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Band engineering of Dirac cones in iron chalcogenides
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By band engineering the iron chalcogenide Fe(Se,Te) via ab initio calculations, we search for topological
surface states and realizations of Majorana bound states. Proposed topological states are expected to occur for
nonstoichiometric compositions on a surface Dirac cone where issues like disorder scattering and charge transfer
between relevant electronic states have to be addressed. However, this surface Dirac cone is well above the Fermi
level. Our goal is to theoretically design a substituted crystal in which the surface Dirac cone is shifted toward the
Fermi level by modifying the bulk material without disturbing the surface. Going beyond conventional density
functional theory, we apply the Blackman, Esterling, and Berk coherent potential approximation in a mixed basis
pseudopotential framework to scan the substitutional phase space of cosubstitutions on the Se sites. We have
identified iodine as a promising candidate for intrinsic doping. Our specific proposal is that FeSe0.325I0.175Te0.5

is a very likely candidate to exhibit a Dirac cone right at the Fermi energy without inducing strong disorder
scattering.

DOI: 10.1103/PhysRevB.102.054209

I. INTRODUCTION

In recent years the search for solid-state systems that host
topologically protected surface states have attracted signifi-
cant attention. In addition to topological insulators, topologi-
cal superconductors are promising given the interesting prop-
erties of the corresponding Majorana bound states [1–4]. One
avenue toward topological superconductivity is by creating
heterostructures of semiconductors and conventional super-
conductors, the latter with rather low transition temperatures.
A material with high superconducting transition temperature
and intrinsic topological superconductivity is clearly desir-
able. A very promising system for a high-Tc, single-crystal
realization of Majorana bound states is the Fe-based supercon-
ductor FeSe1−xTex. Its transition temperature can be brought
up to 30 K under external pressure [5] and even above 40 K in
monolayer thin films [6]. Furthermore, superconductivity has
been observed for a wide range of composition x [7–9]. In ad-
dition to the simple structure [see Fig. 2(a)], it exhibits a high
tunability of its internal parameters by chemical substitution
[10–12]. Most notably, FeSe0.5Te0.5 was argued to possess a
nontrivial band topology characterized by a Z2 topological
index, hosting a surface Dirac cone. In combination with the
proximity to bulk superconductivity [13], this could lead to
Majorana bound states [11,14,15].

However, the main difficulty is the location of said Dirac
cone well above the Fermi level, rendering it irrelevant with
respect to experiment. Recent attempts to circumvent this
problem via surface deposition have yielded promising results
[14]. A major drawback of this strategy is the inevitable
distortion of surface transport, which is of great interest
for systems with topologically protected surface states. The
main goal of this paper is to provide a strategy to bring the

surface Dirac cone closer to the Fermi level, and thus making
the surface states experimentally accessible, while preserving
surface transport.

To this end, we investigate intrinsic doping by employ-
ing the coherent potential approximation (CPA) to virtually
design an appropriate crystal of the form FeSe1−x−yTexAy,
where A denotes a generic substitution of concentration y.
The specific strategy of our band-structure engineering is
to modify the location of electronic states of pz character
by chalcogen, i.e., by Te substitution and combine this with
substitutions that change the intrinsic doping without causing
strong impurity scattering. The most promising candidate is a
substitution of selenium by a modest amount of iodine. Other
approaches such as substitutions of iron by other transition
metals may also affect the doping but introduce too strong
impurity scattering. The specific proposal therefore is that
FeSe0.325I0.175Te0.5 is a very likely candidate to exhibit a
Dirac cone right at the Fermi energy. For our approach to
be quantitatively reliable, experimentally obtained structural
parameters are essential. The lattice parameters and atomic
positions used in our electronic structure calculations were
obtained from refined x-ray diffraction data. We begin with
a brief introduction of the CPA and discuss the effects of Te
substitution and intrinsic doping on the basis of our band-
structure calculations in Sec. III, followed by our conclusion
in Sec. IV.

