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Compact localized states and localization dynamics in the dice lattice
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The dice lattice supports Aharonov-Bohm caging when all the energy bands are flat for the half-quantum
magnetic flux enclosed in each plaquette of the lattice. We analytically investigate the eigenstates and discuss
the localization dynamics. We find that arbitrary excitation is compactly confined within the excited-site-related
snowflake structures of the dice lattice; as a consequence that the nonzero-energy flatband localizes in the single
snowflake, whereas the zero-energy flatband localizes in three nearest snowflakes that are connected in the form
of a trident star. The localization dynamics of an arbitrary excitation is grasped from two dynamical behaviors
of single-site excitation. For the single-site excitation at the center of a snowflake, the excitation is localized in
that snowflake; whereas for the single-site excitation at the branch site of a snowflake, the excitation is localized
in the three snowflakes that the branch site belongs to. Our findings deepen the understanding of destructive
interference and the dynamics of Aharonov-Bohm caging in the dice lattice.

DOI: 10.1103/PhysRevB.102.054301

I. INTRODUCTION

Flatbands are dispersiveless, fully constituted by degen-
erate energies and independent of the momentum [1]. The
eigenstates of flatbands are known as compact localized states
(CLSs) [2]. The initial excitations as the superpositions of
CLSs are confined, the intensities of the excitation remain un-
changed over time in the propagation, or in the time-evolution
process. In the condensed-matter physics, optics, and quan-
tum physics, the flatbands exist in various lattices of one-
dimension (1D) and two-dimension (2D) geometries. These
lattices include the rhombic [3–12], sawtooth [13,14], cross-
stitch [15–17], dice [18–21], honeycomb [22,23], kagome
[24–26], and pyrochlore lattices [27–29]. The formation of
flatbands, the CLSs, the localization, the effects of disorder,
as well as the interaction and nonlinearity are studied. In the
experimental aspect, the Lieb lattice [30] possesses a zero-
energy flatband [31–36] and is realized in optical systems
for cold atoms [26,37,38] and trapped ions [6]. It is also
fabricated through the direct laser writing of optical waveg-
uides [34–36]. Besides, an electronic Lieb lattice is designed
[39]. The discovery of parity-time symmetry has triggered the
exploration of non-Hermitian physics, including the flatband
in the non-Hermitian optical metamaterials [40–47].

We emphasis that the flatband does not ubiquitously exist
in physics. To generate the flatband in a system, there are
several mechanisms where the destructive interference plays
a pivotal role. For example, the chiral symmetry enables the
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presence of a zero-energy flatband [48]. The symmetry en-
sures that the eigenstates compactly localize in one or several
unit cells under the destructive interference. The localization
dynamics is of vital importance for the flatband investigations.
In the aforementioned systems possessing flatbands, most of
them have only one flatband. Consequently, the CLSs in the
flatband systems are the only excitations that can be com-
pletely confined; and this limits the many potential applica-
tions of the flatband. With the assistance of an effective mag-
netic field, the interference is tunable. When a half-quantum
magnetic flux π is introduced into a quasi-1D rhombic lattice,
all the energy bands become flat [49]; and the excitations
that are not limited to be the eigenstates of the system can
be completely confined in certain regions, referred to as the
Aharonov-Bohm (AB) caging. Recently, a rhombic optical
realization of an AB cage was demonstrated experimentally
in the coupled waveguide lattice with a π -synthetic magnetic
flux engineered in each rhombic plaquette. The photonic
caging of complete light confinement is demonstrated in the
quasi-1D rhombic lattice [50,51]. In 2D, the dice lattice is
one of the examples that has a spectrum fully constituted by
the flatbands and supports the AB caging [18–20]; however,
the CLSs of the dice lattice and the caging dynamics are not
systematically explored. It is comparably more complicated
to comprehend the 2D confinement mechanism. Nevertheless,
understanding the localization in the dice lattice advantages
the flatband physics in 2D, including the development on
the flatband engineering, the quantum information processing,
quantum computing, and the many other potential applica-
tions.

In this paper, we systematically demonstrate the properties
of CLSs and the confinement dynamics of AB caging in the
2D dice lattice. We analytically investigate the configuration,
the distribution, and the oscillation of the localization dy-
namics for an arbitrary excitation. The Peierls phases in the
diamond plaquette of the dice lattice lead to the destructive
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interference as well as the flatbands. The eigenstates of the
flatbands are analytically obtained. All the flatband eigen-
states are the CLSs, and those corresponding to the same
flatband are classified into two inequivalent configurations
and related to the double degeneracy of the flatband. The
CLSs with nonzero energies distribute in a single snowflake
and are all linearly independent; whereas those with zero-
energy spread in a compound trident star constituted of three
connected snowflakes. Notably, not all the zero-energy CLSs
are linearly independent. The dice lattice supports the com-
plete confinement of an arbitrary excitation. The excitations
are well confined inside the regions that are covered by the
snowflake structures of the related CLSs of the dice lattice.
The AB caging of different types of initial excitations are
thoroughly demonstrated in the numerical simulations.

The remainder of the paper is organized as follows. In
Sec. II, the dice lattice is introduced; the spectrum with all
bands flat is presented. In Sec. III, eigenstates of the dice
lattice in the form of CLSs are analytically investigated; the
orthogonality of the CLSs is discussed. In Sec. IV, the local-
ization dynamics of the CLS excitations and several typical
examples of excitations in the general form are performed
and demonstrated. In Sec. V, results of the CLSs and the
localization dynamics in the dice lattice are summarized.

