnetic for Mn3Ge is
marked with dotted lines, and J3, which is ferromagnetic is marked
with dashed lines. We drop J3 in our model as it produces a similar
effect on the spin-wave dispersion as J1. (b) J4, which is strong and
ferromagnetic for Mn3Ge is indicated by dashed lines.

of the Mn3Ge lattice restrict the DM vectors (Di j) to point
along the c axis (Di j = Dẑ). The last term describes single-
ion anisotropy arising from the crystal field and spin-orbit
coupling. The unit vector n̂i is parallel to the straight line that
connects the centers of the two triangles that share a vertex
at the spin site. As we shall see, Di j and K > 0 make the
basal plane a macroscopic easy plane and open a gap in the
out-of-plane spin-wave excitation spectrum.

With nearest-neighbor interactions only, the 2D kagome
antiferromagnet is highly frustrated [47]: There is no phase
transition for Ising spins, the classical XY model is critical,
the classical Heisenberg model has a manifold of low-energy
states [48], and the spin-1/2 quantum Heisenberg model
has several nearly degenerate valence bond solid and spin
liquid states [49]. The fact that Mn3Ge orders magnetically
at high temperatures and supports magnons propagating in
all directions, indicates interactions extend well beyond the
nearest neighbors, as expected for an itinerant magnet. The
DM interactions promote a 120◦ structure where spins are
constrained to basal planes and only a macroscopic U (1)
degeneracy is preserved [50]. The antichiral spin structure
implies all the Di j vectors point into the page when we adopt
a clockwise indexing convention for the triangles that make
up the kagome lattice.

In previous work [25,51], U (1) symmetry breaking was
associated with a sixth-order single-ion term because the
second- and fourth-order terms cannot break the U (1) de-
generacy of a perfect 120◦ spin structure. However, the �9

IR includes the possibility of in-plane canting and different
moment sizes for the different Mn atoms. When the magnetic
structure deviates from a perfect 120◦ spin structure, the
second-order CEF term breaks the U (1) degeneracy [52].

B. Field theory for Mn3Ge

1. Preliminary remarks

Given the absence of well-defined magnons beyond the
long-wavelength limit in this long-range ordered itinerant
magnet, we cannot expect to determine a detailed microscopic
spin Hamiltonian for Mn3Ge. Instead we formulate a con-
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FIG. 6. (a) A single plaquette of the Mn sites in Mn3Ge showing
the ground-state spin structure with blue arrows. The spins carry
the same labels as the site, i.e., spin Si is at site ri. (b) The normal
modes for the spin structure with the in-plane α modes, the blue
arrows indicate the ground state, while the orange arrows indicate
the distorted state on the top. The out-of-plane β modes are shown
at the bottom. The three hard modes carry net spin indicated by the
thick orange arrow beside (αx, αy ) and the out-of-plane arrow beside
the β0 mode. The three soft modes are surrounded by a dashed line.

tinuum theory of spin waves that focuses on the universal
long-wavelength features of the excitation spectrum that are
accessible in our neutron-scattering data [53]. The low-energy
collective excitations in the long-range ordered state are in-
terpreted as linearly dispersive Goldstone modes arising from
spontaneous spin rotation symmetry breaking.

The general setting is an antiferromagnet with Heisenberg
exchange interactions on a two-dimensional lattice with a
triangle as a building block. We assume that classical ground
states have a magnetic unit cell with three coplanar spins S1,
S2, and S3 such that

S1 + S2 + S3 = 0. (2)

2. Soft modes

Figure 6 shows the normal modes representing infinitesi-
mal spin rotations in a single triangular unit cell (or in a spin
wave with k = 0). There are three soft modes α0, βx, and
βy that represent global rotations of the three spins and thus
preserve the ground-state condition (2). The remaining three
modes β0, αx, and αy are hard. From the perspective of the D3

point group symmetry, α0 and β0 transform under the trivial
singlet representation; (αx, αy) and (βx, βy) are irreducible
doublets transforming as a vector such as k = (kx, ky).

3. Field theory for the soft modes

The singlet mode α0 has simple dynamics. Its Lagrangian
density consists of kinetic energy with mass density ρα and a
potential energy quadratic in the gradients of α0:

L = ρα

2
α̇2

0 − κ

2
∂iα0 ∂iα0. (3)

The summation is assumed to be performed over repeated
Cartesian indices i = x, y. As often happens in highly sym-
metric solids, the effective Lagrangian [Eq. (3)] obeys not
just the discrete symmetries of the point group D3 but also
the full rotational symmetry SO(2). Spin waves have a linear
dispersion ω = ck with the speed c = √

κ/ρα .
The continuum theory for the doublet is more involved

as the doublet field β itself transforms under rotations. The

Lagrangian of this field has the following form:

L=ρβ

2
β̇2

i − λ

2
∂iβi ∂ jβ j − μ + μ̃

2
∂iβ j∂iβ j − μ − μ̃

2
∂iβ j∂ jβi.

