
PHYSICAL REVIEW B 102, 054304 (2020)

Dynamics of interacting particle systems: Modeling implications of the repulsive interactions
and experiments on magnetic prototypes
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In this work, we investigate the dynamics of interacting particle systems subjected to repulsive forces,
such as lattices of magnetized particles. To this end, we first develop a general model capable of capturing
the complete dynamical behavior of interacting particle systems governed by arbitrary potentials. The model
elucidates the important role played by the static repulsive forces exchanged between particles in the initial
equilibrium configuration, which is distilled and mathematically captured by a dedicated component of the
stiffness matrix. The implications of the model are then examined through the simple illustrative example of a
magnetic particle oscillator, by which we show that the effect associated with the initial static forces is germane
to two- or higher-dimensional particle systems and vanishes for one-dimensional (1D) chains. In the context of
wave propagation, we show that this type of effect manifests as modal-selective corrections of the dispersion
relation of 2D repulsive lattices. To corroborate these findings, we perform laser vibrometry experiments on a
lattice prototype consisting of a triangular grid of magnets supported by an elastic foundation of thin pillars.
The tests unequivocally confirm the emergence of distinctive dispersive regimes in quantitative accordance to
the model.
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I. INTRODUCTION

Lattices of interacting particles have been used as a versa-
tile modeling proxy to describe many physical and mechanical
systems. For example, a gas of electrons interacting with long-
range Coulomb forces can crystallize into ordered lattices,
known as Wigner crystals [1–3]. At a higher scale, charged
microparticle systems, including colloidal dispersions and
dusty plasmas, can be origanized, through a Yukawa or a
screened-Coulomb interaction, into ordered spatial structures
referred to as Yukawa lattices [4–8]. Crystalline particle en-
sembles can also be formed at the macroscopic level. A
classical example is offered by constrained granular systems
composed of beads interacting through Hertzian contacts
[9–13], possibly under the confining action of compressive
loads. Recently, conceptually similar implementations have
been obtained using arrays of repulsive magnets [14–17].
Although the above-mentioned examples are drawn from
different physical domains, their dynamical properties are
controlled by analogous laws and therefore captured by sim-
ilar analytical models. One important feature shared across
all these problems is that, in these systems, each particle
is in equilibrium at rest under the action of self-balancing
static forces exchanged with its neighbors. Our objective is
to pinpoint through modeling, and verify via experiments, the
signature of the static forces on the dynamical behavior of
these systems.

*jiaox085@umn.edu
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In conventional treatments of particle systems under small
perturbation, it is standard practice to define a potential and
expand it in Taylor series ahead of deriving the system’s stiff-
ness matrix [2,18,19]. Alternatively, we choose to derive the
governing equations starting directly from an arbitrary poten-
tial and preserving all the kinematic contributions throughout
the derivation of the internal forces and the determination of
the stiffness matrix. The procedure yields a stiffness term
that is directly linked to the existence of the initial self-
balancing static forces and proportional to their strength.
To demonstrate the validity of this result and illustrate its
potential for capturing the underlying physics of this class of
systems, we first apply the model to the benchmark problem
of a magnetic oscillator. Here, we show how the incorporation
(or lack thereof) of this dedicate stiffness term manifests as
a sharp modification of the oscillatory characteristics (e.g.,
natural frequencies) of the oscillator. We then shift our fo-
cus on the propagation of waves in two-dimensional (2D)
magnetically repulsive lattices, in which the incorporation
of the aforementioned stiffness term induces macroscopic
dispersion shifts that are heavily wave-vector-dependent and
mode-sensitive. We corroborate our theoretical findings via
explicit time-domain numerical simulations as well as using
laser vibrometry experiments carried out on a prototype lattice
of magnetized particles supported by an elastic foundation of
thin pillars.

In Sec. II, we establish a complete dynamical model for in-
teracting particle systems with arbitrary potential. In Sec. III,
we analyze the illustrative example. In Sec. IV, we adapt the
analysis to capture the distinctive signature of the repulsive
interaction on the dispersive characteristics of 2D magnetic
particle lattices, and we corroborate the results with numerical
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simulations and experiments. The significance and potential
impacts of this work are summarized in Sec. V.