II. DICE LATTICE

In this section, we introduce the dice lattice model. The
dice lattice is also referred to as the T3 lattice [52–54]; the
topological properties of which are extensively investigated in
recent years [55–59], beyond the study of interaction in the
dice lattice [19,55,60,61]. The dice lattice in the real space
is schematically illustrated in Fig. 1. The dice lattice is a
honeycomb lattice with an additional sublattice placed at the
hexagonal center, and the additional sublattice is coupled to
the three sublattices of the original honeycomb lattice [54].
The couplings of the dice lattice are uniform in contrast to
the α-T3 lattice with distinct couplings from the hexagonal
vertexes to the hexagonal center [62–67]. The dice lattice
under consideration shown in Fig. 1 is threaded by the
half-quantum magnetic fluxes. The nonreciprocal coupling iJ
along the direction of a black arrow has an i = eiπ/2 Peierls
phase factor in the front, and the corresponding coupling
strength is J . The basic building block of the dice lattice
includes two types of diamond plaquettes, the plaquette is 1/3
of the hexagon as indicated in Fig. 1. Both types of plaquettes
include four nonreciprocal couplings iJ . Three of the nonre-
ciprocal couplings are toward the identical direction of clock-
wise or counterclockwise; meanwhile, the other nonreciprocal
coupling holds an opposite direction. Under the influence
of the nonreciprocal coupling iJ , each diamond plaquette
of the dice lattice encloses a half-quantum magnetic flux
3π/2 − π/2 = π or an equivalent one −3π/2 + π/2 = −π .
Notably, the diamond plaquette is the building block of the
dice lattice but not the unit cell [16]. To compose the dice
lattice in Fig. 1, the diamond plaquettes are arranged on the
2D plane under different orientations.

The dice lattice has been proposed in the optical lat-
tice by using three pairs of counterpropagating linearly
polarized laser beams of identical wavelength λ = 3a0/2

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

f

a

b

c

f

a

b

c

f

a

b

c

f

a

b

c

f

a

b

a

b

a

b

e

f

e

f

e e e ee

FIG. 1. Schematic of the 2D dice lattice. The uniform coupling
has a nonreciprocal Peierls phase factor eiπ/2 indicated by the arrow,
being iJ for photons tunneling along the arrow. The diamond pla-
quette enclosed half-quantum magnetic flux π is the building block
of the dice lattice. The unit cell of the dice lattice involves six sites
a, b, c, d, e, and f . The vectors v1 and v2 in the horizontal and the
vertical directions are indicated by the blue arrows. The two types of
diamond plaquettes are shaded in yellow and orange.

[53,55,60,68]. The laser beams are placed to divide the 2D
plane into six equal sections, and a0 is the lattice constant.
The interference of the laser beams forms standing waves and
generates the potentials for the optical lattice. The particles
are confined at the potential minima. Considering the nearest-
neighbor couplings within a tight-binding model, the dice
lattice captures the fundamental physics of particles in the
optical lattice [60,68]. The optical lattice is controlled by the
laser field intensities and phases. Tuning the phase of one
pair of lasers induces the tunable magnetic flux enclosed in
the plaquettes of the dice lattice. Alternatively, we point out
that the dice lattice can be realized in the photonic crystal
lattice of coupled resonators, which is an outstanding platform
for the investigation of 2D lattices [69–72]. The proposed
dice lattice is schematically shown in Fig. 2. Simply through
introducing additional resonators in the hexagonal centers of
the honeycomb lattice [71]. The ring-shape resonators are
the primary resonators. The stadium-shape resonators are the
linking resonators that are evanescently coupled with the
primary resonators and induce the effective couplings between
the primary resonators. The optical path-length difference
experienced by the photons in the tunneling process between
the primary resonators determines the Peierls phase factor in
the effective couplings and induces the synthetic magnetic
flux enclosed in the plaquettes. The synthetic magnetic flux is
tunable through modifying the couplings between the linking
resonators and the primary resonators [73].

The dice lattice is translational invariant along the horizon-
tal direction for every another site and is translational invariant
along the vertical direction for every four sites. The dice
lattice is schematically illustrated in Fig. 1. The dice lattice
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FIG. 2. Schematic of the 2D dice lattice of coupled resonators.
The primary resonators are the ring-shape resonators marked with
the sublattice types. The auxiliary resonators are the stadium-shape
resonators in between the primary resonators. The total size of the
dice lattice illustrated is N = 48 with m = 4, n = 12.

Hamiltonian in the real space reads

H = iJ
∑

ra

(
a†

ra
crc − a†

ra
crc−v1 − b†

rb
crc − b†

rb
crc−v1 + a†

ra
drd

+ b†
rb

drd −v2 − c†
rc

fr f − c†
rc

ere−v2 − d†
rd

ere

− d†
rd

ere−v1 + d†
rd

fr f − d†
rd

fr f −v1 + H.c.
)
, (1)

where the operators O†
r and Or are the creation and

annihilation operators for the six sublattices O =
a, b, c, d, e, and f as indicated in a unit cell of the dice
lattice in Fig. 1. The subscript r of the operators indicates the
position in the dice lattice. For example, ra is the position
vector of the sublattice a in a certain unit cell; and rb = ra +
(0,−a0), rc = ra + (

√
3a0/2,−a0/2), rd = ra + (0, a0),

re = ra + (
√

3a0/2, 3a0/2), r f = ra + (
√

3a0/2, a0/2) are
the positions of the corresponding sublattices b, c, d, e,
and f in the same unit cell. The sublattices a, b, e, and f
are the rim sites of the dice lattice. The sublattices c and d
are the hub sites of the dice lattice. The dice lattice is under
periodic boundary conditions along both the horizontal and
the vertical directions. The summation is all over the unit
cells. The vectors v1 = (

√
3a0, 0) and v2 = (0, 3a0) describe

the distance between two adjacent unit cells. We consider
a general case; the site number in the horizontal (vertical)
direction is m (n); the total site number of the dice lattice
under investigation is N = m×n. For example, the dice lattice
in Fig. 2 has 48 = 4×12 sites in total.

The Hamiltonian in the momentum space Hk is acquired
through applying the Fourier transformations to the real-space

dice lattice Hamiltonian H . Taking the Fourier transforma-
tions,

ara = 1√
N

∑
k

e−ik·ra ak, brb = 1√
N

∑
k

e−ik·rbbk, (2)

crc = 1√
N

∑
k

e−ik·rc ck, drd = 1√
N

∑
k

e−ik·rd dk, (3)

ere = 1√
N

∑
k

e−ik·re ek, fr f = 1√
N

∑
k

e−ik·r f fk, (4)

where k is the momentum in 2D. The dice lattice has six
sublattices; thus, we obtain a 6×6 matrix,

Hk = J

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 �kx i 0 0
0 0 �kx ieiky 0 0

�∗
kx

�∗
kx

0 0 −ieiky −i

−i −ie−iky 0 0 �kx �kx

0 0 ie−iky �∗
kx

0 0
0 0 i �∗

kx
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(5)
where kx = k · v1 and ky = k · v2 are the dimensionless mo-
menta in the horizontal and vertical directions, respectively,
and kx, ky ∈ [−π, π ]. In Hk, we have �kx = 2eikx/2 sin (kx/2)
and �kx = −2ieikx/2 cos (kx/2). The asterisk represents the
complex conjugation operation. The six eigenenergies of Hk
are doubly degenerate, forming three momentum independent
flatbands with energies {−

√
6J, 0,

√
6J} by solving the sec-

ular equation of Hk. Enclosing a half-quantum magnetic flux
in each plaquette of the 2D dice lattice induces a completely
flat spectrum, which leads to an AB cage manipulated by the
destructive interference.