II. MODEL AND FORMALISM

The goal of this paper is to obtain quantitative first-
principles-based insight into the electronic structure of substi-
tutionally disordered systems. Our results are obtained within
the ab initio version of the coherent potential approximation
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(CPA) due to Blackman, Esterling, and Berk (BEB) [16]. For
convenience we summarize the main idea of the CPA and of
the BEB version of it in the Appendix. A key advantage of
this formalism is that it offers a feasible treatment of realistic
compounds with substitutional disorder that goes beyond the
scope of simplified model Hamiltonians. Chemical species-
dependent hopping and onsite matrix elements are extracted
from ab initio DFT calculations. Our approach also builds
on the treatment by Koepernik et al. who extended the BEB
formalism to include multiple orbital degrees of freedom per
site and chemical species [17]. In addition, we build our work
on the implementation by Herbig et al. [18]. As input for
our CPA calculations we use DFT results obtained from the
mixed-basis pseudopotential program (MBPP) developed by
Meyer et al. [19].

As we are interested in local quantities, we rely on a
linear-combination-of-atomic-orbitals (LCAO) description of
the orbitals, where

φP
iμ(r) = φP

μ(r − Ri ) = 〈r|iPμ〉,
with site index i of an atom of species P located at posi-
tion Ri. Here, μ = (l, m) is a combined orbital index with
orbital angular momentum l and magnetic quantum number
m. Furthermore, the orbitals are expressed in real spherical
harmonics Klm(r̂),

φP
μ(r) = φP

lm(r) = il f P
l (r)Klm(r̂),

where f P
l are radial and species-dependent functions with r =

|r| and Klm depend only on the angle via r̂ = r/r = (ϑ, ϕ).
Being a nonorthonormal basis set, the local orbitals have a
nonvanishing overlap,

SP,Q
iμ, jν = 〈iPμ| jQν〉 =

∫
d3r

[
φP

iμ(r)
]∗

φ
Q
jν (r),

such that the unity operator is given by

1 =
∑

iPμ, jQν

|iPμ〉(S−1)P,Q
iμ, jν〈 jQν|.

The composition of several single crystals with a substi-
tution level around x = 0.5 was accurately determined by
x-ray diffraction (XRD) using a STOE imaging plate diffrac-
tion system (IPDS-2T) equipped with Mo Kα radiation. All
accessible symmetry-equivalent reflections were measured at
room temperature (RT) up to a maximum angle 2θ = 65°.
The data were corrected for Lorentz, polarization, extinction,
and absorption effects. Using SHELXL [20] and JANA2006
[21] around 155 averaged symmetry-independent reflections
(I > 2σ ) have been included for the respective refinements
in space group P4/nmm. The refinements converged quite
well and show excellent reliability factors (see Table I). The
lattice parameters and atomic positions used in the electronic
structure calculations were obtained from refinement of the
XRD data. The lattice parameters for an idealized x = 0.5
crystal were the results of two FeSe1−xTex samples with x =
0.483 and 0.516, respectively. Crystallographic information
regarding the refinement of both samples is listed in Table I.
As DFT methods are notoriously inadequate for predicting
structures of the pnictide family, relying on experimentally
observed lattice parameters is well justified.

TABLE I. Structural parameters of FeSe1−xTex determined from
single-crystal x-ray diffraction. The structure was refined in the
tetragonal space group P4/nmm. Se/Te and interstitial Fe2 sit on
2c Wyckoff positions with coordinates 1

2 , 0, z whereas Fe1 sits on
a special position 2a with coordinates 0,0,0. The Uii denote the
anisotropic atomic displacement parameters (for Fe1 and Se/Te
U11 = U22 and U12 = U13 = U23 = 0); for interstitial Fe2 only Uiso

is given. Refinement of the site occupancy factor (SOF) of Fe2
demonstrates that the Se/Te substituted samples contain a significant
amount of interstitial Fe.