(4)
This structure is highly reminiscent of a continuum theory of
elasticity, which we further elucidate in Ref. [53].

4. Velocities of the soft modes for Mn3Ge

The 2D theory for the α0 and β modes can be extended
with some modifications to the 3D structure of Mn3Ge. The
compound is a layered AB stacked Kagome system, within
each layer the lattice parameter is given by the constant a, and
the separation in the z direction between two kagome planes
is l = c/2. In each layer, the ground state has spins confined
to the corresponding plane, and the three spins forming each
AFM triangular plaquette are not rotated by exactly 2π/3
with respect to each other such that a small FM moment
appears. This slight deviation of the spins from a perfect 2π/3
antichiral state, which is due to single-ion anisotropy, was not
considered in the field theory.

An effective description of the system requires two sets
of modes: (α0,α, β0,β) for the A layer and (α′

0,α
′, β ′

0,β
′)

for the B layer. The theory is better expressed in terms of
symmetric and antisymmetric combinations of the two sets,
ζ s = ζ+ζ ′√

2
and ζ a = ζ−ζ ′√

2
, where ζ stands for any of the α or

β fields. The primary unit is the nuclear cell motif of Mn3Ge
that consists of an “up-triangle” in the lower (blue) layer and
a “down-triangle” in the upper (red) layer [Fig. 5(a)].

The spins in each layer interact amongst themselves
through the antiferromagnetic Heisenberg exchange interac-
tion J2. Interlayer interactions can be FM or AFM and those
that appear relevant in Mn3Ge are shown in Fig. 5. The
detailed description of the theory is presented in Ref. [53].
Here we collect the results most relevant to the experiment,
namely expressions for the in-plane and the out-of-plane
magnon velocities and the associated energy gaps in terms of
Hamiltonian parameters.

The in-plane velocities for the soft symmetric α mode and
the two β modes, respectively, are

cs
α (k̂a) =

√
1

ραs

(
J2

8
+ J4

3
+ J1

24

)
aS

cs
||(k̂a) =

√
1

4ρβs

[
J2 + 5J4

6
− J1

3
+ 3J1J4

2(J1 + 2J4)

]
aS

cs
⊥(k̂a) =

√
3J4

8ρβs

[
1 + J1

(J1 + 2J4)

]
aS. (5)

The inertias ραs and ρβs are given by

ρβs = 1

3(J2 + J1)
= 2ραs . (6)

Note that with just a J1 out-of-plane interaction (J4 = 0) the
mode that was dispersionless under J2 remains flat to linear
order, but develops weak dispersion along the (hh0) direction
at the quadratic level while remaining dispersionless along
the (h00) direction. J4 on the other hand produces an isotropic
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propagating mode out of the flat kagome mode associated
with J2.

The out-of-plane dispersion is set by the primed fields
since according to our schema the unprimed fields are at
z = 0. For the α′

0 mode, the dispersion is given by ραω2
α =

( J4
2 + J1

4 )(kzl )2. For the β ′
x,y modes the c dispersion is ρβω2

β =
( J4

2 + J1
4 )(kzl )2. These give the out-of-plane velocities as:

cs
α (k̂c) =

√
2J4 + J1

4ραs
lS

cs
β (k̂c) =

√
2J4 + J1

4ρβs
lS. (7)

Now since ρβs = 2ραs , the relation between the velocity of the
two types of modes is cs

α (k̂c) = √
2cs

β (k̂c).

5. Anisotropy gaps

The anisotropy terms in Eq. (1) are a DM interaction (D)
and an easy axis anisotropy (K > 0). The easy axis causes
a deviation from the 120◦ order and a gap for the αs

0 mode.
It also splits the otherwise degenerate βs modes. The DM
interaction gaps out the βs modes that are associated with
out-of-plane spin components [Fig. 6(b)]. The energy gaps as
functions of the Hamiltonian anisotropy parameters are

Eα =
√

1

ραs

(
3K3

J2
eff

)
S,

Eβy =
√

1

ρβs

[
2

(√
3D + K

2

)
+ K

6Jeff
(4

√
3D − K )

]
S,

Eβx =
√

1

ρβs

[
2

(√
3D + K

2

)
− K

6Jeff
(4

√
3D − K )

]
S, (8)

where Jeff = J2 + J1.