III. COMPACT LOCALIZED STATES

The dice lattice spectrum is fully flat as a consequence of
the destructive interference, caused by the interplay between
nonreciprocal couplings ±iJ; in this situation, the eigenstates
of the dice lattice are CLSs. In this section, we analytically
discuss the eigenstates of the dice lattice from the view point
of destructive interference, that is, the cancellation of the
wave-function superposition associated with the couplings.
This will deepen our understanding of the flatband and the
localization effect in the dice lattice.

The 2D lattice is more complicated than the 1D lattice. The
configuration of CLSs may not be coincident with the configu-
ration of the unit cells. With different types and orientations of
the diamond plaquettes in the dice lattice, there are many dif-
ferent ways to choose the unit cell. These hinder uncovering
the localization properties of the dice lattice. To understand
the dice lattice, we emphasize the importance of the snowflake
structures. The snowflake configuration includes six branch
sites that are coupled to the central site as indicated in Fig. 1.
The identical snowflakes are connected one by one in the
horizontal direction; two configurations of horizontally cou-
pled snowflakes are connected and alternatively present in the
vertical direction. Notably, each snowflake connects to its six
adjacent snowflakes through sharing two sites. The two types
of snowflakes can also be regarded as the building blocks of
the dice lattice; in this viewpoint, the configurations of CLSs
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in the dice lattice are straightforwardly understood from the
destructive interference, and the wave-function amplitudes of
CLSs are easily obtained.

In the dice lattice, the repetition manner of the snowflakes
is identical to the repetition manner of the unit cells. Both
two types of snowflakes have two nonzero-energy eigenstates
and five degenerate zero-energy eigenstates, being identical to
the three flatband energies of the dice lattice. The CLSs of
the flatband, instead of being localized in the configurations
formed by the unit cells, are compactly localized in the
configurations of snowflakes.

The matrix form Hamiltonian of the type-I snowflake is

hI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 iJ 0 0 0
0 0 0 iJ 0 0 0
0 0 0 iJ 0 0 0

−iJ −iJ −iJ 0 −iJ −iJ iJ
0 0 0 iJ 0 0 0
0 0 0 iJ 0 0 0
0 0 0 −iJ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

The steady-state Schrödinger equations for hI are

hI|ψI〉 = E |ψI〉. (7)

The energies of hI satisfy det(hI − EI7) = 0, where I7 rep-
resents the 7×7 identity matrix. Thus, the energies of hI

can be obtained from E5(6J2 − E2) = 0. The corresponding
eigenstates are obtained from the steady-state Schrödinger
equations,

iJψ4 = Eψ1,

iJψ4 = Eψ2,

iJψ4 = Eψ3,

−iJ (ψ1 + ψ2 + ψ3 + ψ5 + ψ6) + iJψ7 = Eψ4,

iJψ4 = Eψ5,

iJψ4 = Eψ6,

−iJψ4 = Eψ7. (8)

The unnormalized eigenstate for the nonzero-energy ±
√

6J is

|ψI〉 = [−1,−1,−1,±i
√

6,−1,−1, 1]T , (9)

which is the type-I CLSs of the dice lattice illustrated in Fig. 3
on the top left. The five unnormalized linearly independent
degenerate zero-energy eigenstates are

|ψI〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0

−1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0

−1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0

−1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

Type-V

Type-I

Type-III

Type-VI

Type-II

Type-IV

FIG. 3. Schematic of the six types of CLSs of the dice lattice.
The energies of the CLSs are ±√

6J for the top panel and 0 for
the middle and bottom panels. The wave-function values of the
unmarked sites are zero.

The situation for the snowflake of type-II is similar, the
matrix form Hamiltonian of the type-II snowflake reads

hII =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 iJ 0 0 0

0 0 0 −iJ 0 0 0

0 0 0 iJ 0 0 0

−iJ iJ −iJ 0 −iJ iJ iJ

0 0 0 iJ 0 0 0

0 0 0 −iJ 0 0 0

0 0 0 −iJ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

From the steady-state Schrödinger equations hII|ψII〉=E |ψII〉,
we obtain the unnormalized eigenstate for the nonzero-energy
±

√
6J as

|ψII〉 = [−1, 1,−1,±i
√

6,−1, 1, 1]T , (12)

which is the type-II CLSs of the dice lattice illustrated
in Fig. 3; the other five unnormalized linearly independent
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degenerate zero-energy eigenstates are

|ψII〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0

−1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0

−1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

Any superposition of the degenerate zero-energy eigenstates
is still the eigenstate. We point out that the key feature of the
zero-energy eigenstates for the Hamiltonian of the snowflake
is the vanishing amplitude on its central site ψ4 = 0 as a con-
sequence of the destructive interference of the wave functions
of the six branch sites. The zero-energy CLSs of the dice
lattice are superpositions of these zero-energy eigenstates.

All the possible CLSs in the dice lattice are classified into
six types of configurations according to the two inequivalent
snowflake structures as well as the three flatband energies.
In Fig. 3, the wave function of the CLSs in the real space
are schematically illustrated; all the six types of CLS con-
figurations of wave-function distributions are presented with
their wave functions marked. The CLSs are all localized
in the snowflakes. Apparently, each CLS configuration is
inequivalent to the other five CLS configurations; however, all
the possible CLSs in the form of the six CLS configurations
found in the dice lattice are not necessarily orthogonal to
each other and are not fully linear independent due to the
doubly degeneracy of the flatbands. The CLSs of type-I and
type-II shown in the top panel of Fig. 3 distribute in a single
snowflake structure and are for the flatbands with nonzero
energies

√
6J and −

√
6J , with the value of the wave function

at the center of the snowflake being
√

6i and −
√

6i, respec-
tively. For the zero-energy flatband, the CLSs from type-III to
type-VI shown in the middle and bottom panels of Fig. 3 are
distributed in three snowflakes that are connected in the form
of a trident star.