FeSe1−xTex x = 0 x = 0.483(9) x = 0.516(8)

a (Å) 3.7688(7) 3.7913(7) 3.7948(2)
c (Å) 5.520(1) 5.945(3) 5.986(1)

Fe1 U11 (Å2) 0.0108(5) 0.0096(2) 0.0106(1)
U33 (Å2) 0.0226(6) 0.0184(5) 0.0187(2)

Se/Te z 0.26680(9) 0.27794(9) 0.27984(7)
U11 (Å2) 0.0138(4) 0.0126(1) 0.0129(1)
U33 (Å2) 0.0184(4) 0.0365(4) 0.0368(2)

Fe2 z 0.6969(16) 0.6991(9)
Uiso (Å2) 0.0111(21) 0.0134(12)

SOF 0.080(4) 0.105(3)
wR2 (%) 4.67 2.70 3.56
R1 (%) 1.92 1.49 1.53

The Fe(Se,Te) crystals exhibit an interstitial site, in-
between the iron planes (see Fe2 in Table I). This intersti-
tial iron has significant effects on the superconducting and
magnetic properties of the system and has been the subject
of extensive research [22–24]. This excess iron can lead to
a suppression of superconductivity, which would render the
system inadequate for the search for Majorana bound states.
However, it was shown that superconductivity persists at low
interstitial content [23] and that excess iron may even be
reduced from the as-grown samples and superconductivity
enhanced via annealing [25]. Furthermore, substitution on the
Fe site with transition metals, as considered in Sec. III C,
might affect the interstitial site as well. The questions that
arise in the context of excess iron are, however, beyond the
scope of this paper and will be investigated via the CPA
method in future works. Thus, for the following theoretical
considerations we neglect the interstitial site.

III. RESULTS AND DISCUSSION

A. Band structure of FeSe

The band structure of FeSe has been studied in great de-
tail by angle-resolved photoemission spectroscopy (ARPES)
measurements [26–28], but we restrict our discussion to the
	Z line. In Sec. III D, we will include spin-orbit coupling
(SOC), but for the time being we will neglect it. As can be
seen from the DFT band structure in Fig. 1, the 	Z line
only shows minimally dispersive bands close to the Fermi
energy, attributed to 3d-Fe orbitals. As a result, FeSe exhibits
two-dimensional behavior with intralayer hopping but only
minimal interlayer hopping. The lower of these two bands
(dxy orbitals, labeled F1 in Fig. 1) is nondegenerate, while the
upper band exhibits a twofold degeneracy (dxz/dyz orbitals,
labeled F2 in Fig. 1). Located above the F1 band is a highly
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FIG. 1. Band structure (red lines) of FeSe with lattice parame-
ters a = 3.7688 Å, c = 5.520 Å, z = 0.2668. Green line highlights
dispersive pz-character band labeled D, blue line highlights nonde-
generate flat d-character band labeled F1, and black line highlights
twofold-degenerate flat d-character band labeled F2. The arrow indi-
cates the effect of Te substitution.

dispersive band with pz character (labeled D in Fig. 1), that
can be affected by the chalcogen, i.e., by Te substitution. The
goal is to induce a band inversion by lowering the D, thus
inverting the pz and dxz/dyz bands at Z . Together with SOC,
this will open up a gap at the crossing point with the F2 band.
This was shown to result in a topological band structure with
a surface Dirac cone (SDC) that could host Majorana bound
states in the superconducting phase [14,15,29].

However, the Dirac cone in FeSe0.5Te0.5 is situated well
above the Fermi level and recent attempts to access it via
surface deposition [29], while confirming the SDC in ARPES
measurements, inevitably distort surface transport. To pre-
serve surface transport we consider co-substitution, i.e., in-
trinsic doping, in order to lower the SDC toward the Fermi
level. In addition, our application of the CPA will generate
insight into the nature of disorder in these compounds which is
beyond the DFT supercell calculations of [14]. It gives access
to information on level shifts and band broadening. With the
considerable disorder induced via substitution, it is crucial to
verify whether the involved quasiparticles remain well defined
and the SOC gap unobstructed.