V. DISCUSSION

A. Nature of the Q = 0 spin excitations in Mn3Ge

The magnetic excitation spectrum at the � point (Q = 0)
is shown in Fig. 7. Three characteristic energies �1, �2, and
�3 are indicated. At first glance, it seems natural to associate
the α0 mode with �1, and the βx and βy modes with �2 and
�3, respectively. It is indeed possible to select parameters in
the spin Hamiltonian Eq. (1) that reproduces the gaps and ve-
locities for each of these modes. However, the comparison of
the corresponding resolution convoluted spectrum of neutron
scattering with the experimental data in Fig. 7(a), reveals clear
discrepancies. Specifically, the calculated scattered intensities
of the two beta modes are greatly overestimated [dashed line
in Fig. 7(a)]. The relative intensities of these excitations do
not depend on details of the exchange interactions introduced,
so we conclude this model is not appropriate for Mn3Ge.

Instead, we attribute the intensity maxima at �2 and �3

to hybridization of the spin-wave excitation with optical
phonons that are present in this energy range [Fig. 4(g)].
The vibrational nature of both of these features is confirmed
by the neutron-scattering spectrum at Q = (120) which has

FIG. 7. (a) The excitation spectrum of Mn3Ge at Q = (110)
compared to the calculated spin-wave spectrum based on two spin
Hamiltonian modes including the effects of the instrumental reso-
lution. Model 1 has the α, βx , and βy modes located near �1, �2,
and �3 respectively. Model 2 has the α mode gapless, while βx and
βy are degenerate and gapped by �1. (b) The excitation spectrum
at Q = (120) where phonon contributions to the scattering intensity
dominate. The scattering data were averaged over perpendicular
directions of momentum transfer covering ±0.15 Å−1 in (a) and over
±0.4 Å−1 in (b). The error bars within both panels correspond to 1
standard deviation.

the same composition of in- to out-of-plane spin polariza-
tion. Fig. 7(b) shows generally much less scattering, which
is consistent with suppression of the scattering relative to
Fig. 7(a). However, the intensity in the energy range near �2

and �3 increases and is now stronger than near the �1 mode.
Since phonon scattering generally increases with |Q2| this is
consistent with hybridized spin-phonon excitation at �2 and
�3. This scenario was previously proposed for Mn3Ge [54]
and is supported by our data. Magnetoelastic coupling effects
have been observed in other noncollinear triangular magnets
with competing exchange interactions such as multiferroic
REMnO3 [55–57] and Ni3V2O8 [58].

With this interpretation the in-plane polarized α mode is
gapless, which is consistent with the easy plane nature of
the magnetization data [5,59]. As described in Ref. [52], K
can be estimated from the in-plane magnetization of Mn3Ge,
which is directly related to the energy gap of the α0 mode
[see Eq. (8)]. Using this procedure, a spin-wave gap of about
0.1 meV � �1 is estimated. The �1 mode is instead asso-
ciated with the energy gap for the βx and βy modes. Our
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field theory indeed predicts these to be degenerate when the
α mode is gapless (K � J) [see Eq. (8)].

The resolution convoluted Q = 0 magnetic excitation
spectrum can be computed based on a spin Hamiltonian
[Eq. (1)] with a gapless α0 mode and the two β modes at
�1 [see Fig. 7(a)]. The agreement of this calculation with the
observed spectrum of Mn3Ge is excellent aside for scattering
at �2 and �3 that we associate with magnon-phonon hy-
bridization, which is not in the model. The lack of significant
inelastic neutron scattering at low energies associated with the
gapless alpha mode is a result of the large spin-wave velocity
that pushes spectral density to higher energies and reduces the
low energy density of states. Similar effects were observed
for other magnets with fast spin waves when probed with
relatively coarse momentum resolution [60,61].

B. Effective spin Hamiltonian for Mn3Ge

A general feature of the nearest neighbor JDK model
[Eq. (1)] on the kagome lattice is the dispersionless na-
ture of the βx mode [62,63]. This “weather-vane” mode
was for example observed in the jarosites kagome systems
[64,65], which have been described using the JDK model.
The weather-vane mode can be made to disperse through the
introduction of longer-ranged exchange interactions. How-
ever, there is insufficient information in the broad magnetic
excitations that we detect in Mn3Ge to uniquely determine
multiple further neighbor interactions. Here the field theory
provides important guidance through analytical expressions
for the in-plane and out-of-plane velocities and the excitation
gaps of the three long-wavelength normal modes [see Eqs. (5),
(7), (8)].

