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Neutron Brillouin scattering and ab initio simulation study of the collective dynamics of liquid silver
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We present a thorough investigation of the collective dynamics of liquid Ag combining neutron Brillouin
scattering and ab initio molecular dynamics (AIMD) determinations of the dynamic structure factor S(Q, ω).
The main scope of this work is not only to provide experimental results for some important dynamical properties
of this liquid metal in the wave-vector range 4 < Q < 16 nm−1, but also to inquire about the scarce detectability
of shear waves apparently characterizing two elements of group IB, differently from other metals. In fact, as
in the case of Au, a transverse-like dynamics is not deducible from the experimental S(Q, ω) of Ag, despite
the indisputable quality of the neutron data collected on the BRISP spectrometer at the Institut Laue Langevin
in Grenoble. However, the significant agreement between experiment and AIMD calculations allowed for an in-
depth study of the simulated S(Q, ω) in a Q range overlapping and extending the experimental one. A multimode
analysis, already proven very successful in the description of various dynamical properties of fluid systems, is
shown to be extremely effective also to analyze the intermediate scattering function predicted by AIMD at the
various Q values, and eventually enables a reliable determination of both longitudinal and transverse branches in
the dispersion curve of this liquid. Throughout the paper we highlight the importance of referring to theoretically
well-founded models for S(Q, ω) and of imposing physical constraints in a fit-based analysis: These ensure that
the used models obey fundamental properties of the dynamic structure factor.

DOI: 10.1103/PhysRevB.102.054210

I. INTRODUCTION

The present knowledge about very general dynamic prop-
erties of fluids is partly the result of the intense research work
specifically devoted to pure liquid metals for decades [1,2].
The simple monatomic nature of these systems is certainly
one of the reasons attracting scientists in the field to perform
both spectroscopic and simulation studies of this class of
liquids (see, e.g., Refs. [3–7] and introductory references
therein), which enable to go to the core properties of the
translational dynamics without the complications induced by
a polyatomic composition of the sample. In many respects,
the progresses made up to present times about the physics
of the liquid state have seen liquid metals playing a role in
experimental studies as important as that of Lennard-Jones
(model) fluids in early simulations of whatever many-body
disordered system. Therefore, liquid metals represent, from a
fundamental point of view, reference samples for experimen-
tal investigations, especially when addressing still open issues
about the appropriate correlation functions able to reveal the
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main dynamical collective processes in simple liquids, i.e.,
sound and shear waves. In fact, one longstanding question
regards the detectability of transverse-like excitations from
what neutron or x-ray THz spectroscopies provide, i.e., the
dynamic structure factor S(Q, ω). This quantity is related
to the longitudinal dynamics [3] and should not, in princi-
ple, contain excitations of the transverse type. Nevertheless,
although S(Q, ω) is dominated by longitudinal collective
modes, in some systems the presence of a lower-frequency
second excitation has been reported [5,8–12] and interpreted
as a manifestation of transverse waves propagating in the
fluid. This is, in our opinion, a still unsettled issue deserving
further investigation. The study of the transverse dynamics
in presence of the dominant longitudinal one has been the
object of numerical and experimental investigations also in
more complex systems as molecular liquids, like, for instance,
water [13–15], aqueous mixtures [16], and methanol [17].

At certain densities and length scales, shear modes are
unambiguously present also in simple monatomic dense flu-
ids, as confirmed by innumerable simulation results for the
density of states of liquids (i.e., the spectrum of the velocity
autocorrelation function) or for the transverse current-current
correlation, since the late 1970s [18–20] up to more recent
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[21,22] and present times [7,23,24]. Nonetheless, there are
contrasting indications about what can effectively be extracted
from measurements of S(Q, ω), if one takes into account
that a more or less elaborate data correction involving some
approximations, and a sensible choice of the model fit func-
tions are required. The latter point is particularly important
if one assumes, as it should be done, that the model spectra
must comply with some fundamental properties of S(Q, ω).
In this work we rely on the well-founded theoretical result
that assigns to S(Q, ω) the property of being represented
by a sum of generalized Lorentzian lines, as summarized in
Sec. IV, with the proviso that such expression should ensure
as a minimum requirement that its second frequency moment
is a finite quantity. The compliance of fit models with these
fundamental properties of S(Q, ω) does not appear to have
always been a concern in the analysis presented in several
works on the subject.

Among more or less recent experimental works on liquid
metals [4,5,8–12] we find an apparent anomaly about gold,
where no transverse-like dynamics was detected via S(Q, ω)
[4], despite its clear evidence in the velocity autocorrelation
function (VAF) [24]. In fact, the experimental and simulated
Au S(Q, ω) spectra were satisfactorily reproduced with the
generalized hydrodynamic (GH) or viscoelastic (VE) model,
respectively. These models, described in Ref. [25], include
one inelastic doublet and ensure the finiteness of at least
the second spectral moment. Further confirmation that the
dynamic structure factor of gold does not carry the fingerprints
of shear modes in the experimental Q range was provided
by a careful Bayesian analysis of the data [26], revealing
that the addition of another inelastic doublet was statistically
unjustified, except perhaps at the higher wave vectors of the
experiment. At such Q values the posterior distributions of
the parameters were still slightly in favor of a one-excitation
model, despite providing the interesting indication that a
transverse dynamics was not totally excluded, on statistical
grounds, at the upper limit of the explored Q range. However,
our attempts to fit a double-excitation model to the Au data,
while maintaining compliance with the same sum rules of
the VE model, either completely failed or provided a worse
description even of the ab initio molecular dynamics (AIMD)
simulations. We thus found no solid evidence of any de-
tectability of shear waves from the dynamic structure factor of
gold, at least within the accuracy of the available experimental
and simulation data.

One might, of course, suppose that, differently from the
case of other systems like zinc [5], where a tiny feature at low
frequency is detectable in the spectra, in metals of the group
IB of the periodic table transverse modes are too weak to show
up in S(Q, ω). As just recalled, this appears to be the case of
Au [4]. For Cu, transverse excitations have been reported [12]
in a limited Q range from an analysis where they are modeled
as Gaussian contributions to the experimentally derived longi-
tudinal current-current spectrum. This can be considered as an
empirical method of locating possible excitation frequencies
but does not correspond to any known theory of the dynamic
structure factor. As we will show in the Appendix, such a
kind of analysis can misleadingly induce to explain the low-
frequency shape of the longitudinal current autocorrelation
spectrum as due to a real excitation. Therefore, a transverse-

like dynamics in liquid Cu still remains, experimentally, as
undetermined as for Au. Understanding whether group IB
metals actually represent a sort of exception, as far as the
detectability of transverse modes from S(Q, ω) is concerned,
calls of course for an investigation of liquid silver and its
dynamical properties.

In this paper we are also interested in addressing a more
general problem concerning the interpretation of low-Q THz
frequency spectra in disordered systems, that is, trying to un-
derstand the role played by different choices of fit models, and
by the imposition or not of physical constraints in the fitting
procedures. In the specific case of metallic liquids, apparent
differences among various systems might indeed also depend
on the data analysis. For instance, results obtained by fitting a
two-excitation model to rather noisy data, and with the neglect
of basic sum rules [i.e., physical constraints on the moments
of S(Q, ω)] in most cases [8–12], might be not so robust. In
this respect, it is important to underline that what appears as
an overdamped or close to overdamped harmonic oscillator
line shape attributed to a second excitation, and frequently
interpreted as transverse in nature, is often, within the typical
accuracy of experimental or simulation data, equally or better
reproduced, at several Q values, by the second (typically
broad) central Lorentzian foreseen by the viscoelastic model
[see Eq. (69) of Ref. [25]]. With this we mean that, at least in
certain Q ranges, the risk of an overinterpretation of the real
information conveyed by S(Q, ω) cannot be excluded.

To reach more insight about the dynamical properties of
liquid metals and the microscopic mechanisms that S(Q, ω) is
able to reveal without ambiguities, we addressed the case of
liquid Ag, both experimentally and by ab initio simulations.

AIMD calculations [7] based on density functional theory
[27] have provided results for the static structure of liq-
uid silver in remarkable agreement with experimental x-ray
[28,29] and neutron [30] diffraction data. By contrast, the
dynamic behavior of this liquid metal still lacks an experi-
mental investigation, despite the importance of its alloys in
applications [31–33], which by themselves ask at least for
a basic knowledge of the main properties of the individual
components.