B. Effect of Te substitution

The effect of Te substitution on the band structure of FeSe
is most commonly attributed to the spatial extent of the pz

orbitals of Te [14]. Due to the limited overlap of pz orbitals
of Se between Fe layers and the resulting small hybridization
along the c axis, FeSe displays two-dimensional behavior.
Upon Te substitution, the hybridization of pz orbitals between
Fe layers is increased, due to the greater spatial extent of Te
orbitals [see schematics in Fig. 2(b)]. As a consequence, inter-
layer hopping is increased and the amplified pp hybridization
results in a highly dispersive pz-character band in vicinity

FIG. 2. Schematic drawing of (a) FeX (X = {Se,Se0.5Te0.5})
structure (brown and green balls represent Fe and X atoms, respec-
tively) and overlap of Fe and (b) Se orbital, (c) Te orbital between
the iron planes. Schematic orbitals in the style of Fig. 1 of [14].

to the Fermi level. In contrast to FeSe, Fe(Se,Te) exhibits
three-dimensional behavior.

This behavior can be see from Fig. 3, in which we show
the band structure of the pure end members FeSe and FeTe,
and the Bloch spectral function of the substituted system
FeSe1−xTex at x = 0.5. with orbital overlap S and effective
medium Green’s function 	. Here, ω+ = ω + iδ with in-
finitesimal δ. For comparison, we have adopted the lattice
parameters of the substituted compound Fe(Se,Te) (a = 3.793
Å, c = 5.9656 Å, z = 0.27885 from XRD) for both end mem-
bers FeSe and FeTe. The band structure of this hypothetical
FeSe crystal consequently differs from that in Fig. 1, calcu-
lated with real lattice parameters. While in the hypothetical
FeSe the dispersive band D is well below the Fermi level
and the 3d bands F1 and F2 [Fig. 3(a)], it crosses the flat
bands in hypothetical FeTe [Fig. 3(c)]. In Fig. 3(b) we show
the Bloch spectral function A(k, ω) of FeSe0.5Te0.5 along the
	Z line in false color, which exhibits a behavior intermediate
between the clean compounds. The Bloch spectral function is
calculated according to

A(k, ω) = − 1

π
Im Tr[S	(k, ω+)]. (3.1)

The band structure of FeSe0.5Te0.5 was shown to be topo-
logically nontrivial by refs. [11,14], due to a band inversion.
This is clearly visible in Fig. 3. If we include perturbatively
the spin-orbit interaction, a gap at the crossing point of D
and F2 (which splits into F+

2 and F−
2 under SOC) opens.
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FIG. 3. Along 	Z (a) DFT band structure of FeSe, (b) CPA
Bloch spectral function of FeSe0.5Te0.5, (c) DFT band structure of
FeTe for lattice parameters a = 3.793 Å, c = 5.9656 Å, z = 0.27885
of the substituted compound. Relevant bands labeled D, F1, and F2.

This allows for a SDC that may host topologically protected
surface states, especially Majorana bound states in a vortex in
the superconducting phase [30].

FIG. 4. Bloch spectral function A(k, ω) of FeSe0.5Te0.5 along 	Z
at k = 0.28	Z , the lower band crossing point.

To get further insight into the effect of substitutional
disorder, we disentangle the spectral peaks of the individ-
ual bands by projecting the k-dependent Green’s function
S(k)	(k, ω)S(k) onto the eigenvectors of the clean parent
compound. This is accomplished by defining a band-projected
Green’s function

Gn(k, ω) ≡
∑

i, j∈parent

c∗
n,i(k)[S(k)	(k, ω)S(k)]i, jcn, j (k),

(3.2)

with the jth orbital component cn, j of the eigenvector of band
n. Because the eigenvectors are defined on the smaller Hilbert
space of the parent compound, the sum runs only over orbital
indices of that subspace. Figure 4 shows the projected spectral
function of FeSe0.5Te0.5 at the crossing point of bands D and
F2. As can be seen, the crossing point lies well above the
Fermi level at ε � 0.16 eV, thus making it inaccessible to
experiment. We will address this problem in Sec. III C and
show how the crossing point can be shifted toward the Fermi
level.