From the field theory, we find that a model with J1, J2, and
J3 cannot describe the dispersive spin excitations of Mn3Ge,
because both J1 and J3 leave the weathervane mode disper-
sionless for wave vectors along the (h00) direction. This is
inconsistent with the experimental data [Figs. 4(b) and 4(d)].
However, a ferromagnetic J4 interaction causes dispersion of
the weather-vane mode for all directions in reciprocal space.
Thus a minimal model for Mn3Ge must include J1, J2, and J4

plus the nearest in-plane neighbor DM interaction of the form
D = Dẑ to gap the β modes.

In the long-wavelength limit the dispersion relation of the
soft magnons can be approximated as E2

i (Q) = c2
i |Q|2+�2

with ci given by Eqs. (5) and (7). The energy gap �1 =
2.9(6) meV was determined by fitting a resolution convo-
luted cross section based on this dispersion relation to the
data in Fig. 7(a) for which the absolute intensity scale of
our calculation was allowed to vary. We used the spin-wave
velocities previously determined by fitting constant h̄ω slices
in Sec. III C. Both the measured velocities and gaps were
associated with the βx and βy modes. A least-squares refine-
ment shows a model with the exchange parameters reported
in Table I can reproduce the measured spin-wave velocities.
Also reported in Table I is the strength of the DM interaction
that was obtained from �1 and the refined exchange constants
through Eq. (8). For a JDK model with K ≈ 0 this is the only
set of values for J1S2, J2S2, and J4S2 that can reproduce the
long-wavelength dispersion relation. We note that a relatively

TABLE I. Microscopic parameters of the spin Hamiltonian re-
fined in our work for Mn3Ge [Eq. (1)]. A positive (negative) sign
for the exchange parameters corresponds to AFM (FM) interactions.
Note that J1 and J4 are interplane interactions (see Fig. 5), while J2,
D, and K are intraplane interactions.

J1S2 J2S2 J4S2 DS2 KS2

Refined value (meV) 0(6) 34(7) −17(5) 0.02(1) �0.01

strong out-of-plane J4 interaction was refined, which confirms
that the magnetism in Mn3Ge is 3D.

The Q = 0 neutron inelastic spectrum of the proposed
Hamiltonian can be computed with linear spin-wave theory
as implemented in spinW [66]. The calculated spectrum was
averaged over the six magnetic domains of Mn3Ge and con-
voluted with the 4D resolution function appropriate for the
configuration of SEQUOIA that we utilized. The resulting
fit is shown in Fig. 7(a). The excellent agreement between
the calculation and the scattering profile of the �1 mode
validates our minimal spin Hamiltonian model to describe
the long-wavelength low-energy magnetism of Mn3Ge. While
the noncollinear nature of the magnetic order allows magnon
decay [67] the lack of collective resonant modes beyond those
at the � point is akin to itinerant magnets such as Mn3Si [68].
Also distinguishing Mn3Ge from local moment magnetism,
the ordered moment Mχ = 2.2(1) μB is considerably reduced
from the full moment expected for known oxidation states of
Mn ions such as Mn2+ (5.92 μB) and Mn4+ (3.87 μB).

VI. CONCLUSION

We have shown Mn3Ge undergoes a second-order mag-
netic phase transition at TN = 365 K, the order parameter
of which is an antichiral triangular spin structure superim-
posed with weak in-plane ferromagnetism described by a
single two-dimensional irreducible representation �9. Probed
here by inelastic neutron scattering, the magnetic excitation
spectrum features long wavelength spin waves and a broad
continuum centered at 75 meV. We construct a field theory
of antiferromagnetic triangular simplexes to classify the three
Goldstone modes as an in-plane polarized gapless mode and
a doublet of out-of-plane polarized modes. The scattering
data also provide evidence for a pair of magneto-elastic
modes near 20 meV that are enabled by the noncollinear
nature of the magnetic order. The selection of the �9 spin
structure, the Goldstone modes, and the magnetic response
to an applied field can be described by a minimal spin
Hamiltonian HJDK consisting of two interplane Heisenberg
interactions J1 (weak)–J4 (strong, FM), intraplane Heisenberg
J2 (strong AFM) and weak antichiral Dzyaloshinskii-Moriya
interactions D, and an even weaker single-ion anisotropy
term K favoring spin orientations that bisect two triangular
simplexes. Field theory links experimental observables such
as the spin-wave velocities and their excitation gaps to the pa-
rameters of the spin Hamiltonian, facilitating their controlled
determination. Interactions between the collective magnetism
and itinerant electrons are apparent in the strong damping of
the spin waves, the reduced local moment size, the range of
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magnetic interactions, and of course the anomalous transport
properties, all of which HJDK can be the basis for modeling
and understanding.
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APPENDIX A: POLARIZED NEUTRON DIFFRACTION