An estimate of the transverse mode frequencies in liquid
silver was derived from the analysis of the AIMD transverse
current autocorrelation function [7], which undoubtedly re-
veals the presence of shear waves, as expected given the high
density conditions of the fluid. Here our concern is to present
experimental results for S(Q, ω), and to evaluate the ability of
AIMD calculations to properly describe also the dynamics of
liquid Ag, as already satisfactorily verified for Au and other
liquid metals at ambient pressure, such as Ti [34], Fe [35],
Ni, [36], or Zn [37], to mention only some recent studies.
Recent AIMD studies have also addressed the case of liquid
metals at high pressures, where new dynamic features may
appear [38–40], but for which experimental data are mostly
still missing.

As mentioned, among our aims is trying to understand
what information S(Q, ω) actually brings when some rigor
is applied in the spectral analysis of both experimental and
simulation data, and which models are appropriate for silver
with varying Q, looking for analogies with or differences from
the case of gold and other metals. We will show, as in the case
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of other important functions for the dynamics of the liquid
state, that a multiexponential analysis [41–43] of the inter-
mediate scattering function F (Q, t ) [or, equivalently, a multi-
Lorentzian analysis of the dynamic structure factor S(Q, ω)]
is once again extremely accurate, ensuring the fulfillment of
the first few sum rules along with excellent descriptions of
the addressed function, and leading to a clear characterization
of the main dynamical properties of the system. Thus the
multimode representation is demonstrated here to account
very well not only for single-particle (self-) quantities like
the VAF, Z (t ), [23,44–46], or the self-intermediate scattering
function, Fself (Q, t ) [24], but also for a collective function
as F (Q, t ). Of course, the same holds for their respective
spectra, Z (ω), Sself (Q, ω), and S(Q, ω). For the sake of clarity
and understanding of what follows, it is useful to recall that
the mentioned GH and VE models, both corresponding to
a (physically constrained) finite sum of Lorentzians, comply
with realistic applications of the general multimode represen-
tation [41–43]. Indeed, most used models of the second-order
memory function [3,25] can be shown to lead to a spectrum
given by a sum of an appropriate number of Lorentzian lines
[25], although this universal property of the line shape has
long remained unnoticed. Going beyond this recognition, our
investigation of liquid Ag will also provide further evidence
that, among a variety of such possibilities, the choice of the
model to be fitted without unnecessary overparametrizations
is becoming an urgent issue in the interpretation of the micro-
scopic physics of fluids [2].

Summarizing, in this work we will show that different
approaches currently in use in studies of the microscopic
dynamics of liquids, either experimentally [i.e., by spectro-
scopic measurements of S(Q, ω)], or via simulation methods
[i.e., accessing S(Q, ω), the VAF, and the transverse current
autocorrelation function] may convey a somehow not unique
interpretation of the underlying physics. This difficulty can
be overtaken by (1) profitably combining the advantages of
both experimental and numerical techniques, (2) performing a
data analysis compliant with basic properties of the dynamic
structure factor and, in general, of time correlation functions
and their spectra, and (3) exploiting, when possible, the aid
offered by statistical inference methods, like the Bayesian one
[26,47–51].

II. EXPERIMENT AND ANALYSIS
OF THE NEUTRON DATA

Silver is a relatively strong neutron absorber (absorption
cross section [52] σa = 35.2 b at 1 Å neutron wavelength),
a rather weak scatterer (scattering cross section [52] σs =
4.99 b), and has a high melting temperature (1235 K), like
gold [4]. Our previous experience with Au could thus be fully
exploited also for Ag. In particular, the difficulties related to
the high melting temperature were again satisfactorily over-
taken by choosing the same material, molybdenum (melting
temperature 2890 K [53]), for the realization of the sample
container. Moreover, the case of gold constitutes a proof that
a high absorption is not an insuperable obstacle for good
determinations of S(Q, ω) by neutron scattering, so the same
we expected for silver.

The most interesting Q region in studies of the collective
dynamics of liquids typically extends from a few inverse
nanometers (where departures from hydrodynamic behavior
start to show up also in the dispersion curve of insulating liq-
uids) to values close to the position Qp of the main maximum
in the static structure factor (for Ag [29], Qp = 26.4 nm−1),
part of which, roughly up to Qp/2, is accessible by means
of neutron Brillouin scattering (NBS). NBS investigations of
liquids characterized by a high sound velocity like Ag at
melting (cs = 2790 m/s [54]) require the use of sufficiently
energetic neutrons able to interact with the high-frequency
excitation modes of the system. Use of high incident energies
in turn implies the need of small angle detection, in order
to span the low Q values typical of NBS. The time-of-flight
(ToF) spectrometer BRISP at the Institut Laue Langevin (ILL,
Grenoble) was designed exactly for this purpose, combining
the use of thermal neutrons with a detection area around the
direct beam [55–57], and was chosen for the Ag experiment
(performed in 2013), as in the case of the previous measure-
ments on Au and Zn [4,5].

The sample (25.8 g of Ag chunks) was liquefied directly
inside the molybdenum slab container (with two walls, each
1.25 mm thick, orthogonal to the beam direction) placed
inside a furnace maintained at 1273 K, i.e., just above the
Ag melting point. The scattering, absorption properties, and
the thickness (3.7 mm) of the Ag sample correspond to a
transmission of 46.5% at the number density of liquid Ag (n =
52.1 nm−3 [54]) and at the chosen incident energy discussed
below. A boron nitride mask at the entrance wall of the cell
was used to reduce the scattering from the container and to
properly adjust the area (25 × 26 mm2) illuminated by the
beam.

In order to minimize the effects of absorption and reach
the excitation frequencies of liquid Ag, the highest incident
energy available on BRISP (E0 = 83.8 meV, λ0 = 0.988 Å)
was selected by exploiting the (004) reflection of the pyrolitic-
graphite monochromator of the instrument. The detector was
placed at 4 m from the sample position, i.e., at a distance such
as to cover scattering angles θ between 1◦ and 15◦ and to
give a maximum Q value of the order of Qp/2, at the chosen
incident wavelength. The choice regarding E0 has the obvious
drawback that the energy resolution is not very high. However,
the same resolution did not prevent, for instance, to observe
both longitudinal and transverse modes in liquid zinc [5], and
it appears to be sufficient.

As customary in neutron scattering, measurements on a
vanadium sample are performed for resolution and normal-
ization purposes. The resolution in the chosen configuration
of BRISP was determined by measuring the signal from a
vanadium slab (3 mm thickness) placed inside the empty cell.
After correction of the raw V data for background (including
the signal from the empty cell in the furnace), self-attenuation,
and multiple scattering, the resulting vanadium spectra were
found to have the expected Gaussian shape, with a full width
at half maximum of 3.2 meV, negligibly dependent on Q.
The vanadium integrated intensities were determined to allow
for the Ag data normalization to absolute units, exploiting
the knowledge of the scattering law (elastic and incoherent)
of this important reference sample in neutron scattering. The
use of vanadium for such normalization purposes requires to
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keep the geometry as similar as possible in both the V and
Ag measurements, and explains the apparent complication of
putting the vanadium foil inside the cell.

The intensities scattered from all the samples (empty cell,
vanadium, and liquid Ag) have been collected as a function of
θ and of the neutron time of flight, and then converted, using
the standard routines available on BRISP (see the Supplemen-
tal Material [58]), to 11 constant-Q I (Q, ω) spectra covering
a wave-vector range between 4 and 16 nm−1. The counting
rate per unit frequency recorded in the Ag measurements,
once corrected for background, empty cell signal, and self-
attenuation, can be written as

Iexpt (Q, ω) = I (1)(Q, ω) + I (m)(Q, ω), (1)

where I (1)(Q, ω) is the single-scattering intensity related to
S(Q, ω), while I (m)(Q, ω) is the multiple scattering contribu-
tion to the total signal (from the sample alone) that one must
get rid of to extract the dynamic structure factor from neutron
data. Both contributions to the intensity are affected by the
instrumental resolution. In our previous paper on gold [4] we
commented on the importance of multiple scattering in these
kinds of experiments on liquids, since this component deeply
affects the tails of the measured spectra and is practically the
only surviving contribution at high frequency. We also showed
that multiple scattering is not at all negligible in metals, and
that a careful correction for this undesired effect is crucial
and mandatory. Unfortunately, multiple scattering cannot be
measured, so, at least the dominant double scattering intensity
from the sample must be calculated as accurately as possible.
As in our previous works, we exploited a very efficient algo-
rithm based on multidimensional Monte Carlo integration of
appropriate functions [61], that allowed one to calculate the
double scattering from the sample, including non-negligible
sample-cell cross contributions. We thus derived directly what
can be identified with the first term of the right-hand side of
Eq. (1).