It is straightforward to verify that the CLSs illustrated in
Fig. 3 satisfy the series of discrete Schrödinger equations,

H |ψE 〉 = E |ψE 〉, (14)

in the whole 2D lattice plane, where |ψE 〉 represents the wave
function for the eigenvalue E . To be precise, the Schrödinger
equations are a set of equations with their left sides being
the summation of the products of the couplings and the
related wave-function amplitudes; whereas the right sides of
the Schrödinger equations are the product of the eigenvalue
and the corresponding wave function. For the CLSs of both
type-I and type-II, they satisfy the Schrödinger equations and
can be verified as follows. The left side of the Schrödinger
equation for the center site of the snowflake is the summation
of six products of the branch couplings and the corresponding
wave-function values, that is

5(−iJ )(−1) + (iJ )(+1) = 6iJ, (15)

3(−iJ )(−1) + 3(iJ )(+1) = 6iJ (16)

for type-I and type-II, respectively; the right side of the
Schrödinger equation for the center site of the snowflake is the

product of the flatband energy and the wave-function value at
the center site, that is

(±
√

6J )(±
√

6i) = 6iJ, (17)

and equals to the left side of the Schrödinger equation. The
left side of the Schrödinger equation for the branch site of
the snowflake is the product of the branch coupling and the
wave-function value at the center site of the snowflake, that is

(iJ )(±
√

6i) = ∓
√

6J, (18)

(−iJ )(±
√

6i) = ±
√

6J (19)

for the branch site with wave-function value (−1) and (+1),
respectively; the right side of the Schrödinger equation for
the branch site of the snowflake is the product of the flatband
energy and the wave-function value at the branch site, that is

(±
√

6J )(−1) = ∓
√

6J, (20)

(±
√

6J )(+1) = ±
√

6J (21)

for the branch site with wave-function values (−1) and (+1),
respectively; thus, the left and right sides of the Schrödinger
equations for the branch sites of the snowflake are also equal.
These are in accord with the discussed nonzero eigenstate
solutions of hI,II.

The other four types of configurations from type-III to
type-VI represent the zero-energy CLSs. The Schrödinger
equations for the CLSs in these configurations can be verified
after checking the validity of the Schrödinger equations for the
16 sites of the three snowflakes. Note that the corresponding
flatband energy is zero; thus, the right side of the Schrödinger
equation for every site is zero because it is the product of
the flatband energy and the wave-function value. Besides, the
wave-function values are zero for all the sites that connect to
the center with wave-function value (+3) in these configura-
tions; thus, the left side of the Schrödinger equations for these
13 sites (except for the three snowflake centers) are all zero
because they are all equal to the product of the zero wave-
function values and the corresponding couplings. Thus, the
left and right sides of the Schrödinger equations for these 13
sites are all zero and being equal. We also need to calculate the
left side of the Schrödinger equations for the three snowflake
centers in the four configurations from type-III to type-IV. Let
us take type-III as an elucidation, the summation of products
of four nonvanishing wave-function values and the corre-
sponding branch couplings (±iJ ) for the snowflake on the top
left of the configuration type-III is (−1)(iJ ) + (+1)(−iJ ) +
(+1)(−iJ ) + (+3)(iJ ) = 0. Similarly, the left sides of the
Schrödinger equations for the other snowflake centers in type-
III and all the others in type-IV, type-V, and type-VI are all
zero. Thus, the CLSs in all the six configurations shown in
Fig. 3 satisfy the Schrödinger equations of the dice lattice.

The CLSs of the dice lattice are completely localized
because the CLSs are isolated snowflake configurations. This
is because the wave functions at the two shared branch sites
destructively interfere at the central site of each adjacent
snowflake that connects to them. For type-I and type-II CLSs,
there are six adjacent snowflakes connected with the CLSs
configuration. For the type-III to type-VI CLSs, there are nine
neighbor snowflakes connected with the CLSs configuration.
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The CLSs from different flatbands have different energies
and are orthogonal to each other. Moreover, the degenerate
CLSs of type-I and type-II from the same flatband with
identical energy are still orthogonal to each other. Thus, all
the CLSs of type-I and type-II are orthogonal and linearly
independent, regardless of their energies. The eigenstates of
the zero-energy flatband are CLSs from type-III to type-VI,
but not all of them supported in the dice lattice are linearly
independent as further explained in the Appendix.

The dice lattice shown in Fig. 1 is considered under
periodic boundary conditions along both the horizontal and
the vertical directions. The dice lattice has 48 sites in to-
tal; thus, there are 48 linearly independent CLS eigenstates.
Note that the snowflake structures are distributed into four
horizontal lines of the dice lattice, each horizontal line has
four snowflakes. There are 16 snowflakes in total including 8
type-I snowflakes and 8 type-II snowflakes. Every snowflake
supports two independent CLSs with energies −

√
6J and√

6J . Thus, there are 16 CLSs with energies −
√

6J and 16
CLSs with energy

√
6J . All the 32 CLSs of type-I and type-II

localized in the single snowflake are linearly independent.
The rest 16 energy levels of the dice lattice belong to the
zero-energy flatband. To summarize, the 48 size dice lattice
has three flatbands with energy −

√
6J , 0, and +

√
6J; each

flatband is constituted by 16 energy levels.
The eigenstates of the zero-energy flatband are CLSs of

type-III to type-VI. Both the first and the third horizontal
lines from the top of the dice lattice with four snowflakes
support four type-III and four type-V zero-energy CLSs; both
the second and the fourth horizontal lines from the top of
the dice lattice with four snowflakes support four type-IV and
four type-VI zero-energy CLSs. There are, in total, 32 CLSs
of type-III to type-VI; however, all the CLSs of type-III to
type-VI are not fully linearly independent, and only part of
them are linearly independent. The fact is noted from the zero
and nonzero overlaps between the CLSs of type-III to type-VI.