C. Electron doping via chemical substitution

In order to bring the band-crossing point [see Fig. 3(b)]
closer to the Fermi level, we consider a cosubstitution. By
bringing additional charges into the bulk system, we cir-
cumvent the disruption of surface transport due to surface
deposition, as proposed by Ref. [14]. To this end, we follow
two different strategies: first, a substitution of Fe by transi-
tion metals, namely, Co, Cu, and Ni, respectively; second, a
cosubstitution on the Se site.

1. Fe site cosubstitution

While all three candidates did in fact raise the Fermi level
there are two major drawbacks which excluded this strategy:
First, for all three candidates, the necessary substitutional
degree y in Fe1−yMySe0.5Te0.5 (M = Ni, Co, Cu) was rela-
tively high (y = 0.15–0.4), resulting in pronounced spectral
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FIG. 5. Comparison of the Bloch spectral function A(k, ω)
along 	Z of (a) Fe0.85Ni0.15Se0.5Te0.5, (b) Fe0.75Cu0.25Se0.5Te0.5, and
(c) Fe0.6Co0.4Se0.5Te0.5.

broadening (see Fig. 5). To emphasize this, in Fig. 6 we
compare the projected spectral function of the respective D
and F2 bands to iodine cosubstitution at the Se site, our most
promising candidate (see discussion below). It is evident from
this comparison that Co, Cu, and Ni result in larger broaden-
ing of the bands connected to the SOC gap, thus increasing
the probability of concealing said gap and prohibiting a SDC.
The main drawback of the Fe site substitution, however, is
the fact that already at very low concentrations (y � 0.05),
superconductivity is suppressed due to the strong scattering
properties of Ni, Co, and Cu [31–33]. This excludes such
compounds from the search for Majorana bound states.

2. Se site cosubstitution

We have identified the most promising candidate for this
cosubstitution to be iodine. Our choice has two distinct
reasons: First, iodine brings an additional valence electron
into the bulk system, compared to Se and Te, thus raising
the Fermi level. Second, due to its close similarity to Te,
especially with regard to ion radii, we may expect iodine
not to alter the crystal lattice parameters significantly. This
is essential to our calculations, as they depend on the lattice
parameters as input. Without a grown and fully characterized
FeSe1−x−yIyTex crystal, we must rely on parameters that are
reasonable for the hypothetical crystal structure. To this end,
we adopt the FeSe0.5Te0.5 parameters for the cosubstituted
calculations.

As is evident from the comparison of Figs. 7(a) and
7(b), the cosubstitution of iodine (y = 0.175, x = 0.5) raises

FIG. 6. Comparison of the projected Bloch spectral function A(k, ω) of FeSe0.325I0.175Te0.5 for bands D and F2 at their respective crossing
point to (a) Fe0.85Ni0.15Se0.5Te0.5, (b) Fe0.75Cu0.25Se0.5Te0.5, and (c) Fe0.6Co0.4Se0.5Te0.5. Peaks were shifted in energy to coincide for better
comparison.
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FIG. 7. Comparison of the Bloch spectral function A(k, ω) along
	Z of (a) FeSe0.5Te0.5, (b) FeSe0.325I0.175Te0.5 without SOC.

the Fermi level, bringing the band-crossing point from ε �
0.16 eV down to ε � 0.05 eV (without SOC). It is at this
crossing point that SOC opens up a gap in which the sur-
face Dirac cone resides, which now becomes experimentally
accessible.

Aside from iodine substitution at the Se site, we further
considered Br as a possible candidate. Our investigations into
Br cosubstitution showed that the desired effect of raising the
Fermi level could be achieved. However, at the same time
the dispersive band D was lowered below the degenerate F2

band, thus not resulting in a band crossing and rendering Br
inadequate. This leaves iodine as the only viable candidate.
However, both candidates could serve as fine-tuning parame-
ters for the manipulation of the considered bands.