The single scattering intensity is governed by the neutron-
scattering law of the sample, i.e., by the neutron double
differential cross section d2σ/(d� dω) of silver. This quan-
tity satisfies the detailed balance condition, and is therefore
asymmetric. The general expression of the neutron double
differential cross section is

d2σ

d� dω
(Q, ω) = k1

k0

[
b2

cohS(Q, ω) + b2
incSself (Q, ω)

]
, (2)

where k1 and k0 are the scattered and incident neutron
wave vectors, the b are the coherent and incoherent neutron-
scattering lengths of the Ag atomic species, and the neutron
combination of the total and self-dynamic structure factors is
explicated. So the experimental I (1)(Q, ω) corresponds to

I (1)(Q, ω) = C
k1

k0

[
b2

cohS(Q, ω) + b2
incSself (Q, ω)

] ⊗ G(ω),

(3)

where C is the instrumental normalization factor relating
the experimental intensity in arbitrary units to the double
differential cross section in absolute ones, and we indicated
explicitly the convolution with the Gaussian resolution func-
tion G(ω), in order to keep in mind that in the subsequent

analysis I (1)(Q, ω) represents a quantity affected by resolution
broadening.

In order to derive S(Q, ω) from Eq. (3) one finally needs
a reliable determination of Sself (Q, ω). The neutron coherent
and incoherent cross section values of Ag (σcoh = 4πb2

coh =
4.41 b and σinc = 4πb2

inc = 0.58 b) might misleadingly sug-
gest a relatively small incoherent signal from this system.
On the contrary, incoherent scattering largely influences the
neutron intensities whenever the coherent component, whose
integral is proportional to S(Q), is probed at the rather small
Q values of NBS, where the static structure factor remains
close to S(0) which, for dense liquids, is typically rather
small (0.016 for Ag at the melting point), due to the very
low compressibility of the liquid. Thus, Sself (Q, ω), whose
frequency integral is 1 independently of Q, often gives rise
to the dominant signal in the experimental NBS spectra of
nominally “coherent” samples.

To deal with this last step of the analysis, we performed, Q
by Q, a global fit to the experimental I (1)(Q, ω) able to provide
us with a simultaneous estimate both of the normalization
constant C (which turned out to be in agreement with the
estimate obtained from the vanadium measurements within
15%−20%, as typically happens because the vanadium deter-
mination of C is affected by the uncertainties on the effective
number of illuminated atoms) and of the parameters of some
possible modeling of S(Q, ω), e.g., a classical GH model as a
first trial, taking of course asymmetrization and resolution into
account. Concerning the self-term, we instead imposed, in the
fit algorithm, the shape of Sself to be the experimental-like
equivalent of the one obtained from our AIMD simulations.
This choice is suggested by the fact that our experimental Q
values are not low enough to assume the Lorentzian hydro-
dynamic line shape predicted by Fick’s law [3]. This is not at
all a critical point since, after broadening, Sself (Q, ω) ⊗ G(ω)
is substantially the resolution function G(ω) itself of the
instrument. In fact, it is well known that when hydrodynamic
behavior is lost, which is certainly the case at our highest
experimental Q, the increase of the width with Q is weaker
than the quadratic growth valid in the hydrodynamic regime
[see, e.g., Ref. [2] at Chap. 7, Fig. 7.10, and Ref. [64],
Fig. 9(b)]. By using the diffusion coefficient D available in
the literature for silver at melting (D = 2.55 × 10−9 m2/s,
according to Ref. [65]), we can then take the full width at half
maximum predicted by Fick’s law, namely, 2DQ2, as an upper
bound for the width of the actual Sself . In this way we obtain
a value of 0.86 meV at our highest Q, which is seen to remain
well below the experimental resolution full width (3.2 meV).
So the modeling of Sself is dominated by resolution. However,
by using the simulated (broadened) line shape in place of the
normalized resolution function it is possible to catch the slight
Q dependence of Sself (Q, ω) ⊗ G(ω), while resolution is Q
independent.

In a first attempt to fit the right-hand side of Eq. (3), the
GH (symmetric) model has been used for S(Q, ω). This can
be written as [25]

SGH(Q, ω) = S(Q)

π

[
a0

z0

z2
0 + ω2

+ as
zs + bs(ω + ωs)

z2
s + (ω + ωs)2

+ as
zs − bs(ω − ωs)

z2
s + (ω − ωs)2

]
, (4)
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[S
(Q

,E
)]

 ⊗
G

(E
) 

[m
eV

-1
] 

E  [meV] 

Q = 4 nm-1
Q = 8 nm-1 Q = 10 nm-1

Q = 12 nm-1 Q = 14 nm-1 Q = 16 nm-1

FIG. 1. Dynamic structure factor of silver at six selected Q values of the neutron experiment. The experimental data (black circles with
error bars) are affected by resolution broadening. The corresponding fit by means of the GH model (red solid line) has been carried out
taking detailed-balance asymmetry and resolution into account. A comparison with the Gaussian instrumental resolution function (scaled to
the central peak height, pink dotted curve) is provided at two example Q values.

where the Q dependence of the fit parameters a0, z0, zs, and
ωs was omitted to shorten the notation. In Eq. (4), a0 and
z0 denote, respectively, the amplitude and half-width of the
central Lorentzian line representing, in the Q → 0 limit, the
thermal nonpropagating mode, while zs is the damping and
ωs the frequency of the sound modes. The other parameter bs

in Eq. (4) can be calculated from the fitted ones [25]. Given
the very good agreement of the AIMD S(Q) with diffraction
data [7], we took the simulation result for this quantity in
Eq. (4), minimizing the number of free parameters of the final
fit function, which reads

Ifit (Q, ω) =C
k1

k0

{
B(ω)

[
b2

cohSGH(Q, ω)

+ b2
incSself,AIMD(Q, ω)

]} ⊗ G(ω), (5)

where B(ω) is the Bose asymmetrization factor given by

B(ω) = β h̄ω

1 − e−β h̄ω
, (6)

with β = (kBT )−1, kB the Boltzmann constant, and h̄ the
reduced Planck constant. In principle, asymmetrization should
precede resolution broadening, although doing the reverse
does not lead to significant errors.

In Fig. 1 we report the so-derived dynamic structure factor
of Ag, normalized to absolute units, at some Q values of the
measurements. In Fig. 1 we also plot the GH fit results, which
give a very good account of the experimental line shape at all

wave vectors. We note in passing that, as in other works, we
chose to show the quantities strictly related to the experiment
as a function of the exchanged energy E = h̄ω in units of meV
just to facilitate the understanding of the experimental ranges
and widths by experimentalists. Differently, in the remainder
of this paper, we will use as spectral variable the angular
frequency ω in units of rad ps−1 for an easier comparison with
other published data.

It is an established fact (see, e.g., Refs. [64,66] that a GH
modeling is not working properly outside the long-wavelength
region, where viscoelasticity comes in, and the central peak in
the spectrum needs to described by the superposition of two
nonpropagating modes, as done in the VE model. However,
our attempts to fit to the experimental data more complicated
models (with growing number of free parameters) like the VE
one failed because, within the experimental errors and with
the present resolution, the additional parameters turned out
to be nonsignificant, i.e., undetermined, with errors on the
parameters equal to or larger than the parameters themselves.
This descends from the fact that the experimental signal due
to the collective modes is only a small part of the total neutron
intensity, owing to the incoherent scattering contribution.
Consequently, the finite accuracy and resolution of the total
neutron data, along with the presence of the incoherent com-
ponent, makes it very difficult to parametrize significantly the
fine structure of the central part of the spectrum. Therefore,
the resulting experimental width of the central component
cannot be identified with any genuine relaxation process, but
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FIG. 2. Ratio of the damping to the frequency of the longitudinal
acoustic excitation for insulating and conducting liquids we analyzed
in the past [4] with the addition of the Ag results of the present exper-
iment. Data for each system have been scaled to the carbon dioxide
values because of the different sound velocities (i.e., multiplied by
3.05 for Cd, 3.20 for Au, 2.9 for Ag, 2 for CD4) and plotted as a
function of Q/Qp. The various symbols in the figure are assigned
as specified in the legend. Full and empty symbols are used to help
distinguishing the liquid metals from the nonconductive fluids.

only with an unknown combination of damping coefficients.
Thus, as in the case of Au, NBS experimental data for the
S(Q, ω) of Ag allow only for a simple GH description. How-
ever, our main concern regards propagating excitations and,
as shown for Au, the frequencies determined from the GH
and VE analyses of neutron and simulation data, respectively,
were very similar to each other, and a rather small positive
dispersion was detected (see Fig. 7 of Ref. [4]). For analogous
reasons it was not possible to fit to the experimental spectra
models including additional parameters required to account
for a second propagating excitation.