II. A COMPLETE DYNAMICAL MODEL
FOR ARBITRARY POTENTIAL

Consider a particle system with an initial equilibrium con-
figuration in which the particles interact through an arbitrary
potential φ(r). If the system is perturbed from equilibrium,
the potential can be expressed as

�(r) = 1

2

∑
i, j �=i

φ(||ri, j ||) = 1

2

∑
i, j �=i

φ(||Ri, j + ui, j ||), (1)

where Ri, j and ri, j are the position vectors between particle i
and particle j in the initial equilibrium and perturbed config-
urations, respectively, ui, j = u j − ui is the relative displace-
ment between the two particles, and the specific form of �(r)
reflects the physics governing the particle interactions in the
system at hand. The force exerted on particle i by the other
particles is obtained as

Fi = −∇�i(r) = −
∑
j �=i

φr (ri, j )ni, j, (2)

where ni, j = ri, j

ri, j
is the unit vector in the direction connecting

particles i and j. Following a classical linearization procedure,
the stiffness matrix D is derived as [20]

D = ∇u

∑
i

Fi

∣∣∣∣
u=0

= −
∑

i

∑
j �=i

[ni, j ⊗ ∇uφr (ri, j ) + φr (ri, j )∇uni, j]u=0

= −
∑

i

∑
j �=i

φrr (Ri, j )n0
i, j ⊗ n0

i, j +

−
∑

i

∑
j �=i

φr (Ri, j )

Ri, j

(
I − n0

i, j ⊗ n0
i, j

)

≡ D0 + D∗, (3)

where I is the identity matrix, n0
i, j = Ri, j

Ri, j
and ⊗ denotes the

dyadic product. Detailed derivations of Eqs. (2) and (3) are
given in the Supplemental Material [21]. Interestingly, the
treatment yields two distinct contributions to the stiffness
matrix. In addition to the conventional term D0, typical of
generic particle systems with masses connected by linear
springs, we obtain a secondary component, here denoted as
D∗, which depends on the first derivative of the potential φ(r)
evaluated at the unperturbed configuration and is therefore
associated with the presence of the initial self-balancing static
forces between particles.

The major implications of a model involving matrix D∗ are
summarized in the following key points:

(1) Since the formulation in Eqs. (1)–(3) is independent of
any specific assumptions about the geometry and constitutive
behavior of the system, the model endowed with D∗ has
universal validity, and can be applied to any particle systems
governed by arbitrary potentials including, for example, gran-
ular phononic crystals at the macroscale.
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FIG. 1. Schematic of a magnetic particle oscillator.

(2) D∗ vanishes in configurations with nearest-neighbor
interactions in which φr (Ri, j ) = 0. This scenario corresponds
to conventional spring-mass systems, where each particle only
interacts with its immediate neighbors and its potential is
initially at its minimum, resulting in no static forces between
particles at rest.

(3) It can be shown that D∗ naturally vanishes if the particle
system is one-dimensional. This results from the fact that, in
1D systems, the unit vectors ni, j between pairs of particles
remain constant and equal to either [1 0] or [−1 0] even
during motion, which implies that their differentiations with
respect to the displacements ui, j are identically null, leading to
D∗ = 0. This unique feature indicates that, unlike D0, which
is pervasive to the equations of motion for any systems, the
effect captured by D∗ is germane to high-dimensional (2D and
3D) systems.

(4) It is worth noting that the stiffness term D∗ is associated
with the fact that the orientation landscape of the static forces
varies during motion and its differentiation may yield a finite
value upon linearization. Consequently, it is a linear contri-
bution whose effect is amplitude-independent, and therefore
does not require large excitations to be activated.

III. INTRODUCTORY EXAMPLE: 2D MAGNETIC
PARTICLE OSCILLATOR

In this section, we apply the general model to a simple
particle system with magnetic interactions to document the
effect of D∗ on the steady-state vibrational response of 2D
particle oscillators.