The time-evolution state of the initial excitation being the
CLS is shown in Fig. 4. Figures 4(a)–4(d) are for the CLSs
of flatbands with nonzero energies. Figures 4(e)–4(h) are for
the CLSs of flatband with zero energy. The distribution of the
excitation is well localized at the long time interval. With the
analytical CLSs of all the flatbands, we can systematically
investigate the 2D localization dynamics of AB caging in the
dice lattice.

IV. LOCALIZATION DYNAMICS

The complete confinement in a lattice with its spectrum
full of flatbands is referred to as the AB caging [49–51]. We
present the complete localization dynamics of the AB caging
in the dice lattice on the premise of analytical CLSs. In this
section, we demonstrate the time-evolution dynamics of the
CLSs and the other states that are not the eigenstates of the
dice lattice where the localization and fidelity in the time-
evolution process are highlighted. Nondiffractive dynamics
of all the eight CLSs are presented in Fig. 4; two types of
representative single-site excitation and the time evolutions
for the arbitrary initial states are demonstrated.

In Fig. 4, the CLS configuration is taken as the initial exci-
tation �(0), and the numerical simulation of the time-evolved

(f)(e)

(d)(c)

(b)(a)

(h)(g)

max.0 max.0

FIG. 4. Localization of normalized CLSs in the 48-site dice
lattice under periodic boundaries. The intensity of excitation
〈�(t )|�(t )〉 of the evolved initial excitation is at a long time moment
t = 100/J . The initial excitation is (a) the type-I CLS with energy
−√

6J , (b) the type-II CLS with energy −√
6J , (c) the type-I CLS

with energy
√

6J , (d) the type-II CLS with energy
√

6J , (e) the
type-III CLS, (f) the type-IV CLS, (g) the type-V CLS, and (h) the
type-VI CLS. The coupling is set to be unity J = 1. The schematic
of the dice lattice is in Fig. 1.

state |�(t )〉 is exhibited for all the configurations of CLSs
shown in Fig. 3. For the excitation being a single snowflake
localized eigenstate, the intensity of excitation 〈�(t )|�(t )〉
is localized in the single snowflake without escaping; for
the excitation being a zero-energy eigenstate, the intensity
is completely localized within the three snowflakes without
escaping. It is noted that the CLS distribution is well localized
without changing; this exhibits the nondiffractive dynamics of
the CLSs. Moreover, the time evolution of the superposition
of CLSs is performed as follows. The dynamics is still non-
diffractive and localized; and the excitation is confined within
the areas where the CLSs have nonzero intensity distribution.
Note that the eigenstates of the dice lattice under half-quantum
magnetic flux are all CLSs. Any initial excitation in the dice
lattice is a superposition of different configurations of CLSs;
thus, the excitation in the dice lattice will be fully confined
without escaping. From the localized CLSs of the dice lattice,
it is expected that any form of the initial excitation must be
confined in the compound snowflake structure as the superpo-
sition of the snowflakes of the related CLSs. In practice, the
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FIG. 5. Schematics of the single-site excitation (shaded in or-
ange) on the sublattice sites from a to f .

localization effect of the time-evolution dynamics in the dice
lattice can be understood from the dynamics of the single-site
excitation.

In the following, we systematically investigate the
dynamics of an arbitrary excitation in the dice lattice.
The dice lattice enclosed with half-quantum magnetic flux
has six types of sublattices, including the sublattices c, d
positioned at the snowflake centers (hub sites) and the
sublattices a, b, e, and f positioned at the snowflake branch
sites (rim sites) in the dice lattice. The analytical dynamics
for an arbitrary initial state �(t ) is the superposition of the
evolved states of CLSs; that is,

|�(t )〉 = e−iHt |�(0)〉 =
∑

j

λ je
−iE jt |ψ j〉, (22)

where |ψ j〉 is the CLS with flatband energy Ej and λ j is the
superposition coefficient.

To calculate the time-evolution dynamics, we point out that
any initial excitation is a superposition of the single-site exci-
tation of the six types of sublattices. Thus, we first analytically
calculate the dynamics of the six types of single-site excitation
from which we, then, obtain the dynamics of an arbitrary ex-
citation as a superposition of different single-site excitations.
The single-site excitations on the sublattices a, b, c, d, e,
and f sites are illustrated in Fig. 5, respectively. The excitation
will be confined in the related snowflake configurations.

For the excitation being the site a that is shaded in orange
in Fig. 5(a), the initial excitation is related to the CLSs
of all three flatbands of the dice lattice. This form of the
initial excitation is related to three snowflakes that support
the independent CLSs of both flatbands with energies −

√
6J

and
√

6J . It is also related to the type-V CLS of the zero-
energy band centered at the initial excitation. Note that all
the zero-energy CLSs have vanishing amplitudes at the three
rim sites in the hexagonal structure except for the hexagonal
center as elaborated in Fig. 3; thus, the initial excitation is
not relevant to any other zero-energy CLSs, and the excitation
is completely confined inside the three-snowflake area of
the type-V zero-energy CLSs. The initial-state |�a(0)〉 is a
superposition of seven CLSs including a zero-energy type-V
CLS centered at site a, and three pairs of nonzero-energy
CLSs centered at the three snowflake centers of site d and
two sites c, respectively; each pair of nonzero-energy CLSs
have both energies −

√
6J and

√
6J . Two type-I CLSs with

the identical superposition coefficients −1/12 are required to
obtain the vanishing distribution at site d in the top snowflake
for the initial-state |�a(0)〉. For the vanishing distribution of
|�a(0)〉 at the two sites c at the bottom left and the bottom
right snowflake centers, the superposition coefficients for the
two type-II CLSs are 1/12 and −1/12, respectively. The
superposition coefficient for the type-V CLS is 1/6. The time-
evolution state |�a(t )〉 can be written as

|�a(t )〉 = 1

6
|ψV,0,a〉 − 1

12

∑
σ=±

e−iσ
√

6Jt (|ψI,σ,d〉

− |ψII,σ,cl 〉 + |ψII,σ,cr 〉)

= 1

6
[1 − β, β − 1, β − 1, 0,

√
6α, 1 − β, β − 1,

−
√

6α, 3(β + 1), 0, β − 1, 0,−
√

6α,

β − 1, 1 − β, 1 − β]T , (23)

where we set α = sin(
√

6Jt ), β = cos(
√

6Jt ). The Roman
numerals in the subscripts indicate the types of the CLSs; the
sign σ indicates the corresponding nonzero flatband energy
σ
√