As we will show in Sec. IV, the experimental dispersion
curve and damping dependence on Q of the sound mode,
as obtained by the above GH description of the measured
spectra, resemble very much those of gold and of other simple
liquids, beyond the differences in the sound speed of the
various systems. This is confirmed by Fig. 2 where the present
Ag experimental results are in more than satisfactory agree-
ment with the zs/ωs “master” curve we originally reported in
Ref. [4]. The plotted curves were obtained by multiplying the
zs/ωs values by 2.00, 3.05, 3.20, and 2.9 for CD4, Cd, Au,
and Ag, respectively, keeping CO2 as the reference system.
Thus, zs/ωs in simple nonmetallic liquids is larger than in
liquid metals, but simple scaling factors bring the ratios for
the various systems to lie on the same curve in the whole Q
range. The variation of such scale factors is, as mentioned,
mainly related to the spread of the sound velocities among the
various fluids.

Again, such results tell us that, at the length and time scales
probed by THz spectroscopy, no striking difference can be
found in the dynamics of conducting and insulating liquids, as

far as the properties of the acoustic excitations are concerned.
Therefore, it appears to be confirmed that these techniques,
and the Q ranges they are able to probe, give information
only on the ionic dynamics, without visible effects originating
from the electronic behavior of such different systems from a
macroscopic point of view.

III. AIMD SIMULATIONS AND COMPARISON
WITH NEUTRON DATA

The availability of the neutron measurements permits now
to verify the AIMD predictions for liquid Ag also at a dynam-
ical level. Details of the calculations for this liquid metal were
given in Ref. [7]. Here it is useful to recall that the simulated
sample contains 150 Ag atoms, with eleven valence electrons
each, in a periodically repeated cubic cell of adequate length
to match the experimental number density. As a consequence,
the minimum wave vector compatible with the periodicity
is 4.4 nm−1. An ultrasoft pseudopotential to describe the
electron-ion interaction was specifically constructed using
the tools included in the Quantum Espresso package [67],
which we used to perform the simulations. The local density
approximation for exchange and correlation was employed,
and nonlinear core corrections were explicitly taken into
account. A total of 19 000 equilibrium configurations were
generated, amounting to 142.5 ps of simulation time, from
which we obtained the dynamic properties of interest using
their standard microscopic definitions [3].

The comparison between the experimental S(Q, ω) and the
corresponding AIMD calculations, duly broadened to take the
experimental resolution into account, is reported in Fig. 3.
Agreement between data and calculations is quite satisfactory
at all Q values and authorizes deepening the analysis of the
dynamical behavior of this liquid metal by performing fits to
the simulations in a broader wave-vector range (between 4.4
and 48.5 nm−1) than the one probed in the experiment. There-
fore, in the following, we will present a more refined analysis
of the simulated S(Q, ω) also outside the experimental range.

Indeed, the GH model fitted to the neutron data is able
to capture quite effectively the longitudinal dynamics up to
Qp/2, but cannot, by construction, give any information about
either a viscoelastic behavior or the presence in the fluid
of other propagating excitations. In this respect, it is useful
to note that small systematic differences can be observed
between the GH description of the neutron data and the AIMD
outputs of Fig. 3, although well within the experimental uncer-
tainties. For clarity, we show in Fig. 4 the direct comparison
between the GH fit curve displayed in Fig. 3 and the AIMD
equivalent at three additional Q values (note that we switched
to angular frequency in place of energy). There, it is seen that
the shape of the simulated spectra is slightly different from
the GH one. While a small underestimate by AIMD of the
main central peak is observed only at some Q values, the side
peaks are systematically less intense and slightly broader than
in the GH case. Consequently, at frequencies approximately
in the range between 5 and 18 rad ps−1, the AIMD S(Q, ω) is
seen to exceed the GH one. We took this as an indication that
in order to accurately reproduce the simulated spectra at our
Q values the simple triplet line shape should be abandoned,
as it happened also for gold. The differences between a GH
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FIG. 3. Same as Fig. 1, with the addition of the AIMD results (blue dashed curve) at the various Q values. The neutron data points (black
dots) have been reduced in size in order to increase the visibility of the figures. Data asymmetrization and experimental resolution broadening
have been applied to the original AIMD results in order to allow for the comparison.

and a VE fit to the simulated S(Q, ω) shown in Fig. 6 of
Ref. [4] resemble very much those found for Ag. Therefore,
in the following we will refer to more complex models, as
anticipated in the Introduction.

IV. MULTIMODE ANALYSIS OF THE AIMD SIMULATIONS

In recent years we have shown the effectiveness of the ex-
ponential series representation [41–43] in accounting for the
behavior of time correlation functions of classical [23,24,44]
and quantum [45,46] fluids. The power of the method lies not
only in its providing excellent descriptions of the most rele-
vant functions in liquid state physics, but also in its merit to
facilitate the imposition of, at least a few, physical constraints,
thus largely increasing the reliability of the results. Here we
explore the performance of this multimode decomposition for
a collective quantity like the intermediate scattering function
F (Q, t ) or, equivalently, its spectrum S(Q, ω).

We recall that F (Q, t ) is the autocorrelation of the Fourier
components of the microscopic density [68],

F (Q, t ) = 1

N

〈
N∑

α,β=1

e−iQ·Rα (0)eiQ·Rβ (t )

〉
, (7)

where N is the total number of atoms, Rα (0) is the position of
the αth atom in the (arbitrarily chosen) time origin, and Rβ (t )
is the position of another particle (however note that the case
α = β is included in the definition) at a subsequent time t . The
angle brackets denote, as usual, a canonical ensemble average.
The isotropy of the fluid actually makes this function depend

only on the modulus Q of Q, as indicated in the first member
of Eq. (7).

According to the quoted exact theory, the intermediate
scattering function has, like any other classical or semiclassi-
cal time correlation function, an infinite series representation
involving, in general, complex exponentials. For mere conve-
nience, we refer to its normalized values, and we synthetically
write it in the form

Fn(Q, t ) = F (Q, t )/F (Q, 0) =
∞∑
j=1

I j exp(z j |t |), (8)

where of course F (Q, 0) = S(Q), and I j and z j are allowed to
take complex values.

Equation (8) establishes the exact functionality of the
autocorrelation, but not the specific amplitudes (I j) and
dampings/frequencies (z j) of the “modes” governing the dy-
namics of the given system. This fact should not be interpreted
as a limitation of the method or of the theory: It is worth
clarifying that our approach privileges the idea that the data
should, so to say, “speak by themselves” and that the dominant
physical processes acting in the liquid should be detected
from an analysis, as direct as possible, of the relevant cor-
relation functions. The knowledge of the correct functionality
of whatever time correlation function thus provides us with a
theoretically valid tool for defining plausible, justifiable, and
realistic fitting models having the great advantage of being
applicable, indifferently, to either measured or simulated data.
This knowledge is very valuable and represents a solid basis
for trusting the significance of the results. In particular, we
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FIG. 4. GH fit to the neutron S(Q, ω) data (red solid curve) and
AIMD calculation (blue dashed curve) at three example Q values.

will show in the following that a reliable characterization
of the collective excitations, which is the main goal of our
analysis, is achievable through the comparison of various
correlation functions.