A. Analytical model

Consider the system of magnetized particles shown in
Fig. 1. Assume that the four particles are identical with mass
M and subjected to mutually repulsive forces. To establish the
initial equilibrium conditions, a constant vertical force f is
applied on the free particle 4 (red dot) to balance the repulsive
forces exerted on 4 by the fixed particles 1, 2, and 3 (black
dots). The force between pairs of adjacent particles can be
written in the form

F = −∇φ(r) = f (r)n, (4)

where n is the unit vector in the direction connecting the
particles, and f (r) = φr (r), in general, is taken to obey an
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inverse power law, i.e., f (r) = br−a. The governing equation
for particle 1 is

Mü −
3∑

i=1

Fi = f, (5)

where M = [M 0
0 M], u = {u

v}, Fi = f (ri)ni, f =
−∑3

i=1 f (L0)ni(u = 0), and

ri = ||L0ei + u||,

ni = L0ei + u
||L0ei + u||, (6)

where ei(i = 1, 2, 3) can be expressed as e1 = {cos θ0
sin θ0

}, e2 =
{0

1}, and e3 = {− cos θ0
sin θ0

}.
In the small perturbation limit, the linear stiffness matrix

of the system, according to Eq. (3), can be obtained as

D = −∇u

3∑
i=1

Fi

∣∣∣∣
u=0

= −
3∑

i=1

fr (L0)ei ⊗ ei −
3∑

i=1

f (L0)

L0
(I − ei ⊗ ei )

= −
3∑

i=1

φrr (L0)ei ⊗ ei −
3∑

i=1

φr (L0)

L0
(I − ei ⊗ ei ), (7)

where the first term is identified as the conventional stiffness
matrix D0, and the second term corresponds to the additional
stiffness matrix D∗ introduced in Eq. (3).

The natural frequency ω0 of the system is the only admissi-
ble root of the characteristic equation obtained by solving the
eigenvalue problem

(−ω2M + D0 + D∗)u = 0. (8)

To quantify the separate contributions of the two stiffness
terms, we consider the reference natural frequency ω̄0 ob-
tained from the conventional model

(−ω2M + D0)u = 0. (9)

In this example, each particle pair is treated as an ideal
magnetic dipole with repulsive force expressed as [15,22]

F = 3μ0

4π

m2

r4
n, (10)

where μ0 is the permeability of the medium and m is the
magnetic moment. Combining Eqs. (7) and (10), yields

D =
3∑

i=1

4γ

L5
0

ei ⊗ ei −
3∑

i=1

γ

L5
0

(I − ei ⊗ ei ), (11)

where γ = 3μ0m2

4π
. For an arbitrary choice of parameters (M =

1, L0 = 1, γ = 104 with standard SI units used throughout
the paper except where specified), the natural frequencies can
be calculated from Eqs. (8) and (9), and the values will be
compared with simulation results provided in Sec. III B.
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FIG. 2. Frequency response function (FRF) of the complete sys-
tems for four configurations, sketched in the insets: (a) θ0 = 0,
(b) θ0 = π/6, (c) θ0 = π/4, and (d) θ0 = π/2. The natural frequen-
cies computed from the analytical models are also reported as vertical
lines.

B. Time-domain simulations

We perform time-domain numerical simulations assuming
a harmonic excitation applied vertically on particle 1 (note
that, in the simulation, the horizontal motion of the particle is
constrained to ensure stability, as explained in the Supplemen-
tal Material [21]). The governing equation (5) is integrated in
time using the Verlet algorithm [23], and the magnitude of the
harmonic response is recorded after steady-state conditions
are reached. To effectively establish steady-state conditions,
we add viscous damping to the system and we consider suffi-
ciently long excitation times to fully dissipate the signature
of the transient response. We also keep the amplitude of
excitation sufficiently low to neglect the effects of nonlinearity
[naturally embedded in the constitutive model of Eq. (10)],
which are not relevant for this treatment.

In Fig. 2, we plot the numerically obtained frequency re-
sponse function (FRF) of the complete system (red curve with
o markers) for four different orientations of the slant links:
θ0 ∈ [0 π/6 π/4 π/2]. We also superimpose the natural
frequency bar ω0 (red line) and the reference frequency bar
ω̄0 (blue dashed line) predicted from Eqs. (8) and (9), re-
spectively. We observe that the computed natural frequencies
match the peaks of the FRF curves. Since the numerical sim-
ulations are not subjected to any restrictive assumptions, as
they involve updating the most general form of the interaction
law at each integration step, this result confirms the validity
of the complete model in Eq. (7). Moreover, we observe that
the difference between ω0 and ω̄0 decreases as θ0 increases.
In the limit case of θ0 = π/2, the corresponding system is
reduced to a 1D configuration and the two frequencies become
identical. This result supports our general remark anticipated
earlier that the additional dynamical effect captured by D∗
(here manifests as the frequency difference �ω0 = ω0 − ω̄0)
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FIG. 3. (a) 2D triangular lattice with basis vectors R2 and R3.
(b) First Brillouin zone with irreducible zone highlighted in black
(ξ1 and ξ2 are the components of the nondimensional wave vector in
reciprocal space).