D. Effect of spin-orbit coupling

We now turn to the SOC gap in which the SDC appears
and to the question whether it survives the additional iodine
substitution proposed in Sec. III C. The results presented in
this section were obtained by a full ab initio treatment of
SOC within the CPA (see Appendix, Sec. A 3). The main
effect of SOC in Fe(Se,Te) is lifting the degeneracy of band
F2, splitting into F+

2 and F−
2 [see Fig. 9(a)], and opening

up a SOC gap of �SO � 30 meV at the crossing point (ε �
0.109 eV) of bands D and F−

2 . As F−
2 is shifted downward in

energy relative to D, the crossing points of the system without
and with SOC no longer coincide in k space. This explains
why the comparison in Fig. 8 is made at different k points
along 	Z . The opening of the gap becomes evident from
examining the projected spectral function in Fig. 8. Clearly,
bands D and F−

2 split into two distinct peaks each and transfer
spectral weight across the gap. Consequently, a Dirac cone
that can host topologically nontrivial surface states forms on
the surface, within the SOC gap. The gap size is in good
agreement with ARPES measurements of [29]. Additionally,
some minor mixing of bands F+

2 and F1 may be observed
from the respective projected spectral functions. This mixing
increases as we approach the high-symmetry point Z and
can be explained by looking at the irreducible representations
(of the point group D4h) of states at 	 and Z connected by
these bands (see schematics in Fig. 10). Here, we follow the
nomenclature of Ref. [14]. Without SOC, the states of bands
F2 at 	 transform as 	+

5 , while the state of band F1 transforms

FIG. 8. Bloch spectral function of FeSe0.5Te0.5 along 	Z at band-
crossing point (a) k = 0.28	Z without SOC and at (b) k = 0.31	Z
with SOC.

as 	+
4 . With SOC, the former bands split and their states

now transform as 	+
6 and 	+

7 , respectively. The state of band
F1 at 	 now transforms as 	+

7 and the states of F+
2 and F1

along the high-symmetry line 	Z both transform as �7. Due
to their similar character and close proximity, they strongly
mix. Similar effects are observed for Fe(Se,Te,I) with SOC,
whose band structure we present in Fig. 9(b). As in Fe(Se,Te)

FIG. 9. Comparison of the Bloch spectral function A(k, ω) along
	Z of (a) FeSe0.5Te0.5 with SOC, (b) FeSe0.325I0.175Te0.5 with SOC.
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FIG. 10. Schematics of the effect of SOC on the 	Z line of
FeSe0.5Te0.5. Figurative states at 	 and Z are labeled according to
their irreducible representations and parities (see Ref. [14]).

we observe clear band splitting due to SOC and a pro-
nounced mixing of bands F1 and F+

2 . Although indiscernible
in Fig. 9(b), the gap in FeSe0.325I0.175Te0.5 becomes clear from
examining the projected spectral function with SOC in Fig.
11. The quasiparticle peaks of bands D and F−

2 split up,
shifting spectral weight across the gap. Clearly, the SOC gap
(�SO � 10 meV) survives the cosubstitution and now the gap
is centered at ε � 5 meV, closer to the Fermi level.

IV. CONCLUSION

In this paper, we have studied the effect of intrinsic doping
on the position of the surface Dirac cone of the Fe-based
superconductor FeSe1−xTex using the coherent potential ap-
proximation. We have shown that, by band engineering this
compound via intrinsic doping, the band-crossing point in the
	Z line of Fe(Se,Te), which is crucial to the nontrivial topol-
ogy and surface Dirac cone, can be brought down to the Fermi
level. Apart from the successful iodine cosubstitution at the
Se site, we were able to exclude further candidates (Br) and
cosubstitutions at the Fe site (Co, Cu, Ni). Our calculations
show the survival of the SOC gap in the cosubstituted system,
suggesting a stable surface Dirac cone and stable surface
states. Thus, we find FeSe1−x−yTexIy (x = 0.5, y = 0.175)
to be a promising candidate for a topologically nontrivial,
single-crystal superconductor that may host Majorana bound
states.