1. From count rate to cross section

The Q dependence of the intensity near a Bragg peak G,
is a measure of the instrumental momentum resolution and is
given by

I (Q) = σ̃GNCRG exp
[− 1

2 (G − Q)TMG(G − Q)
]
. (A1)

Here σ̃G is the total Q integrated Bragg intensity, MG is the
resolution matrix, RG ensures normalization of the resolution
function, and NC is an overall instrument normalization factor
[69]. Denoting the rocking angle integrated intensity by A(G)
and ŷ the Cartesian coordinate direction corresponding to the
trajectory of the rocking scan perpendicular to G, we have

σ̃G = A(G)|G|
NCRG

√
(MG)yy/2π. (A2)

Table II shows the Bragg diffraction cross sections obtained
from polarized beam rocking scans scans based on Eq. (A2).

2. Extinction

To account for secondary extinction, the actually measured
cross sections σ̃ were related to the theoretical Born limit
cross sections σ (discussed in Sec. A 4) by the empirical
extinction formula used by Fullprof [70]

σ̃ = σ/

√
1 + 10−3yλ3

sin 2θ
σ , (A3)

TABLE II. The measured (σ̃ obs) and best fit (σ̃ cal) extinction encumbered polarized Bragg diffraction cross sections in units of barn/formula
unit for Mn3Ge in low field and at 2 T. The upper part of the table present peaks collected in the (h0�) plane while the lower part of the table
present peaks collected in the (hh�) plane. + and − indicate the neutron polarization direction before and after the sample relative to the guide
field. The relative statistical errors on the individual values of σ̃ obs determined by Gaussian least-squares fitting of rocking curves are less than
1%. The reduced χ 2 for the overall structural fits in zero field are 5264(10219) and 4465(6566) for the (h0�) and (hh�) planes, respectively, for
B ≈ 0 (B = 2 T). This indicates systematic errors exceed statistical errors. Peaks that may be affected by multiple scattering are marked by ∗
with the associated intermediate reciprocal lattice point(s) listed in Table III.

0 T 2 T

Horizontal field Vertical field Vertical field

Q σ̃ obs
++ σ̃ cal

++ σ̃ obs
−+ σ̃ cal

−+ σ̃ obs
++ σ̃ cal

++ σ̃ obs
−+ σ̃ cal

−+ σ̃ obs
++ σ̃ cal

++ σ̃ obs
−+ σ̃ cal

−+ σ̃ obs
−− σ̃ cal

−−

(001)∗ 0.002 0.000 0.001 0.000 0.002 0.000 0.000 0.000 − − − − − −
(002) 0.165 0.153 0.014 0.016 0.182 0.157 0.004 0.006 0.156 0.155 0.019 0.016 0.148 0.155
(100) 0.197 0.176 0.121 0.120 0.314 0.274 0.003 0.000 0.009 0.005 0.021 0.000 0.506 0.418
(101)∗ 0.334 0.369 0.279 0.270 0.514 0.568 0.108 0.147 0.040 0.062 0.103 0.124 0.719 0.811
(102) 0.234 0.236 0.103 0.110 0.387 0.294 0.039 0.044 0.085 0.100 0.046 0.007 0.479 0.454
(200)∗ 0.059 0.057 0.005 0.002 0.055 0.047 0.004 0.000 0.065 0.053 0.014 0.000 0.061 0.053
(201)∗ 0.149 0.128 0.011 0.007 0.167 0.124 0.005 0.001 0.161 0.128 0.032 0.000 0.138 0.128
(202) 0.037 0.059 0.011 0.001 0.050 0.047 0.003 0.000 − − − − − −
(300) 0.502 0.507 0.142 0.124 0.729 0.678 0.014 0.000 − − − − − −
(301)∗ 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.000 − − − − − −
(001)∗ 0.038 0.000 0.028 0.000 0.021 0.000 0.010 0.000 − − − − − −
(002) 0.350 0.418 0.083 0.026 0.213 0.274 0.030 0.000 0.178 0.259 0.075 0.017 0.155 0.259
(110) 2.081 2.066 0.772 0.773 1.450 1.466 0.070 0.000 6.071 6.219 0.688 0.000 0.407 0.324
(111) 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 − − − − − −
(112) 2.169 2.231 0.674 0.541 1.535 1.461 0.328 0.157 5.862 4.646 0.258 0.064 0.202 0.943
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where λ is the neutron wavelength, 2θ is the scattering angle,
and y is the extinction parameter. Within the refinement,
the extinction and normalization parameters were constrained
to be the same for peaks that are measured in the same
configuration of the sample and instrument.