6J; the letters d, cl , and cr indicate where the CLSs
centered, and the subscripts l and r describe the snowflake
centers c on the left side and on the right side, respectively.
The numbers in the schematics in Fig. 5 label the index for the
wave functions of |�a(t )〉. The fidelity as the overlap between
the initial state and the time-evolution state is

Fa(t ) = |〈�a(0)|�a(t )〉| = 1
2 (β + 1). (24)

For the single-site excitation at site b as shown in Fig. 5(b),
initial-state |�b(0)〉 is a superposition of seven CLSs with a
type-III CLS centered at site b and three pairs of nonzero-
energy CLSs localized at the snowflake centers. The time-
evolution state |�b(t )〉 is

|�b(t )〉 = 1

6
|ψIII,0,b〉 + 1

12

∑
σ=±

e−iσ
√

6Jt (|ψII,σ,cl 〉

+ |ψII,σ,cr 〉 − |ψI,σ,d〉)

= 1

6
[1 − β, β − 1, 1 − β,

√
6α, 0, β − 1, 0,

3(β + 1),−
√

6α, β − 1, 1 − β,
√

6α,

0, 1 − β, β − 1, β − 1]T . (25)

The numbers in the schematics in Fig. 5 label the index for the
wave functions of �b(t ). The fidelity as the overlap between
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FIG. 6. Fidelity F (t ) = |〈�(0)|�(t )〉| and snapshots of the intensity of excitation 〈�(t )|�(t )〉 in the time-evolution process for the single-
site initial excitation in the 48-site dice lattice under periodic boundaries. The initial state is normalized, 〈�(0)|�(0)〉 = 1. The analytical
results of F (t ) are indicated by the black solid lines; the numerical results of F (t ) are in the red dots. (a) The initial excitation is a single-site
excitation at the center of the snowflake �c(t ). (b) The initial excitation is a single-site excitation at the branch site of the snowflake � f (t ).
The schematic of the dice lattice is in Fig. 1.

the initial state and the time-evolution state is

Fb(t ) = |〈�b(0)|�b(t )〉| = 1
2 (β + 1). (26)

Figure 6(a) performs the numerical simulation of the time
evolution for a single-site excitation on a center site of
the snowflake |�c(t )〉. In this situation, the initial excita-
tion is unrelated to the CLSs of the zero-energy flatbands.
This is because that the wave function at the snowflake center
is zero for all the CLSs of zero-energy flatbands, which can
be seen from the CLS distributions from type-III to type-VI
shown in Fig. 3. Thus, the single-site excitation at the center
of the snowflake only relates to the four CLSs with energies
−

√
6J and

√
6J; the type of CLSs is either type-I or type-II

and depends on the snowflake being excited. Thus, the initial
excitation is a superposition of such two kinds of nonzero
CLSs localized in a single snowflake, and the excitation is
completely confined inside the snowflake that the single-site
initial state is excited. For the single-site excitation at the site c
as shown in Fig. 5(c), the initial state |�c(0)〉 is confined in the
snowflake, being a superposition of the two nonzero-energy
type-II CLSs, the superposition coefficient for the state with
energy

√
6J is −

√
6i/12 and for state with energy −

√
6J is√

6i/12. Therefore, the time-evolution state |�c(t )〉 is

|�c(t )〉 = −
√

6i

12

∑
σ=±

σe−iσ
√

6Jt |ψII,σ,c〉

=
√

6

6
[α,−α, α,

√
6β, α,−α,−α]T . (27)

The fidelity as the overlap between the initial state and the
time-evolution state is

Fc(t ) = |〈�c(0)|�c(t )〉| = |β|. (28)

For the single-site excitation at site d as shown in
Fig. 5(d), initial state |�d (0)〉 is a superposition of the two
nonzero-energy type-I CLSs; the superposition coefficients
are −

√
6i/12 for the CLS with energy

√
6J and

√
6i/12 for

the CLS with energy −
√

6J . Therefore, the time-evolution
state |�d (t )〉 is

|�d (t )〉 = −
√

6i

12

∑
σ=±

σe−iσ
√

6Jt |ψI,σ,d〉

=
√

6

6
[α, α, α,

√
6β, α, α,−α]T . (29)

The fidelity as the overlap between the initial state and the
time-evolution state is

Fd (t ) = |〈�d (0)|�d (t )〉| = |β|. (30)

For the single-site excitation at the site e as shown in
Fig. 5(e), initial-state |�e(0)〉 is a superposition of seven CLSs
with a type-IV CLS centered at site e and three pairs of
nonzero-energy CLSs localized at the snowflake centers. The
time-evolution state |�e(t )〉 is

|�e(t )〉 = 1

6
|ψIV,0,e〉 − 1

12

∑
σ=±

e−iσ
√

6Jt (|ψII,σ,c〉

+ |ψI,σ,dl 〉 + |ψI,σ,dr 〉)

= 1

6
[β − 1, β − 1, β − 1, 0,−

√
6α, β − 1, β − 1,

−
√

6α, 3(β + 1), 0, 1 − β, 0,−
√

6α,

β − 1, β − 1, 1 − β]T . (31)

The fidelity as the overlap between the initial state and the
time-evolution state is

Fe(t ) = |〈�e(0)|�e(t )〉| = 1
2 (β + 1). (32)

For the single-site excitation at site f as shown in
Fig. 5(f), initial-state |� f (0)〉 is a superposition of seven CLSs
with a type-VI CLS centered at site f and three pairs of
nonzero-energy CLSs localized at the snowflake centers. The
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time-evolution state |� f (t )〉 is

|� f (t )〉 = 1

6
|ψVI,0, f 〉 + 1

12

∑
σ=±

e−iσ
√

6Jt (|ψI,σ,dl 〉

− |ψI,σ,dr 〉 − |ψII,σ,c〉)

= 1

6
[1 − β, 1 − β, 1 − β,

√
6α, 0, 1 − β, 0,

3(β + 1),−
√

6α, β − 1, β − 1,−
√

6α,

0, 1 − β, β − 1, 1 − β]T . (33)

Figure 6(b) presents the numerical simulation of the time
evolution for a single-site excitation on a branch site of the
snowflake |� f (t )〉. The fidelity as the overlap between the
initial state and the time-evolution state is

Ff (t ) = |〈� f (0)|� f (t )〉| = 1
2 (β + 1). (34)

Figure 6 shows the dynamics of the typical situations for
the single-site initial excitation. The time-evolution dynamics
is periodic for the excitation, and the period is 2π/(

√
6J ) ≈

2.57J−1 obtained from the nonzero flatband energy. The fi-
delity of the time-evolved excitation F (t ) = |〈�(0)|�(t )〉| is
shown at the left side of the plots.