FIG. 11. Bloch spectral function A(k, ω) of FeSe0.325I0.175Te0.5

with SOC at the band-crossing point k = 0.185	Z .
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APPENDIX: THE AB INITIO VERSION OF THE
COHERENT POTENTIAL APPROXIMATION DUE TO

BLACKMAN, ESTERLING, AND BERK

In this Appendix we summarize the main steps of the ab
initio version of the coherent potential approximation (CPA)
due to Blackman, Esterling, and Berk [16]. We start our
discussion with a brief summary of the CPA approach applied
to a single-particle Hamiltonian with random onsite energies
[35,36].

1. A brief review of the conventional CPA

We briefly review the conventional CPA and refer the
interested reader to [37] for a more detailed discussion. The
most convenient starting point for the description of a sub-
stitutionally disordered crystal in a localized framework is a
single-particle Hamiltonian of the form

Ĥ =
∑
i, j

Wi, jc
†
i c j +

∑
i

εic
†
i ci. (A1)

Here, c†
i (ci ) represent fermionic creation (annihilation) op-

erators, Wi, j denotes the hopping element of an electron
between sites i and j, and εi is a randomly distributed onsite
energy. The substitutional disorder of the model Hamiltonian
in Eq. (A1) enters via the onsite terms, i.e., one assumes
random onsite energies εi. In such a scenario the distribution
of energy levels of a given site is included in the CPA, yet
disorder at surrounding sites are only treated on average, i.e.,
correlations of a given site with the disorder of its environment
are neglected.

Within the CPA [35,36], the disordered crystal is replaced
by an effective medium associated with an effective medium
Green’s function 	 and a self-energy �. The assumption,
consistent with the mentioned neglect of intersite correlations,
that may be imposed upon this self-energy is to take it as a
single-site quantity. In this sense the CPA is the dynamical
mean field theory of substitutionally disordered systems. Hav-
ing established the effective medium, one may now replace a
site of the medium with a real impurity with a well-defined
onsite energy. Due to the single-site nature of this theory, only
the diagonal elements of the impurity Green’s function qG of
such an insertion are relevant and may be expressed as

qGi,i = (
	−1

i,i + �i − ε
q
i

)−1
, (A2)

where q is the species index of the impurity and i denotes a
site. This replacement is then repeated with all species allowed
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at this site and it is demanded that these replacements must not
change the effective medium on the average.

This postulated self-consistency condition can now be
formulated as

	i,i
!=

∑
q

cq
i

qGi,i, (A3)

with the atomic concentration cq
i of species q at site i. In order

for the effective medium Green’s function to have physical
meaning, it must coincide with the configurationally averaged
Green’s function 〈G〉 of the disordered system

	i,i
!= 〈G〉i,i = [(G0)−1 − �]−1

i,i = [ω − W − �]−1
i,i . (A4)

In a periodic system, the configurationally averaged Green’s
function retains its full translational invariance and the self-
energy is site independent, such that we may express 	 in
Fourier space as

	i,i =
∫

1.BZ
d3k[ω − W (k) − �]−1, (A5)

with W (k) = ∑
j W0 jeikR j , assuming one site per unit cell, for

simplicity. The set of self-consistent equations (A2), (A3), and
(A4) or (A5) must now be solved in an iterative scheme.

The single-site nature of this method is one of its essen-
tial advantages, making it computationally feasible and thus
generally applicable within ab initio approaches. This comes
at the expense of off-diagonal disorder: the hopping matrix
elements lack the influence of the disordered environment
surrounding a particular site.

