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Static density response function studied by inelastic x-ray scattering:
Friedel oscillations in solid and liquid Li
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We performed inelastic x-ray scattering experiments on solid and liquid Li to determine the static density
response function χ (q, 0), where q is wave vector. The experimentally determined χ (q, 0) allows meaningful
comparison of the response function with that of the electron gas model; χ (q, 0) exhibits the 2kF singularity
predicted in the electron gas model. The screening electron density induced by a positive point charge is
calculated, and it shows Friedel oscillations both in solid and liquid Li. Moreover, we found that the Friedel
oscillations become weak upon melting.
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I. INTRODUCTION

Screening is an important concept for describing the ef-
fective interaction in electron gas, because the bare Coulomb
interaction is modified by screening electrons. According
to the linear response theory, the static screening electron
density induced by external potential is expressed by the
static density response function χ (q, ω = 0) as �n(q) =
Vext(q)χ (q, ω = 0) [1]; h̄q and h̄ω are the momentum and
energy transfer, respectively. A typical example of the density
response function is that of the random-phase approximation
(RPA), and it shows a singularity at |q| = 2kF [1,2]. This
singularity is the origin of Friedel oscillations in the screening
electron density [3]. The many-body effects beyond the RPA
on screening can be treated with the local field correction
G(q) [1]. Enormous theoretical effort toward the construction
of G(q) has been made, aiming at a deeper understanding of
the screening [1,4,5].

There have been a number of experimental studies on
investigating physical quantities that reflect screening in met-
als. The standing waves related to Friedel oscillations can
be observed by scanning tunneling microscopy [6,7], and
their measurements have been performed recently for various
metallic surfaces [8–11]. In principle, the measured standing
waves allowed the reconstruction of the screening electron
density [12,13], but the reconstruction by scanning tunneling
microscopy experiments has not been accomplished to our
knowledge. In the field of liquid metals, the effective interi-
onic potential, screened by valence electrons, was determined
from the experimentally obtained liquid structure factor [14].
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It is well known that the experimentally determined effec-
tive interionic potential shows the 2kF oscillation in liquid
states [15]. Although it is possible to obtain indirect infor-
mation on screening through the effective interionic potential,
this approach does not provide χ (q, 0), which is a key quan-
tity for describing screening.

Recently, the development of inelastic x-ray scattering
(IXS) techniques has enabled the determination of the density
response function of electrons [16,17]. In IXS experiments,
the double-differential cross section is related to the dynamic
structure factor S(q, ω):

d2σ

d�dω
=

(
d2σ

d�dω

)
Th

S(q, ω), (1)

where (d2σ/d�dω)Th is the Thompson scattering cross sec-
tion [18]. The imaginary part of the density response function
can be calculated on the basis of the fluctuation dissipation
theorem by Im[χ (q, ω)] = −πS(q, ω). Although the IXS
experiments provide only the imaginary part, the real part
can be reconstructed by the Kramers–Kronig (K–K) trans-
formation. With this procedure, Abbamonte and coworkers
determined the density response function and discussed the
attosecond electron dynamics in condensed matter [16,17]. In
addition to the electron dynamics, importantly, information
on static screening can be deduced from the dynamic struc-
ture factor. Reed et al. determined χ (q, ω = 0) by the K–K
transformation of Im[χ (q, ω)]. They calculated the screening
electron density of graphene by using χ (q, 0) and showed that
the charge impurity is screened nearly completely in a few
nanometers [19].

In this study, we carried out IXS experiments on solid and
liquid Li to determine χ (q, 0). Li is suited for investigating
screening in simple metals for the following reasons. (i) The
valence electron of Li is well described with the electron
gas model. (ii) It is possible to obtain strong IXS signals
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because of the small x-ray attenuation. (iii) Extensive knowl-
edge regarding S(q, ω) of Li has been accumulated [20–25].
Furthermore, we compared the results for the solid and the
liquid to reveal the effect of disorder on the 2kF singularity.
In liquid states, the Fermi surface is blurred owing to the
effect of disorder [15,26,27]. Although the effect of Fermi
surface blurring on screening has been theoretically inves-
tigated [28–30], experimental information on this effect is
sparse.