It is worth mentioning that the two localization dynamics
elaborated in Fig. 6 are the only two classes of localization
behaviors. Generally, Fig. 6(a) represents the localization
dynamics for a single-site excitation at the center site of the
snowflake; and Fig. 6(b) represents the localization dynamics
for a single-site excitation at the branch site of the snowflake.
With all the analytical results of single-site excitation for the
six types of sublattices, any initial state is a superposition of
these six types of dynamics.

In Fig. 7(a), we perform the numerical simulations for the
initial excitation being a snowflake with all seven sites equally
excited at the same strength, and the excitation amplitudes
on different sites have the same phase. As an example of
the general excitation, we show that the localization of a
general excitation can be roughly grasped from the two typical
dynamical behaviors of a single-site excitation. The fidelity
obtained from the time evolution dynamics is

F (t ) = 1
21 |11β + 10|. (35)

In Fig. 7(b), the numerical simulation is performed for the
initial excitation on the four centers of four nearest hexagonal
structures that are coupled in the configuration of a trident
star; the four sites are equally excited at the same strength
and the same phase. In both situations shown in the first two
rows of Fig. 7, the excitations are completely confined within
the seven hexagonal structures close to the excitations. The
fidelity obtained from the time-evolution dynamics is

F (t ) = 1
24 |13β + 11|. (36)

In Fig. 7(c), we perform the numerical simulations for
the initial excitation that equally excites the four sites of a
diamond plaquette at the same strength and the same phase;
the coefficients of the excitation on the diamond plaquette
are 1:1:1:1. Note that among the four sites of the diamond
plaquette, two of them are the snowflake centers, and the other

two sites are the branch sites of two other snowflakes; thus,
the diamond plaquette is relevant to four nearest-neighbor
snowflakes shown in Fig. 7(c) and the excitation is always
confined in the relevant four snowflakes in the whole time-
evolution process. The analytical expression is given in the
Appendix from which we obtain the fidelity,

F (t ) = 1
4 |3β + 1|. (37)

In Fig. 7(d), we perform the numerical simulations for
the initial excitation that equally excites three sites on a
vertical line, the coefficients of the excitation on the three sites
are 1:1:1. Note that among the three excited sites, one site
(on the top) is the snowflake center, and the other two sites
(in the middle and at the bottom) are branch sites. Each
branch site is relevant to three snowflakes, but the two dif-
ferent branch sites being excited share two of the relevant
snowflakes; and the top site share the snowflake where it cen-
ters. Thus, the excitation is confined in four nearest-neighbor
snowflakes shown in Fig. 7(d) in the whole time-evolution
process. The analytical expression is given in the Appendix
from which we obtain the fidelity,

F (t ) = 1
3 |2β + 1|. (38)

Due to the flatness of all energy levels, such dice lattice
we discussed present localization when performing the time
evolution. Any initial state is confined in a certain area that
is related to CLS configurations. Dynamics only for CLSs
is nondiffractive, and the intensity distribution is constant
for each site. From all the situations that are exhibited in
Figs. 6 and 7, we note that the localization dynamics of an
initial excitation in the general case is compactly localized in
the snowflakes that relates to the sites being excited as our
expectation and the period of the time evolution is 2π/(

√
6J ).

The quench dynamics in the α-T3 lattice and the dynam-
ical quantum phase transition are recently reported through
investigating the three-band Bloch Hamiltonian in the mo-
mentum space [74]. The quench dynamics is a powerful
approach in extracting the properties of the physical sys-
tem. The quench dynamics in the dice lattice enclosed
with tunable magnetic flux is an interesting topic for fu-
ture study. Alternatively, the capability of calculating the
dynamics of arbitrary excitation enables us to investigate
the quench dynamics in the real space by taking the dice
lattice Hamiltonian as the finial Hamiltonian after quench.
The confinement dynamics can be understood from a different
viewpoint.

V. CONCLUSION

The dice (T3) lattice supports AB caging when the half-
quantum magnetic flux is enclosed in the diamond plaquette
of the dice lattice. In this situation, the dice lattice has a
six-site unit cell; and all the six energy bands form three
doubly degenerate flatbands, being symmetric about the zero
energy. We have analytically presented the eigenstates of
the dice lattice, which are the CLSs that are localized in
the snowflake structures of the dice lattice. The CLSs of
every flatband has two inequivalent configurations of wave-
function distributions according to the double degeneracy
of the flatband. The CLSs of the nonzero-energy flatbands

054301-9



S. M. ZHANG AND L. JIN PHYSICAL REVIEW B 102, 054301 (2020)

=0.5t =1t =1.5t =2t =2.5t

=0t =0.5t =1t =1.5t =2t =2.5t

0  2.5 5 
0

0.5

1(a)

0  2.5 5 
0

0.5

1(b)

=0t =0.5t =1t =1.5t =2t =2.5t
(c)

0  2.5 5 
0

0.5

1

=0t =0.5t =1t =1.5t =2t =2.5t
(d)

0  2.5 5 
0

0.5

1

0

max.

0

max.

0

max.

0

max.