is germane to 2D configurations. This marks a fundamental
difference with the terms depending on D0, which do not van-
ish for 1D configurations. Another interesting feature is that,
since the magnetic force is repulsive in our framework, the
frequency difference �ω0 is necessarily negative (softening
effect). Finally, we note that, for certain parameter choices,
a special condition may occur when |�(�ω0)| is no longer
less than ω̄0 or when the horizontal motion is not constrained,
resulting in dynamical instabilities [a preliminary stability
analysis of the magnetic system based on Eq. (11) is reported
in the Supplemental Material [21]].

IV. WAVE PROPAGATION IN 2D REPULSIVE LATTICES

In this section, we shift our attention to wave propagation
problems. First, we theoretically and numerically investigate
the propagation of waves in repulsive lattices of magnetized
particles, demonstrating the effect of D∗ on the dispersion re-
lation. We then proceed to experimentally confirm the findings
via laser vibrometry experiments.

A. Analytical model

Consider a triangular lattice consisting of repulsive par-
ticles shown in Fig. 3. For simplicity, each particle in the
lattice is assumed to interact only with its nearest neighbors.
The governing equation for a particle at location Ri, j can be
written as

Müi, j (Ri, j, t ) +
3∑

l=−3

Fl (u) = 0. (12)

According to Eq. (4), the repulsive force Fl between two
adjacent particles takes the general form

Fl (u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (||�u±1,0 ± R1||) �u±1,0±R1

||�u±1,0±R1||
where �u±1,0 = ui±1, j − ui, j, if l = ±1

f (||�u0,±1 ± R2||) �u0,±1±R2

||�u0,±1±R2||
where �u0,±1 = ui, j±1 − ui, j, if l = ±2

f (||�u∓1,±1 ± R3||) �u∓1,±1±R3

||�u∓1,±1±R3||
where �u∓1,±1 = ui∓1, j±1 − ui, j, if l = ±3,

(13)

where R1 = L0e1 = L0{1
0}, R2 = L0e2 = L0{ 1/2√

3/2}, and R3 =
L0e3 = L0{−1/2√

3/2}. Assuming that the displacement �u is in-
finitesimally small, Eq. (12) can be linearized as

Müi, j +
3∑

l=1

{[ fr (L0)el ⊗ el ]�ul}

+
3∑

l=1

{[
f (L0)

L0
(I − el ⊗ el )

]
�ul

}
= 0, (14)

where

�ul =
⎧⎨
⎩

ui+1, j + ui−1, j − ui, j, if l = 1
ui, j+1 + ui, j−1 − ui, j, if l = 2
ui−1, j+1 + ui+1, j−1 − ui, j, if l = 3

A plane-wave solution of Eq. (14), with wave vector k and
frequency ω, is given as

ui, j = Aφei(k·Ri, j+ωt ), (15)

where A is a constant, and φ = {φu

φv
} is a modal vector.

According to Floquet-Bloch theorem, the relations between
displacements at neighboring sites can be expressed as

ui±1, j±1 = ui, je
i(±k·R1±k·R2 ). (16)

Substituting Eqs. (15) and (16) into Eq. (14), yields the wave-
vector-dependent eigenvalue problem

[−ω2M + D(k)]φ = 0, (17)

where

D(k) = 2
3∑

l=1

{ fr (L0)el ⊗ el [cos(k · Rl ) − 1]}

+ 2
3∑

l=1

{
f (L0)

L0
(I − el ⊗ el )[cos(k · Rl ) − 1]

}

(18)

is a wave-vector-dependent stiffness matrix. Again, we ob-
serve the appearance of two terms in the stiffness matrix.
Canonically, the linear dispersion relation of the magnetic
system is obtained by solving the eigenvalue problem for wave
vectors along the contour of the irreducible Brillouin zone.
Based on the conventional stiffness matrix, we can also define
a reference system, whose dispersion relation is obtained from
the following eigenvalue problem:

[−ω2M + D0(k)]φ = 0, (19)

where D0(k) is the first term of D(k) in Eq. (18).
In Fig. 4, we plot the band diagram (red curves) of the

2D triangular repulsive lattice with magnetic interaction law
[according to Eq. (10)], and we superimpose the reference one
(light blue dashed curves) obtained solving Eq. (19). Clearly,
D∗(k) [i.e., the second term in Eq. (18)] has significant
influence on the dispersion relation of the repulsive lattice,
especially for the first band.
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FIG. 4. Dispersion relations of the repulsive lattice obtained
from the complete and conventional (reference) models.

B. Full-scale simulations

To validate our analytical model, we perform a suite of
full-scale simulations to obtain the wave response of a finite
lattice (shown in Fig. 5) and we compare it against that
of a corresponding reference system. The particles located
on the boundary (red dots) are fixed in order to establish
initial equilibrium conditions. The objective is to numerically
reconstruct the band diagram and compare it against that of a
corresponding reference system. We consider wave vectors k
sampled along the 
-M direction, which correspond to wave
propagation in the vertical direction. Nearly plane-wave con-
ditions are established by considering an array of excitation
points collocated at the particles denoted as green dots in
Fig. 5. The force excitation is prescribed as a five-cycle tone
burst with carrier frequency �0 chosen to fall within the fre-
quency range of the first (shear-dominant) and of the second
(longitudinal) modes, respectively. A small-amplitude force
is applied in the horizontal (vertical) direction to optimally
excite the shear (longitudinal) mode in the linear regime.

The spatiotemporal displacement response is sampled at
nodes located along lattice vector R2 (black dots in Fig. 5) and
transformed via 2D -discrete Fourier transform (2D-DFT).
We perform and compare two simulations. In the first, which
we refer to as“complete simulation”, we update at each time
step the most general form of the internal force (both its
magnitude and direction) based on Eq. (14). The second is a

FIG. 5. Finite lattice used in the full-scale simulations.

FIG. 6. Spectral response from numerical simulations compared
against band diagrams from Bloch analysis. (a) and (b) Response
to excitation at �0 = 120 rad/s. (c) and (d) Response to excitation at
�0 = 400 rad/s. (a) and (c) Response of the conventional (reference)
system; (b) and (d) Response of the complete system.

conventional small-amplitude linear simulation, in which only
the magnitude is updated at each step.

For an excitation at �0 = 120 rad/s (in the shear mode
range), the normalized spectral amplitude maps obtained from
the complete and conventional simulations are plotted in
Figs. 6(a) and 6(b), respectively. For excitation at �0 = 400
rad/s (in the longitudinal mode range), the results are plotted
in Figs. 6(c) and 6(d). From a visual inspection, we observe
that the results from the complete simulation match the dis-
persion relation predicted using the complete analytical model
[i.e., Eq. (17)], while the conventional simulation results in
large dispersion deviations for the shear mode and minor ones
for the longitudinal mode [24]. These results numerically con-
firm the inclusion (or lack thereof) of D∗ bears non-negligible
modal-selective effects on the prediction of the dispersive
behavior of repulsive lattices.

C. Experiments

To corroborate the theoretical predictions, and to justify the
need of the complete model to capture the proper dynamics
of realistic repulsive particle systems, we perform a series of
experiments on a lattice prototype, shown in Fig. 7, which
involves finite-size magnets supported by simple structural
elements and represents a practical implementation of the
idealized system considered in our model. The role of the
particles is played by small ring magnets (with outer diam-
eter D = 1/4 inch×inner diameter d = 1/16 inch×thickness
b= 1/8 inch, Grade N42) interacting repulsively in their own
plane and thus spontaneously occupying the nodal locations
of a triangular lattice at equilibrium. To enforce planarity of
the lattice, the magnets are supported by aluminum cantilever
beams tightly inserted in the magnets ring holes at one tip
and clamped to an acrylic base through a lattice of drilled
holes [see schematic in Fig. 7(b)]. The interior magnets are
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FIG. 7. (a) Experimental setup. (b) Schematic of one interior
beam-magnet unit plugged into the base. (c) Front view of the
magnetic lattice specimen highlighting the shaker position for in-
plane excitation. The interior magnets are covered by reflective
tape to enhance laser measurements. (d) Magnet-beam units used at
boundaries (left) and in the interior of the triangular lattice (right) (e)
Back view through the transparent acrylic base.