In Fn(Q, t ), as defined by Eq. (8), pure exponential decays
are accounted for in the series by what we will refer to as
“real modes”, i.e., having both I j and z j real, with z j < 0.
Damped oscillatory modes of Fn(Q, t ) are represented in the
series by what we will designate as “complex pairs”, i.e., by
I j exp(z j |t |) + I∗

j exp (z∗
j |t |), with both I j and z j complex, and

Rez j < 0.
Given the representation of Eq. (8), the corresponding

frequency spectrum reads

S(Q, ω)

S(Q)
=

∞∑
j=1

Lj (ω) =
∞∑
j=1

I j

π

[
(−z j )

ω2 + z2
j

]
, (9)

where Lj (ω) is a “generalized” Lorentzian line. If I j and z j are
real, then Lj (ω) is a genuine Lorentzian centered at ω = 0,

and characterized by a half width at half maximum equal to
−z j . If I j and z j are complex, then the corresponding mode
and its complex conjugate add up to give a pair of distorted
Lorentzians centered at the nonzero frequencies ±Im z j [see
Eq. (4) of Ref. [24] for details]. Finally, it is useful to recall
that the normalization of Fn(Q, t ) to its initial value leads to
the sum rule

∑
j
∞
=1

I j = 1, and that the existence of its kth
order (k = 0, 1, 2, . . .) time derivatives at t = 0 leads, in the
exponential representation of Fn(Q, t ), to an infinite set of sum
rules of the form

∞∑
j=1

I jz
k
j = dkFn(Q, t )

dtk

∣∣∣∣
t=0

= 0 (10)

for odd k.
Applications of the mode decomposition method of course

require a truncation of the infinite series of Eq. (8). As we
showed in our previous papers [23,24,44,46], the remarkable
thing is that only a small number of real and complex terms
is typically required to obtain excellent descriptions of the
addressed correlation, meaning that the main dynamical fea-
tures originate from a few microscopic processes. Therefore,
like in other cases, the analysis of the time dependence of
F (Q, t ) is similarly performed here by fitting the sum of a
finite and small number of exponential terms to the AIMD
data, with I j and z j as parameters. In the fit procedure we
imposed, as usual, a certain number of constraints, in order
to comply with the normalization condition,

∑
j I j = 1, and

to enforce the first few odd sum rules dictated by Eq. (10) up
to k − 1, for a given even k. Given the specific form of our
finite mode expansion, which is infinitely often differentiable
except at t = 0, imposition of sum rules not only ensures
that the odd derivatives of F (Q, t ) up to order k − 1 vanish
at t = 0, but that all derivatives up to order k exist and
are finite at the origin. From a practical point of view, the
number of real and complex terms, and of sum rules to be
taken into consideration is essentially dictated by physical
considerations and, eventually, by the fit quality achieved with
a reasonably low (ideally minimized) number of parameters,
as discussed below.

In our previous experience about single-particle correlation
functions, we found that a small number of real modes is
typically required in high-density states around and above
the triple point density of the investigated system, while this
number grows with decreasing density. Differently, indepen-
dently of density, two complex pairs are always required
(although no more than two), one of which appears as a
true constant feature of the dynamics and is readily identified
with the longitudinal excitation. The other pair of complex
modes may instead completely change nature with varying
density. However, the present case of liquid Ag belongs to
the class of “high-density fluids,” so it is worth focusing on
our previous findings in such thermodynamic conditions for
other fluids, where we found that the second complex pair
needed for very satisfactory fits to single-particle functions,
like the VAF or Sself (Q, ω), could be unambiguously identified
with the contribution due to shear waves [23,24,45,46]. In
particular, the multimode analysis of Sself (Q, ω) of liquid
Au [24] was successfully performed by allowing for two
real modes and two complex pairs, with the above phys-
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ical meaning for the complex pairs. So, it seemed to us
natural to attempt the same scheme for the possible modes
of liquid Ag in our conditions, since similar processes are
expected to characterize the dynamics of the two liquid
metals.

A word of caution is necessary, however. As recalled in
the mentioned papers, Sself (Q, ω) is strongly related to the
VAF spectrum Z (ω), i.e., to the density of states of the liquid,
even at nonzero Q values. Thus, it is not surprising that both
these quantities reveal the presence of transverse excitations.
Nonetheless, the situation might be quite different in the case
of the total S(Q, ω) = Sdist (Q, ω) + Sself (Q, ω) [or F (Q, t )],
since the role played by the distinct part of this function is
substantially unknown and might have the effect to completely
hide, in the total function, what it is instead clearly detected
from its self part. In fact, this was exactly the case with
S(Q, ω) of gold, where no low-frequency inelastic features
could be observed, not even at high Q values, despite the clear
indications suggested by its simulated VAF.

We preliminarily note that the fits were performed to the
AIMD F (Q, t ) Ag data up to a maximum time value tR =
0.5 ps, which corresponds to the so-called recurrence time due
to the use of periodic boundary conditions in the simulations
[68,69]. The recurrence time is roughly the maximum time
lag beyond which the calculations are no more reliable and
typically present spurious oscillations. It is usually identified
with the time a density fluctuation takes in propagating over a
distance equal to the box length, traveling at the sound speed
cs. For a cubic box, it can be evaluated as tR = (N/n)1/3/cs.

Our attempts to fit F (Q, t ) with two real modes and two
complex pairs failed in the whole Q range. We thus turned
to different modelings. In particular, we compared the per-
formances of two fit functions: A one-excitation model as
the VE, and a two-excitation model, here referred to as 2C.
In the exponential representation, the first includes two real
modes (labeled as R1 and R2, and accounting for thermal and
structural relaxation [3,64,66], respectively) and one complex
pair (labeled as C2 and accounting for sound waves), with
three obeyed sum rules. We recall that the last condition
ensures the finiteness of the second and fourth frequency
moments of S(Q, ω). The second includes two complex pairs
(C2 and C3) and one real mode, with three sum rules obeyed
as for the VE fits. In this second model, C2 still stands for
the longitudinal component, while C3 represents the possible
transverse contribution. Clearly, as commented about the GH
model at the end of Sec. II, the single real mode permitted by
the fit algorithm when using this model is to be interpreted
as an effective way of accounting for the central part of the
AIMD spectra (minimizing the overall number of parameters
the fit is able to manage) and cannot be assigned to a specific
relaxation process, although it is rather obvious that it must
reflect the presence of both thermal and structural effects. It
is worth anticipating that for both the VE and 2C fits we
are going to discuss, the resulting second frequency moment,
whose finiteness is enforced by the imposition of the second
odd sum rule, turned out to agree, within a few percents,
with the theoretical value kBT Q2/M, with M the atomic mass
of Ag.

For a better understanding of the following, it is useful
to keep in mind the typical behavior of the longitudinal

dispersion curve of a liquid (refer, e.g., to Fig. 9 of Ref. [4]).
Its main characteristics are its bell-like shape in the range
0 < Q < Qp and, particularly, the existence of the so-called
“sound propagation gap” [70] around Qp, where the longitudi-
nal mode (C2) frequency ImzC2 = ωs goes to zero. The arrest
of sound propagation around Qp is a general physical property
of simple liquids, linked to what de Gennes identified with
a spectral narrowing [68]. In the propagation gap region, fits
typically become very unstable, whatever model is used and
whatever system is considered, due to the difficulties encoun-
tered by a fit algorithm when the spectrum, in proximity of
Qp, tends, as a fact, to include the superposition of multiple
central lines (i.e., those foreseen by the real modes of the
chosen model plus the two overlapping lines corresponding
to an overdamped longitudinal oscillation). For this reason
we will not analyze the dynamics in the region around Qp.
Nevertheless, an attempt to recover some information on the
(transverse) collective modes in the gap range, by employing
a different approach, will be discussed in the Appendix.

Given these premises, we found that the VE line shape
allows for very good fits of the liquid silver AIMD data
up to Q = 14 nm−1, which slightly exceeds Qp/2. In such
a Q range, the 2C model provided instead a not significant
frequency for the C3 pair. An example of the VE very
good performance at such wave vectors is given in Fig. 5,
where both the time correlation function and the spectrum
are reported, along with the VE fit and its components. The
plots in semilogarithmic scale are reported to appreciate the
performance of the model in the mentioned range.

Differently, at few Q values above Q = 14 nm−1, i.e.,
just when ωs(Q) starts to decrease after having reached its
maximum at ∼Qp/2, we observed that impressively better
fits were obtained with the 2C line shape over the VE
one. In particular, the undamped frequency of C3, �t =√

(RezC3)2 + (ImzC3)2 =
√

z2
t + ω2

t , turned out to be rather
similar to the �T values derived from the transverse current
autocorrelation we reported in Ref. [7]. The same superiority
of the 2C model was found at almost all Q values beyond the
gap, i.e., above Q = 31 nm−1. Examples of the quality of the
2C fits are shown in Figs. 6 and 7, at two Q values, one smaller
and one larger than the longitudinal gap Q range.