=0t

FIG. 7. Fidelity F (t ) = |〈�(0)|�(t )〉| and snapshots of the time-evolved excitation intensity 〈�(t )|�(t )〉 for the initial excitation |�(0)〉
of (a) a snowflake with all seven sites; (b) a trident star with all four sites; (c) a diamond plaquette with all four sites; and (d) a vertical line of
three neighbor sites. The initial state is normalized, 〈�(0)|�(0)〉 = 1. The analytical results of F (t ) are indicated by the black solid lines; the
numerical results of F (t ) are in the red dots. In all the cases, the excitation has equal amplitude and same phase on each site. The dice lattice
has 144 sites and the coupling strength is J = 1. The lattice couplings are indicated in the left bottom corner of the snapshots of the four cases
at t = 0. The numbers in (c) and (d) label the index for the wave functions of �(t ) given in the Appendix.

are localized in a single snowflake; all the nonzero-energy
CLSs are linearly independent. In contrast, the CLSs of the
zero-energy flatband are localized in three nearest-neighbor
snowflakes that are arranged in the form of a trident star;
there are four types of zero-energy CLSs configurations, but
only part of them supported in the dice lattice are linearly
independent. The single-site initial excitations are either con-
fined in a single snowflake or confined in the relevant three
connected snowflakes. The localization dynamics of the AB
caging is in accord with the analytical results for the CLSs
of the dice lattice. In general, arbitrary initial excitation is
compactly confined within the relevant snowflakes that relates
to the excited sites. Moreover, the oscillation period of the
AB caging is 2π/(

√
6J ). In the future, it would be interesting

to further investigate the influences of nonlinearity and non-

Hermiticity on the spectrum and localization dynamics in the
dice lattice [10,11,45].
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APPENDIX

1. Orthogonality of degenerate CLSs

The CLSs from different flatbands have different energies
and are orthogonal to each other. Thus, we focus on the
orthogonality of the degenerate CLSs. We consider the de-
generate CLSs of type-I and type-II. The two CLSs of type-I
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(a)

(b) (c)

FIG. 8. (a) Schematic of the orthogonality for CLSs of type-I
and type-II that are localized in the nearest-neighbor snowflakes.
All the situations are exemplified. (b) Orthogonal CLSs with zero
overlap between CLSs of type-III and type-IV. (c) Nonorthogonal
CLSs with nonzero overlap between CLSs of type-III and type-VI.
The wave-function values of CLSs are marked. The shared sites of
the two CLSs are shaded in gray.

or two CLSs of type-II may present in two nearest-neighbor
snowflakes in the horizontal direction; alternatively, the two
CLSs with one type-I and one type-II can localize nearby
below or above each other. In all the situations, the CLSs
of type-I and type-II localized nearby share two sites of the
snowflakes as exhibited in Fig. 8(a). The overlap between
different CLSs of type-I and type-II are directly calculated
from the marked wave-function values, that is 1 + (−1) = 0
for either two CLSs shaded in different colors. Moreover, the
degenerate CLSs of type-I and type-II are still orthogonal to
each other. To summarize, all the CLSs of type-I and type-II
are orthogonal and linearly independent, regardless of their
energies.

The eigenstates of the zero-energy flatband are CLSs from
type-III to type-VI. In the dice lattice of Fig. 1, both the first
and the third horizontal lines from the top of the dice lattice
with four snowflakes support four type-III and four type-V
zero-energy CLSs; both the second and the fourth horizontal
lines from the top of the dice lattice with four snowflakes
support four type-IV and four type-VI zero-energy CLSs.
There are, in total, 32 CLSs of type-III to type-VI; however,
all the CLSs of type-III to type-VI are not fully linearly
independent, and only part of them are linearly independent.

The fact is noted from the zero and nonzero overlaps between
the CLSs of type-III to type-VI. For example, the overlap
between the CLSs of type-III and type-IV shown in Fig. 8(b)
is zero; similarly, the overlap between the CLSs of type-V and
type-VI as the nearest neighbors is also zero.

In contrast, two CLSs of type-III and type-VI localized
vertically as the nearest neighbor share eight sites as shown
in Fig. 8(c), their overlap is nonzero; moreover, one CLS
of type-III and one CLS of type-V localized vertically as
the nearest neighbor share seven sites, their overlap is also
nonzero.

2. Examples of the time-evolution dynamics

We elucidate how to obtain the dynamics of an arbitrary ex-
citation from the dynamics of single-site excitations presented
in Sec. IV. Two examples in Fig. 7 are elucidated as follows.

In Fig. 7(c), initial-state |�(0)〉 with sites 8, 9, 12, and 13
equally excited is an equal amplitude superposition of
four single-site excitations shown in Eqs. (33), (27), (29),
and (23). The superposition coefficients are 1/2. |�8(t )〉,
|�9(t )〉, |�12(t )〉, and |�13(t )〉 represent the time evolution
of the single-site excitation at 8, 9, 12, and 13, respectively.
The time-evolution state |�(t )〉 is

|�(t )〉 = 1
2 [|�8(t )〉 + |�9(t )〉 + |�12(t )〉 + |�13(t )〉]

= 1
12 [1 − β, 1 − β, 1 − β,

√
6α,

√
6α − β + 1,

−
√

6α, β +
√

6α − 1, 3β + 2
√

6α + 3, 6β,
√

6α, 2β +
√

6α − 2, 6β − 2
√

6α, 3(β + 1),

1 −
√

6α − β, 2β +
√

6α − 2, 1 −
√

6α − β,

−
√

6α, β − 1, 1 − β, 1 − β]T , (A1)

where the numbers in Fig. 7(c) label the index for the wave
functions of |�(t )〉; the amplitude on the other sites without
labels are all zeros. The fidelity in Eq. (37) is obtained from
|�(t )〉 in Eq. (A1).

In Fig. 7(d), initial state |�(0)〉 with sites 9–11 equally
excited is an equal amplitude superposition of three single-site
excitations shown in Eqs. (29), (23), and (25). The superpo-
sition coefficients are

√
3/3. |�9(t )〉, |�10(t )〉, and |�11(t )〉

represent the time evolution of the single-site excitation at
9–11, respectively. The time-evolution state |�(t )〉 is

|�(t )〉 =
√

3

3
[|�9(t )〉 + |�10(t )〉 + |�11(t )〉]

=
√

3

18
[2(1 − β ), 2(β − 1), β +

√
6α − 1,

√
6α − β + 1, 2

√
6α, 1 − β, β − 1, β +

√
6α − 1,

6β −
√

6α, 3β +
√

6α + 3, 3(β + 1),−
√

6α,

β − 1, β +
√

6α − 1, 1 −
√

6α − β, 0,

β − 1, 1 − β, 0, 0]T , (A2)

where the numbers in Fig. 7(d) label the index for the wave
functions of |�(t )〉; the amplitude on the other sites without
labels are all zeros. The fidelity in Eq. (38) is obtained from
|�(t )〉 in Eq. (A2).
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