2. Blackman, Esterling, and Berk formalism

An approach to improving the CPA method was published
by Blackman, Esterling, and Berk (BEB) [16]. Here, we
briefly outline the most important statements and refer the
interested reader to [37] for a detailed account. Blackman,
Esterling, and Berk introduced occupation variables

ηP
i =

{
1 if site i is occupied with species P,
0 otherwise. (A6)

The ηP
i must obey the following set of conditions:

1. Avoidance of multiple occupancy of a site by different
species:

ηP
i η

Q
i = δPQηP

i .
2. Forced occupation of each site by exactly one species:∑

P ηP
i = 1.

3. Association of the configurational average of random
variables with atomic concentrations cP

i of species P at site i:
〈ηP

i 〉 = cP
i .

With these variables we can project a nonstochastic ex-
tended Hilbert space containing all configurations (underlined
symbols) to a specific configuration in a reduced Hilbert space
(normal symbols). Accordingly, the Hamiltonian of the BEB-
CPA can be expressed as

Ĥ =
∑

i, j,P,Q

HP,Q
i, j ηP

i η
Q
j c†

i c j (A7)

=
∑

i, j,P,Q

W P,Q
i, j ηP

i η
Q
j c†

i c j +
∑
i,P

εP
i ηP

i c†
i ci. (A8)

With η being the only stochastic quantities of the formalism,
one can now select the Hamiltonian of a specific configu-
ration. The nonstochastic quantities in the extended Hilbert
space, H , W and ε, possess the full translational symmetry
of the clean crystal, making an implementation within an ab
initio scheme highly convenient. A further advantage of this
formalism is the inclusion of environmental disorder effects
on the hopping elements Wi, j , which, in addition to the onsite
terms εi, now become random due to the set of η.

Under the BEB transformation, the Green’s function in
extended Hilbert space reads as [38,39]

GPQ
i j = ηP

i Gi jη
Q
j . (A9)

While only being a simple number in the conventional CPA,
the site matrix element Gi j now becomes a matrix in species
space and the equations of motion become matrix equations.
We may now again define a (BEB) self-energy � and effective
medium Green’s function 	.

Analogous to the conventional CPA, we introduce an im-
purity Green’s function qG, which describes the insertion of a
species q at site i of the effective medium:

qGPQ
ii = δPQδPq

[[
	−1

ii

]qq + [�i]
qq − ε

q
i

]−1
. (A10)

In this extended formalism, the CPA self-consistency condi-
tion now becomes

	
PQ
ii =

∑
q

cq
i

qGPQ
ii (A11)

and for a periodic system with a single site per unit cell, it
again holds that

	ii =
∫

1.BZ
d3k[ω1 − W (k) − �]−1. (A12)

Equations (A10)–(A12) can be solved iteratively in analogy
to the conventional CPA [40].

3. Spin-orbit coupling within the CPA

In order to incorporate SOC in form of a full ab initio treat-
ment into the CPA, the formalism was extended to a spinor
formalism. The spin-orbit coupling potential operator is then
constructed from relativistic norm-conserving pseudopoten-
tials, as described in Ref. [41]. Its real-space representation is
then given by a concentration weighted sum of contributions
from all present atomic types:

〈r|V̂ SO|r′〉 =
∑

i

cq
i v

SO
q (r − Ri, r′ − Ri ), (A13)

where cq
i denotes the atomic concentration of atomic type i

and atomic site coordinate Ri. For each atomic type i

vSO
q (r, r′) =

∑
lm

δ(r − r′)
r2

vSO
q,l (r)Lr · SKlm(r̂)Klm(r̂′),

(A14)
with cubic harmonics Klm and angular momentum and spin
operators Lr and S, respectively. Here, Lr acts on the
r coordinate. The angular momentum decomposed vSO

q,l are
radial functions for each species q and are given by the
spin-orbit components of the norm-conserving relativistic
pseudopotential [41]. Due to the short-ranged nature of the
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potentials, the evaluation of their respective matrix elements
is straightforward in the LCAO basis employed for the CPA

and is done analogously to the evaluation of parts of the
pseudopotential (see Ref. [37] for details).
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