However, when ωs starts to decrease after its first maxi-
mum, the 2C fit is again unable to reveal a second oscillatory
component (C3) and, in fact, a VE modeling provides again
a better account of the simulated spectrum. This result is
somewhat puzzling: While a one-excitation behavior is rea-
sonable at small Q, this is less convincing at the wave-vector
values approaching the gap (19 < Q < 21 nm−1), that is, after
that a clear evidence of transverse modes was obtained at a
few smaller Q values. Rather than signaling a true change
in the physical behavior, this probably reflects the fact that,
while decreasing towards zero, ωs falls into the typical range
of ωt and the two excitations overlap each other. Moreover,
we think that, in the above mentioned Q range, a strongly
damped mode as C3 becomes indistinguishable, within the
fit sensitivity, from a real mode. Therefore, the viscoelastic
model shows a better performance simply because it is char-
acterized by a lower number of parameters. A simpler line
shape seems to partly solve the problems encountered with
the 2C model at those Q values where the longitudinal and
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FIG. 5. (a) Simulated intermediate scattering function Fn(Q, t ) of liquid Ag at Q = 8.81 nm−1 (black circles) and VE fit result (red solid
curve). The multiexponential fit components are also shown separately and specified in the legend. (b) Corresponding spectrum S(Q, ω)/S(Q),
VE fit result, and fit components, following the same legend of panel (a). Panels (c) and (d) show the time correlation and its spectrum,
respectively, on a semilogarithmic scale in order to better appreciate the quality of the fit (red solid curve).

transverse mode frequencies are not largely separated, and
both are strongly damped. As a consequence, in a rather wide
Q region, including the longitudinal gap, the study of S(Q, ω)
leaves the transverse dynamics substantially undetermined
(see, however, the Appendix).

A further comment is worth about Figs. 6(a) and 7(a):
There the C3 component is clearly seen to give a significant
contribution to the total function, with an intensity that grows
with increasing wave vector. A possible different interpreta-
tion of the low-frequency modes relates them to the propa-
gation of thermal waves in the fluid [71,72]. However, the
only available results show that their contribution to S(Q, ω) is
nearly negligible and practically constant with varying Q [71].
Therefore, it would be an unjustified hypothesis to associate
the C3 excitation modes to such a phenomenon in our case.

In Fig. 8(b) we report our best determination of the dis-
persion curve of liquid Ag from AIMD data obtained by
performing the above described multimode fit analysis, with
three obeyed sum rules. The upper, bell-shaped, branch is
the longitudinal mode dispersion ωs(Q). For this mode, the
low-Q hydrodynamic linear behavior is also shown, together
with the GH experimental results in the limited Q range
of the experiment. Exactly as it happened for gold, the
GH model tends to slightly underestimate the frequency at
the highest experimental wave vectors. Nonetheless, it cap-
tures, within the experimental errors, the low-Q longitudinal
dynamics very well. In the Q regions where transverse modes

were detectable, i.e., when the 2C model was indisputably
superior to the VE one, the dispersion curve also shows
a lower frequency branch, ωt (Q). As explained, we report
in Fig. 8(b) the ωt values only at those Q where we are
confident that shear waves also give a significant fingerprint in
F (Q, t ) of liquid silver, and fit algorithms clearly distinguish
between the longitudinal and transverse component. The latter
branch displays a somewhat smaller accuracy and less smooth
behavior as a direct consequence of the fact that the dynamics
of shear modes is at the limits of detectability from a quantity
like F (Q, t ) or, equivalently, S(Q, ω).

As done in other papers [24,73], the simultaneous analysis
of the VAF spectrum Z (ω) and the dispersion curve can
further support the validity of the results obtained from the
fits. As previously mentioned, Z (ω) has peaks or (sometimes
feeble) shoulders where vibrational state frequencies occur
more often with varying Q, i.e., as already stated, it embodies
the density of states of the liquid. Its behavior can help not
only in confirming the presence of propagating modes of both
longitudinal and transverse nature, but also in establishing
which excitations give rise to flat branches in the dispersion
curve (see, e.g., Fig. 4 of Ref. [73] or Fig. 7 of Ref. [24]).
In fact, a weakly dispersive mode should leave a strong
signature in Z (ω), analogously to what is referred to as a
van Hove singularity in solid state phonon dynamics [74].
For this reason, we plot also in Fig. 8(a) the spectrum of the
AIMD normalized VAF on the same frequency scale used to
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FIG. 6. (a) Simulated intermediate scattering function Fn(Q, t ) of liquid Ag at Q = 15.26 nm−1 (black circles) and 2C fit result (red solid
curve). The multiexponential fit components are also shown separately, and specified in the legend. (b) Corresponding spectrum S(Q, ω)/S(Q),
2C fit result, and fit components, following the same legend of panel (a). Panels (c) and (d) show the correlation and its spectrum, respectively,
on a semilogarithmic scale in order to better appreciate the quality of the fit (red solid curve).

plot the dispersion curve of Fig. 8(b). As usual, it is seen
that Z (ω) slightly inflates in rough correspondence with the
maximum of ωs(Q), and peaks around the, almost constant
in Q, value of ωt . These observations can be quantitatively
confirmed by determining the exponential decomposition of
the AIMD VAF which, similarly to Eq. (8) for F (Q, t ), admits
a multiexponential expansion of the kind

Zn(t ) = Z (t )/Z (0) =
∞∑
j=1

Aj exp(w j |t |). (11)

In analogy with the case of the VAF of Au [24], we
found a very good account of the VAF of Ag by performing
fits including two complex pairs (labeled as C2Z and C3Z )
and one real mode. The complex components represent, as
usual, the contributions to Z (t ) due to the longitudinal and
transverse dynamics. The subscript Z is used to clarify that
these complex pairs are not to be identified with those (C2
and C3) found for F (Q, t ), despite that they are obviously the
fingerprint in the VAF of the same collective processes. The
real mode, labeled as R2Z , is the only one that survives in
the VAF of the two real modes usually necessary, along with
the complex pairs, for the description of Fself (Q, t ) of a liquid
metal. In fact, as shown in the case of Au [24], Z (t ) does not
contain the self-diffusion Fick’s mode of Fself (Q, t ).

The quality of the fit to the VAF of Ag is shown in Fig. 9,
along with the individual real and complex components of the

model. The negative amplitude of R2Z is a straightforward
consequence of the fact that Z (t ) is related to the second
time derivative of Fself (Q, t ), in the Q → 0 limit. Thus, a
positive real contribution in Fself (Q, t ) unavoidably translates
into a negative real component in Z (t ) (see the Appendix). The
above described fit-based analysis of the VAF of Ag locates
the frequency positions of the maximum and of the longitudi-
nal shoulder of the VAF spectrum at ω = ImwC3Z = 13.0 rad
ps−1 and ω = ImwC2Z = 31.1 rad ps−1, respectively. Corre-
sponding dampings of the same modes are −RewC3Z =13.1
ps−1 and −RewC2Z = 11.4 ps−1, which give an idea of the
frequency bands that the density of states covers around these
two characteristic frequencies of the dynamics of Ag. These
frequencies were shown also in Fig. 8(a) as dashed green
(ImwC3Z ) and dashed pink (ImwC2Z ) straight lines in order
to show their evident correspondence with the flat zones of
the dispersion curve. The dynamical picture is therefore more
than clear.

Finally, for completeness, in Fig. 10 we show the results
for the Q dependence of the damping −RezC2 = zs and of
the undamped frequency �s = √

ω2
s + z2

s of the longitudinal
mode of F (Q, t ), which resemble very much those of gold
and, qualitatively, those of insulating liquids as CO2 [64].
The undamped frequency �t and damping −RezC3 = zt of
the transverse mode are also reported in the figure, along
with the curve obtained by locating the maxima of the AIMD
transverse autocorrelation spectra CT(Q, ω).
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FIG. 7. Same as Fig. 6 at Q = 36.59 nm−1, i.e., after the propagation gap of the longitudinal modes.

FIG. 8. (a) VAF spectrum (liquid silver density of states) from AIMD simulations (open circles). The dashed green and pink lines indicate
the frequencies Im[wC3Z ] and Im[wC2Z ], respectively, obtained from the multiexponential fit of Eq. (11) to the normalized VAF, discussed in
the text and displayed in detail in Fig. 9. (b) Dispersion curve (black circles with error bars) resulting from the fits of the simulated AIMD
F (Q, t ). The red full circles are the corresponding experimental results obtained by means of GH fits to the neutron data. The straight black
dashed line is the linearized hydrodynamics prescription. Data are missing around the position of the main maximum in the static structure
factor due to the instability of the fit results in such a wave-vector region. Green stars are the transverse-like frequencies obtained according
to model 2C, when successful. The blue stars in the transverse branch of the dispersion curve were obtained as detailed in the Appendix,
taking into consideration the longitudinal current behavior in the longitudinal gap region. Note the physical link between the branches of the
dispersion curve in panel (b), and the more or less visible features of Z (ω) in panel (a). The frequency intervals where the branches of the
dispersion curve have a nearly horizontal tangent are approximately indicated by the colored brackets in panel (b). The corresponding arrows
(black/red for longitudinal, and green for transverse modes) are used to highlight their clear agreement with the dashed lines in panel (a),
locating the above quoted frequencies of Z (ω).
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FIG. 9. (a) Normalized velocity autocorrelation function Zn(t ) of liquid Ag (black circles) and multiexponential fit result (red solid curve).
The fit components are also shown separately, and detailed in the legend. (b) Corresponding spectrum Z (ω)/Z (t = 0), fit result, and individual
components, following the same legend of panel (a).