supported by slender(with cross sectional diameter 1/16 inch)
and highly flexible beams that allow minimally impeded in-
plane displacement of the tip magnets, while the exterior
magnets, located along the perimeter of a half hexagon,
are supported by thick beams (with cross-sectional diameter
1/4 inch) featuring large bending stiffness to establish fixed
boundary conditions [Figs. 7(c) and 7(d)]. To properly incor-
porate the effects of the supporting beams, which effectively
act as an elastic foundation, into the model used for our
reference Bloch analysis, we need to modify the unit cell
configuration. To this end, we endow each particle with an
additional flexural spring connecting the particle to a fixed
ground, here representative of the acrylic base. The spring
features an elastic constant proportional to the equivalent
bending stiffness of a thin cantilever, which depends on the
material and cross-sectional properties of the cantilever beam
and on its effective length Leff (here equal to 15 cm). In order
to capture the precise values of the repulsive forces between

FIG. 8. Experimental response spectra for tone-burst excitations
at (a) 30 Hz, (b) 40 Hz, (c) 50 Hz, and (d) 60 Hz. The amplitude
spectra conform to the band diagram predicted using the complete
model, while they are not properly captured by the conventional one
(especially for the shear mode).

magnet pairs exhibited by the specific set of magnets used in
our test, we perform a static experimental characterization of
the magnet-magnet interaction. Details on the modified model
as well as the characterization of the magnets are reported in
the Supplemental Material [21].

The experimental setup is shown in Fig. 7(a). A 3D
scanning laser Doppler vibrometer (SLDV, Polytec PSV-400-
3D) is used to scan the magnets and measure their in-plane
response. The excitation is prescribed in the vertical direction
at the magnet located at the center of the bottom edge (one
layer insider the fixed boundary) through a Bruel & Kjaer
Type 4809 shaker (powered by a Bruel & Kjaer Type 2718
amplifier), as shown in Fig. 7(c). In Fig. 8, we plot the
spectral response obtained via 2D-DFT of the experimental
spatiotemporal data sampled along a lattice vector for tone-
burst excitations with carrier frequencies centered at 30, 40,
50, and 60 Hz, respectively. For comparison, we superimpose
the dispersion relations predicted using our modified analyt-
ical model [encompassing both D0 and D∗ contributions as
per Eq. (18)]. In contrast with the previous cases, the band
diagram is here fully gapped at low frequencies, which is a
typical feature of systems with elastic foundations. Notwith-
standing small deviations at higher frequencies (which can
be easily attributed to nonidealities and unavoidable minor
differences between particle model and physical specimen,
e.g., the neglecting of possible mild long-range interactions
in the theoretical model), the experimental results show re-
markable agreement with the dispersion branches obtained
from the complete model. This result provides unequivocal
experimental evidence supporting the notion that D∗ exerts
a profound effect on the dispersion relation. Moreover, the
experimental spectra confirm that the effect of D∗ in the shear
mode are indeed much stronger than those observed for the
longitudinal mode, which is another peculiar characteristic
resulting from D∗.
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V. CONCLUSIONS

In this study, we have predicted theoretically and demon-
strated experimentally the complete dynamics of 2D interact-
ing particle systems. First, we have formulated a complete
theoretical model for particle systems, revealing the existence
of a special contribution (denoted as D∗) to the stiffness ma-
trix. Through an illustrative example of a resonating particle
system, we have shown that the effect captured by D∗ is intrin-
sically tied to the 2D nature of the particle arrangements and
disappears when the system reduces to a 1D configuration.
Then, we have discussed the implications of this effect on
the wave propagation characteristics of repulsive lattices, and
we have highlighted that the existence of D∗ is responsible
for the emergence of mode-selective dispersion shifts. Finally,

we have experimentally demonstrated these findings with a
lattice prototype assembled using magnets supported by a
foundation of beam elements. Besides the magnetic systems,
we believe that the general framework presented in this work
is applicable to a broad class of physical systems in which
particles are subjected to repulsive interactions.
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