3. Polarization analysis

In a fully polarized neutron-scattering experiment, the
cross section is resolved into four channels denoted
(++,−−,+−,−+). Here + and − indicate neutron spins
parallel and antiparallel to the guide field, respectively. The
first sign gives the polarization direction of the incident beam
and the second sign indicates the polarization vector of the
neutrons received by the detector. The guide field direction
was either parallel to momentum transfer Q (HF) or perpen-
dicular to the scattering plane (VF).

For low field data, the cross sections of the non-spin-flip
(NSF) ++ and spin-flip (SF) −+ channels were collected. For
the neutron diffraction experiments in a 2 T magnetic field,
the cross sections of all four channels (++,−+,+−,−−)
were measured. The time dependence of the transmission and
polarization of the 3He cells were characterized by measuring
the flipping ratio of the nuclear Bragg diffraction from a
pyrolytic graphite (PG) sample before and after the Mn3Ge
experiment. The inferred time dependence of the polarization
characteristics of the instrument was verified by measuring
the flipping ratio of Bragg peaks associated with aluminum
in our sample mount multiple times during the experiment. A
time-dependent correction was applied to the polarized beam
diffraction data. Here the depolarizing effects of the sample
were neglected due to the high flipping ratio of the zero
field experiment and the small magnetization of Mn3Ge. After
polarization correction, the integrated intensity of each Bragg
peak in each polarization channel was obtained by fitting the
rocking curves to Gaussian functions.

4. Polarized neutron cross sections

For each model described by one IR of G0, the following
formulas are used to calculate the cross sections in different
channels based on the nuclear structure factor FN and the
perpendicular to Q projection of the magnetic vector structure
factor F⊥

M = Q̂ × FM × Q̂:

σ++ = |FN + p̂ · F⊥
M |2, (A4)

σ−− = |FN − p̂ · F⊥
M |2, (A5)

σ+− = |F⊥
M |2 − |p̂ · F⊥

M |2 − i · p̂ · (F⊥
M × F⊥∗

M ), (A6)

σ−+ = |F⊥
M |2 − |p̂ · F⊥

M |2 + i · p̂ · (F⊥
M × F⊥∗

M ). (A7)

Here p̂ is the unit vector indicating the polarization direction
(guide field). In our refinement, the magnetic form factor of
Mn2+ is included in FM [24].

Table II provides the measured and fitted polarized Bragg
diffraction cross sections for Mn3Ge that are the basis for
Figs. 1(e) and 1(f). Table III reports the Bragg peaks that may
be impacted by multiple Bragg diffraction.

TABLE III. The target Bragg reflection G = ki − k f and inter-
mediate Bragg points G′ where ||ki − G′| − ki| < δki so that multi-
ple Bragg diffraction is possible. Specifically, the following diffrac-
tion processes: ki → ki − G′ → k f and ki → k f → k f + G′ − G.
Here ki = 2.6636 Å−1 corresponding to Ei = 14.7 meV and δki =
0.02 Å−1 is set by the energy resolution of the instrument.

Zone Target G Intermediate G′

(h0�) (001) (302)
(h0�) (101) (021̄)(22̄1̄)
(h0�) (200) (010)(11̄0)(110)(21̄0)
(h0�) (201) (120)(32̄0)(311̄)(41̄1̄)
(h0�) (301) (302̄)
(hh�) (001) (101̄)(102)(011̄)(012)

5. Magnetic structure refinement

The k = 0 magnetic ordering implies the magnetic Bragg
peaks of Mn3Ge coincide in Q-space with structural Bragg
peaks. Table IV gives the characters of classes for different
IRs of the “little group” G0 that keeps the ordering wave
vector k = 0 unchanged. �9 is the only IR that is consistent
with the observed diffraction pattern of Mn3Ge. Figures 8(a)
and 8(b) shows the χ2 dependence of the magnetic refinement
as a function of the moment size of the antichiral (Mχ )
and ferromagnetic components (M f ). Table II compares the
measured and calculated diffraction polarized beam cross
sections. Peaks marked with * and acquired in the (h0l )
are potentially impacted by multiple scattering through the
intermediate Bragg points indicated in Table III. The size of
the ferromagnetic moment M f = 0.2(1)μB is directly related

FIG. 8. Results of refinement for diffraction at B = 0 T. (a) χ2

against the antichiral component and (b) the ferromagnetic mo-
ment.(c) Rocking scans of (002) in and out of the magnetic phase
with the HF configuration, the non-spin-flip scattering is also dis-
played for reference. (d) The χ scan for (002) performed at room
temperature indicates the spin-flip scattering is not produced by
multiple scattering.
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TABLE IV. Character table of conjugate classes for different irreducible representations of the “little group” G0 that keeps the wave vector
k = 0 unchanged. t = [0 0 1/2] and the subscript (1 or 2) of the Mulliken symbols are determined by C′

2 axis [100].