V. CONCLUSIONS

In this work we addressed several important aspects con-
cerning the dynamics of the liquid state, and in particular of
liquid metals. First, we presented a very detailed analysis of
a NBS experiment performed on BRISP at the ILL, aimed at
reaching knowledge about the dynamic behavior of liquid Ag,
for comparison with previous similar measurements on Au

FIG. 10. Q dependence of the undamped frequency �s (black
circles with error bars) and the damping zs (black full squares with
error bars) of the longitudinal modes obtained from the fits to the
AIMD F (Q, t ) as explained in the text. The same, �t (green full
stars with error bars) and zt (green empty diamonds with error bars),
is shown for the transverse modes when unambiguously determined
by the fits (see text). The full red circles and open red squares are
the corresponding experimental quantities resulting from the GH fit
to the neutron spectra. The Q dependence of the frequency of the
maximum in the AIMD transverse current autocorrelation spectrum
CT(Q, ω) is also displayed as a dark green solid curve.

which did not reveal, differently from other metals, evidence
of shear waves from the spectral analysis of the dynamic
structure factor S(Q, ω). Despite the difficulties posed by
experiments requiring high temperature and on highly ab-
sorbing samples, the evident quality of the Ag experimental
results confirms the very good performances of BRISP and
the importance of a careful data analysis of any inelastic
neutron-scattering experiment, especially those on liquids and
in the NBS Q range. Within the experimental uncertainties, we
were able (as for Au) to characterize very well the behavior
of longitudinal modes through a GH modeling of the mea-
sured spectra, but no other feature could be revealed through
other more complex modelings of the experimental line shape
within the errors. However, besides reproducing the static
structure [7], we clearly showed that our AIMD simulations
also turn out to describe very well the experimental results for
S(Q, ω) in the available Q range. Such a validation opened
the way to a detailed analysis of the AIMD results for F (Q, t )
in the much more extended Q range that simulations allow to
probe compared to experiments.

In the present case of Ag, we took the chance to further
test the performance of the multiexponential decomposition
method of time correlation functions also for a collective
quantity like the intermediate scattering function. Given the
quality of all the presented fits, and the physical sensibility of
the results, we confirm its success for correlation functions as
the VAF, Fself (Q, t ), and F (Q, t ).

From a physical point of view, we deduced what follows.
Differently from the case of Au, here we can firmly conclude
that transverse-like excitations are actually detectable from
the simulated F (Q, t ), although with some inaccuracies and
only at rather high Q values. However, this result does not
necessarily imply that Au and Ag have substantially different
dynamical behaviors. It could well be possible that transverse
modes, which in general produce at most very weak features
in S(Q, ω), are in the two metals just below and above the
detectability threshold, respectively. In such a situation the
noise level can affect largely the final results, and a progress in
the simulation methods might also contribute an explanation
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of seemingly different outcomes, without forcedly signaling
true significant differences in the intrinsic dynamics of the two
systems. Thus, group IB elements may actually turn out not to
be an exception, as far as the detectability of shear waves from
simulated S(Q, ω) is concerned: The cases to investigate more
deeply remaining however Au and Cu.

It is well known that shear waves show up at nonzero Q
values, but in the present case of Ag they start to be detectable
in F (Q, t ) or S(Q, ω) at higher wave vectors than those
reported in works on different liquid systems. Such a retarded
visibility (Q ≈ 15 nm−1) is of course a consequence of our
one-excitation description at lower wave vectors where the
second complex pair of model 2C was found to be physically
unjustified, with close to zero and nonsignificant frequency,
i.e., playing the role of simply mimicking the second central
Lorentzian of the VE model. Vice versa, we believe that at
Q values where a transverse dynamics has clearly set on,
but strongly damped modes overlap each other (as it happens
when ωs starts to decrease), the fit algorithms cannot resolve
multiple, central and close to central, lines contributing to
S(Q, ω), unless by reducing the number of free parameters.
In such Q ranges (19 < Q < 21 nm−1), where the 2C model
fails differently from the VE one, we believe that it is the VE
model which, due to its simpler structure, hides part of the
real dynamics. The problem clearly lies in the less structured
shape of S(Q, ω) as the longitudinal gap is approached.

In the end, we deduced that a full characterization of
the collective dynamics based on the analysis of simulated
F (Q, t ) or S(Q, ω) is not at all trivial, and can reach a
scientific significance only when imposing some mandatory
physical constraints, and only when the frequency of the
longitudinal mode at least doubles the transverse one.

In some respects, however, the case of group IB elements
apparently differs from that of other metals, where a trans-
verse dynamics was deduced even from the experimental
S(Q, ω). In fact, the situation for IB metals is still unsettled
if one merely refers to experimental S(Q, ω) data, since these
are unable to reveal shear modes within the errors: A still
unsolved case being also that of copper, as elucidated in the
Appendix. As far as we can observe at a purely experimental
level, no shear waves have been determined when physically
constrained fits to measured data (Ag, Au) have been per-
formed: This leaves an open question on the experimental de-
tectability of a low-Q transverse dynamics in simple systems
as liquid metals [5,8–11].

Conversely, by focusing on simulated and smoother
F (Q, t ) or S(Q, ω) results it has been possible to obtain
reliable evidence of a two-excitation dynamics in Ag in a
limited Q range. We showed, however, that the transverse
branch of the dispersion curve can be hard to determine if
fundamental physical properties of S(Q, ω) are to be obeyed.
This holds true, in particular, around the beginning and the
end of the Q range between 0 and Qp.

Nonetheless, the main message of this work does not
exclusively focus on the detectability of transverse modes in
liquids or on the comparison of different systems. Here we
wished to show that reliable studies of the transverse-like
dynamics of whatever liquid system require very high-quality
data, which justify the efforts for a constant improvement of
simulation and experimental methods, along with the use of

theoretically well-founded models. Looking at the presence
of “peaks” in S(Q, ω) or in the longitudinal current-current
correlation spectrum, without a theoretical basis and without
a clear physical self-consistency of the used fit algorithms, can
lead to misinterpretations.

From another point of view, our work confirms the impor-
tance of looking at as many correlation functions as possible,
although not all experimentally accessible, to get insight in
the dynamical behavior of a liquid. Thus, it is clearly shown
that the capabilities of simulations and the interpretation tools
they provide progressively approach, and sometimes equal
or overtake, the experimental possibilities through a contin-
uous improvement of modelings, methods, and computational
power.
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APPENDIX A: ANALYZING THE LONGITUDINAL
CURRENT-CURRENT SPECTRUM

Here we discuss what can be obtained if, in place of
S(Q, ω), one carries out a multimode analysis of the longi-
tudinal current-current spectrum CL(Q, ω) to investigate the
transverse dynamics of a liquid, taking into account that both
quantities carry, in principle, the same dynamical information.

Preliminarily, we consider the case of a generic autocor-
relation function c(t ) related to the second time derivative
of another (normalized) autocorrelation b(t ), e.g., c(t ) =
−b̈(t ), whose spectrum is c(ω) = 1

2π

∫
c(t ) exp (−iωt )dt =

ω2b(ω). By using the exponential representation of b(t ) =∑
j I j exp(z jt ) at t > 0, direct double differentiation of course

leads to

c(t ) =
∑

j

( − I jz
2
j

)
ez jt , (A1)

so that the following relations hold when switching to ω

space:

c(ω) = ω2b(ω)

= ω2
∑

j

I j

π

[
(−z j )

ω2 + z2
j

]

=
∑

j

I j

π

[
(−z j )(ω2 + z2

j − z2
j )

ω2 + z2
j

]
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FIG. 11. Longitudinal current-current spectrum derived from the
AIMD S(Q, ω) of liquid Ag (black circles). The chosen Q belongs
to a wave-vector range where shear modes were clearly detected,
as shown in Fig. 6. The individual contributions of the modes to
CL(Q, ω) were calculated according to Eq. (A4), using the Ij and
z j values resulting from the 2C fits discussed in Sec. IV. The same
labeling, curve style, and color code of Fig. 6 was used. The red solid
curve corresponds to the resummation of the various components.