IR e
{6+

001|t}
{6−

001|t}
3+

001

3−
001

{2001|t}
2010

2100

2110

{21−10|t}
{2210|t}
{2120|t}

i
{−6+

001|t}
{−6−

001|t}
−3+

001

−3−
001

{m001|t}
m010

m100

m110

{m1−10|t}
{m210|t}
{m120|t}

�2(A1u) 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
�3(A2u) 1 1 1 1 −1 −1 1 1 1 1 −1 −1
�4(A2g) 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1
�5(B1g) 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
�6(B1u) 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1
�7(B2g) 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1
�9(E1g) 2 1 −1 −2 0 0 2 1 −1 −2 0 0
�10(E1u) 2 1 −1 −2 0 0 −2 −1 1 2 0 0
�11(E2g) 2 −1 −1 2 0 0 2 −1 −1 2 0 0
�12(E2u) 2 −1 −1 2 0 0 −2 1 1 −2 0 0

to the magnitude of the spin-flip scattering at (002) [Fig. 8(c)].
We performed a χ rotation scan for the (002) reflection to rule
out the possibility of multiple scattering as a source of spin-
flip scattering at (002). The χ scan is shown in Fig. 8(d) and
both the SF and NSF scattering at (002) are constant to within
alignment tolerances over the full range of 0 � χ � 15◦. This
observation excludes multiple scattering as a source of Bragg
scattering at (002).

APPENDIX B: FERROMAGNETIC MOMENT OF Mn3Ge

As described in the main text, refinement of the single-
crystal polarized beam neutron diffraction data yielded a
ferromagnetic moment of 0.2(1) μB/Mn for Mn3Ge. This is
two orders of magnitude greater than the value obtained from
bulk magnetization measurements on the exact same Mn3Ge
single crystal that we used for neutron diffraction. The data are
shown in Fig. 9 and it reveals a basal plane magnetization of
0.007 μB/Mn which is consistent with previous works [4,5].

Below, we offer two possible explanations for the different
ferromagnetic moments extracted by neutron diffraction and
bulk magnetization measurements.

1. Screening of nm scale ferrimagnetic spin clusters

The hexagonal D019 structure of Mn3Ge was synthesized
with excess Mn, annealed at high temperature (∼1000 K),
and later quenched cooled to room temperature in water [5,6].
The D019 structure of Mn3Ge is not a stable phase at room
temperature, and transforms into a tetragonal D022 structure
over a long time scale or when heated above 500 K [40].
Tetragonal Mn3Ge is an easy axis ferrimagnet and ordered
as grown at Tc = 800 K [40]. A fully disordered phase can
be obtained by annealing at a lower temperature (650 K)
and it exhibits the same critical temperature and nonsaturated
magnetic moment as the D019 phase of Mn3Ge [40].

Thus, while the amount of the tetragonal phase can be re-
duced to a few percentages in good samples [5], the tetragonal
phase remains and can influence the magnetism of nominally
hexagonal D019 Mn3Ge samples. For example, as shown in
Fig. 10, a slight rearrangement of atoms within the basal plane
of the D019 structure leads to an epitaxially embedded D022

phase. Here the (112) direction of the tetragonal D022 phase is

parallel to the c-axis of the D019 phase and features the same
distance between adjacent “kagome” layers. Hence, the (112)
Bragg peak of the D022 phase coincides with the (002) Bragg
peak of the D019 phase.

A tetragonal phase embedded into the hexagonal phase of
Mn3Ge may explain the discrepancy between the ferromag-
netism detected by magnetometry versus neutron diffraction.
Assume tetragonal clusters develop a ferrimagnetic moment
just as the bulk tetragonal phase. For consistency with the
small moment detected by bulk magnetometry, these clusters
must be magnetically screened via an antiferromagnetic cou-
pling to the majority D019 structure of Mn3Ge. Magnetic spin-
flip Bragg scattering could nonetheless remain at (002) if the
epitaxial impurity magnetism is coherent at least to the 10-nm
length scale. This could occur either if the tetragonal impurity
clusters reach this size or if small neighboring clusters become
magnetically correlated among each other.

FIG. 9. Bulk magnetization of the Mn3Ge single crystal that was
used for the diffraction experiments reported in this paper. The data
were collected at T = 10 K and the field was applied along the [100]
direction. The inset details the low field regime showing a zero-field
magnetization of about 0.007 μB/Mn.
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FIG. 10. Representation of the atomic layers at the boundary of
a (112) D022 tetragonal phase of Mn3Ge and a (001) D019 hexagonal
phase of Mn3Ge. The bottom shaded layer is the hexagonal phase,
and the dark orange and blue dots represent the Mn and Ge ions,
respectively.

To further elucidate this possibility, we consider measure-
ments of the (002) reflection in a 2-T vertical field that is
oriented within the basal plane of Mn3Ge. From Eqs. (A4)–
(A7) at (002) we have:

σ++ − σ−− ∝
∑

i

ViFNi(Ĥ · F⊥
Mi ), (B1)

σ+− = σ−+ ∝
∑

i

Vi|p̂ × F⊥
Mi|2, (B2)

The summation is over distinct regimes i of the sample large
enough to diffract coherently, Vi is the volume fraction, FNi

is the nuclear structure factor at (002) and F⊥
Mi is the basal

plane component of the magnetic vector structure factor at
(002). The impurity clusters are associated with dislocation
of ions within the basal plane so FNi(00L) ≡ FN (00L) for
integer L including (002). We see that σ++ − σ−− is pro-
portional to the magnetization of the sample along the field
direction which must vanish if the impurity moments are
screened. On the other hand, the spin-flip magnetic Bragg
cross sections are produced by the sum squared magnetization
perpendicular to the applied field which is not eliminated by
the aforementioned screening as long as it occurs on length
scales beyond the ≈10 nm coherence volume. This might
be possible for sufficiently large patches of a magnetically
anisotropic epitaxial minority phase such as tetragonal Mn3Ge
[40]. This scenario reconciles the polarized neutron spin-
flip cross sections at (002) with the magnetization data. The
screening mechanism is unclear and potentially interesting.
This mechanism suggests there might be high field anomalies
in the magnetization as the applied field overwhelms the
screening of >10-nm tetragonal impurity clusters.

The volume fraction of the tetragonal cluster can be esti-
mated according to Eqs. (A4)–(A7) where the ferromagnetic

moment per Mn atom of the tetragonal phase projected in
the kagome plane is defined by mc and its volume fraction
by xc. The corresponding screening moment per Mn atom ms

and volume fraction xs should satisfy the following equations
based on the experimental observation at Q = (002):

σ++(VF) − σ−−(VF) = 0 = mcxc + msxs, (B3)

σ+−(HF) = σ−+(HF) = A
(
m2

cxc + m2
s xs

)
. (B4)

Here A is an overall factor A = (3γnre/2)2, where 3 is the
number of Mn atoms in a formula unit, γn = 1.91 is the
gyromagnetic ratio of a neutron and re is the classical radius
of an electron. Solving for the volume fraction yields

xc = σ+−(HF)

Amc(mc + ms)
. (B5)

In our particular case, the projected moment of the tetragonal
phase is about mc = 0.2 μB/Mn [71] and the spin-flip cross
section σ+−(HF) = 14 mbarn/ f .u. is listed in Table II. The
volume fraction of the tetragonal phase is then approximately
given by xc = 0.1(μB/Mn)/(ms + 0.2 μB/Mn). In the thin
shell limit, a small cluster volume fraction of few percents
is enough to reproduce the observed spin-flip scattering at
Q = (002), where only a few layers of hexagonal Mn3Ge
lying close to the cluster act as a screening shell and with ms

being on the order of several Bohr magneton per Mn atom.
Recent magnetization measurements on thin film samples

of Mn3X show low field saturation occurs with a ferromag-
netic moment of about 0.2 μB/ f .u. and exhibits exchange
bias [59,72]. These results indicate coupling of the bulk
magnetization of Mn3Ge with layered ferromagnetic defects,
and they support the scenario described above consisting of
antiferromagnetic interactions between tetragonal minority
regions in otherwise hexagonal Mn3Ge.

2. Screening of local moment ferromagnetism
by orbital magnetization

Another possibility relies on screening of the Mn moment
by orbital magnetization, which cannot be detected by neutron
scattering because of the sharply peaked magnetic form factor
associated with the orbital magnetization. Suppose the ferro-
magnetic component of the local moment is weakly coupled to
the antichiral component, and couples antiferromagnetically
to an extended orbital moment. At low fields, there will
be magnetic Bragg scattering from local moments at (002)
because the compensating orbital moment remains undetected
due to its unfavorable form factor. At higher fields, a spin-
flop transition may occur turning both the ferromagnetic and
the orbital moment perpendicular to the applied field. Again
because neutrons only detect the local moments there would
be spin-flip magnetic Bragg scattering in the vertical field
configuration at (002).
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