=
∑

j

I j

π

[
− z j + z3

j

ω2 + z2
j

]

=
∑

j

(−I jz2
j )

π

[
(−z j )

ω2 + z2
j

]
, (A2)

where the first term in the last but one member of Eq. (A2)
vanishes due to the first odd sum rule,

∑
j I jz j = 0. In this

way a constant term in the jth spectral mode, which would
prevent it from decaying to zero and make it nonintegrable, is
no longer present. The notation used in the last member of the
above equation is simply meant to help recalling that for real
modes −z j is a positive quantity, and that the amplitudes I j in
b(ω) change to (−I jz2

j ) in c(ω). Consequently, the amplitudes
of the real components of c(ω) are opposite in sign with
respect to the corresponding ones in b(ω). The sign of the
total contribution to c(ω) of a complex pair, with varying
ω, is less trivial to deduce, since it depends on the possible
combinations of the real and imaginary parts of both I j and z j :
Combinations that are not bounded to take the same sign with
varying the complex pair of the scheme, the only condition
being Rez j < 0 for all modes. Summarizing, the scheme of
the modes for the two time autocorrelations is exactly the
same, with identical frequencies and dampings. Only the
amplitudes of the modes change when switching between b(t )
and c(t ), and their spectra.

A well-known example in which two physically significant
autocorrelations are linked by a double time differentiation is

FIG. 12. Longitudinal current-current spectrum derived from our
VE description of the AIMD liquid Ag data (red circles). The chosen
Q belongs to a wave vector range where transverse waves cannot yet
be detected from reliable analyses of the dynamic structure of Ag,
as commented about Fig. 5. In order to “simulate” an experimental
condition, we considered the resolution broadening of the x-ray
measurements on Cu [12]. A two-Gaussian fit to the experimental-
like CL(Q, ω) (black solid curve) suggests also an inexistent, by con-
struction, low-frequency mode (blue chain curve), besides providing
an estimate of the frequency of the longitudinal excitation (pink
dashed curve).

just the case of F (Q, t ) and CL(Q, t ), in fact [3],

CL(Q, t ) = − 1

Q2
F̈ (Q, t ). (A3)

Consequently, given the time representation of F (Q, t ) in
Eq. (8), the above formalism leads to

CL(Q, ω) = S(Q)

Q2

∑
j

( − I jz2
j

)
π

[
(−z j )

ω2 + z2
j

]
. (A4)

Therefore, once the modes of S(Q, ω) are known, we
can readily find the correct, theoretically valid, multimode
decomposition of CL(Q, ω) by simply exploiting Eq. (A4).
Note that, since the amplitudes of the modes of CL(Q, ω)
contain a factor z2

j , the relative weight of the modes obviously
changes drastically in switching from S(Q, ω) to CL(Q, ω).
Moreover, as described below, transverse modes turn out to
give a negative contribution to CL(Q, ω) at low frequency,
making the latter function unable to display features related
to shear waves, at least in liquid metals.

In Fig. 11 we show the longitudinal current-current spec-
trum of silver at a Q value of 15.26 nm−1 where the analysis
of the simulated S(Q, ω) discussed in Sec. IV revealed the
presence of transverse-like excitations. The individual contri-
butions of the various modes to the longitudinal current are
also plotted, using of course the same labeling and color codes
used for those of S(Q, ω) in Fig. 6. As it is seen from the
figure, CL(Q, ω) is obviously dominated by the longitudinal
component and displays no low-frequency feature attributable
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FIG. 13. (a) AIMD intermediate scattering function at a Q value belonging to the longitudinal gap range around Qp. Note that no oscillation
of the function is visible, not even in semilogarithmic scale. (b) Longitudinal current autocorrelation function (black circles) at the same
wave-vector value of panel (a). The global fit to CL(Q, t ) (red solid curve) was obtained with a model that accounts for one complex pair (the
transverse-like one, dashed green curve) and one real mode (dotted blue curve).

to shear waves, especially at the frequency value (around
13 rad ps−1) determined, at the mentioned Q, from the 2C fit
shown in Fig. 6. Shear modes of course influence the overall
behavior of CL(Q, ω), but it is clear that their frequency cannot
be determined by simply looking for some extra intensity in
the longitudinal current spectrum, and trying in some way to
locate its frequency. In fact, their true contribution to CL(Q, ω)
is shown to be predominantly negative, and to mainly counter-
act the high positive contribution of C2 just in the frequency
range (below 20 rad ps−1) where the transverse excitation
has been found. Notably, such a behavior of the transverse-
like component, in a correct multi-Lorentzian representation
of CL(Q, ω), is shown to have the opposite effect than that
supposed in the literature, i.e., it tends to deplete the total
signal rather than giving rise to positive contributions in the
spectrum.

As a consequence, (1) the low-frequency shape of the total
CL(Q, ω) of a simple liquid metal has no special physical
meaning, and simply originates from the interplay of the
various modes, and from their respective dependence on ω

and (2) the presence of a shear component actually tends
to make the low-frequency longitudinal current spectrum
smoother and featureless than in the case of an either too weak
or absent transverse-like dynamics. This fact will become
evident below, particularly when comparing the shape of
CL(Q, ω) in the presence (Fig. 11) or absence (Fig. 12) of
transverse-like modes. Experimental resolution effects taken
into account in the following discussion, and considered for
Fig. 12, can be easily demonstrated to be irrelevant as far
as the conclusions about the role played by shear waves in
CL(Q, ω) are concerned.

We further note that, due to the rather high ratio of longitu-
dinal to transverse frequencies typical of liquid metals, multi-
plication of the amplitudes by −z2

j enhances the longitudinal
modes with respect to the transverse ones, making CL(Q, ω)
not convenient for studies of the transverse dynamics.

Finally, as anticipated in the Introduction, we show that
by relaxing the compliance with the general theoretical

multi-Lorentzian prescription for S(Q, ω) (or, equivalently,
for CL(Q, ω)) one can erroneously find low-frequency fea-
tures that actually are not the physical evidence of a trans-
verse dynamics. To do so, we consider a Q region where
we clearly showed that shear waves in Ag cannot yet be
detected from S(Q, ω) or CL(Q, ω) (Q < Qp/2) and where a
VE modeling of the intermediate scattering function perfectly
describes the simulation data. From the VE fit parameters we
can of course calculate the resolution-free S(Q, ω) of Eq. (9)
which, by construction of the VE model, contains exclusively
the longitudinal excitation. In order to take into account the
typical resolution effects of an experiment, we convoluted
the result with the resolution function of the x-ray mea-
surements on Cu [12] and calculated an experimental-like
CL(Q, ω). Following the analysis of Ref. [12], we then per-
formed a two-Gaussian fit of the resulting function, shown
in Fig. 12 for the Q = 8.81 nm−1 case as an example. Ex-
pectedly, the fit locates a second component in CL(Q, ω) at
low transverse-like frequencies that were however excluded
from the beginning, i.e., by the original VE modeling of the
spectral line shape. We find this a rather convincing example
that no reliable detection of shear waves can be claimed by
performing analyses like the one reported for Cu and other
metals [12].

Nevertheless, there still is a situation where the analysis
of the longitudinal current autocorrelation can be of some
utility. In fact, within the Q region where the sound wave
propagation is arrested and its frequency is zero, the transverse
excitation is no longer hidden by the longitudinal one. This is
better appreciated in the time domain, where F (Q, t ) displays
no visible oscillations but CL(Q, t ) does show one, though
strongly damped. In Fig. 13 we show both functions for the
Q = 26.06 nm−1 case. For the reasons explained in Sec. IV,
it is quite difficult to use, in the gap, the fit models already
applied outside the gap Q range. However, a simplified, some-
what rough, model turns out to be applicable and is able to
provide reasonable information on the transverse component.
Such a model is composed of one real mode only plus one
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pair of complex ones. With such a model the possibility of
an accurate description of the real-mode components (which
we know to be more than one) is abandoned, but the only
remaining complex pair contribution can be confidently iden-
tified with the transverse excitation. Thus, while in the gap
region we are still unable to characterize the overdamped
(i.e., nonpropagating) longitudinal modes, we can still obtain
approximate but reasonable values for ωt and zt . In this way
we tentatively added four points to the transverse dispersion

curve of Fig. 8(b) already determined from fits to F (Q, t ).
By doing so, we see that the newly found values are in quite
reasonable agreement with the overall Q dependence of the
transverse excitation frequencies. The results reported in this
Appendix confirm that the possibility of determining the Q
behavior of the collective modes via the longitudinal current
autocorrelation function or spectrum is essentially dependent
on the coexistence or not of both longitudinal and transverse
modes in the same frequency range.
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