We have determined χ (q, 0) of solid and liquid Li with
IXS measurements over a wide range of momentum and
energy transfer. The experimentally obtained χ (q, 0) enables
meaningful comparison of the response function with that
of the electron gas model. The screening electron density is
calculated using χ (q, 0), and the calculated density exhibits
Friedel oscillations. We find that the amplitude of the Friedel
oscillations in the liquid tends to be smaller than in the solid
because of the scattering effects of disordered ions.

II. EXPERIMENT

We carried out the IXS measurements at the Taiwan IXS
beamline BL12XU at SPring-8. The synchrotron radiation
from the undulator light source was first monochromatized
with a cryogenic Si (111) double crystal and then a pair
of Si (220) channel-cut crystals. The incident photon en-
ergy E0 was fixed at 19.98 keV. In order to obtain inelastic
spectra, the scattered photons were reflected by a Si (660)
triangular crystal before being counted by an NaI scintillation
detector [31]. The scattered photon energy E was scanned
from −10 eV to 350 eV in E0 − E = h̄ω [32]. The range
of the energy scan was very wide compared with that in
usual IXS experiments [20–25] so that the K–K transfor-
mation could be performed accurately. The energy resolu-
tion varied within 1.2–1.4 eV, depending on the scattering
angle.

The IXS measurements were carried out for polycrystalline
Li (RT) and liquid Li (493 K). The polycrystalline sample,
whose crystal orientations is averaged, was used in order to
compare best the spectra with the liquid. Thus, we denote the
dynamic structure factor as S(q, ω), with q = |q|. The sample,
which was contained in a metal cell made of molybdenum,
was sealed in a chamber filled with He gas to avoid oxidation
of the sample. The sample cell was heated with an Fe-Cr
electronic resistant heater, and the temperature was monitored
with alumel-chromel thermocouples. We collected 19 spectra
in the range of 0.30–3.47 Å−1. The maximum scattering angle
was limited at 20◦ by the sample environment. For such
a case, high energy x-rays are better because the wider q
range is accessible. We chose 20 keV, which is significantly
higher than usual energies. Another advantage of the 20 keV
spectrometer is a large space around the sample chamber,
because the detector positions are in the opposite side to the
sample.

Elastic scattering was fitted by Voigt function and sub-
tracted from the spectra. The subtracted spectra I (q, ω) were
extrapolated, so that I (q, ω) = 0 at h̄ω = 0, using Mer-
min’s function [33]. I (q, ω) can be normalized with the
valence electron density n by using the f -sum rule [18],

FIG. 1. (a), (b) Experimentally obtained IXS spectrum at q =
1.63 Å−1 and q = 3.27 Å−1. The shaded area indicates the con-
tribution of the f -sum integration calculated with the norm 1. (c),
(d) Spectra at q = 1.63 Å−1 and q = 3.27 Å−1. The fitting and
extrapolated curve of norm 2 are plotted.

where the electron density of Li is nsol = 0.046 Å−3

and nliq = 0.044 Å−3:

∫ ∞

0
dωS(q, ω)ω = nq2

2m
. (2)

However, the integration over the whole range did not provide
an accurate absolute scale, because the IXS spectra in the
energy range higher than 55 eV included the contribution of
core electron excitations, as seen from Figs. 1(a) and 1(b).
We applied two methods to determine the absolute scale from
the valence contribution. In the first normalization method
(norm 1), we terminated the f -sum integration at 55 eV, which
can be seen from the shaded area in Figs. 1(a) and 1(b).
In Fig. 1(b), the valence contribution also arises at higher
energies than 55 eV, and the sum integrals cannot be properly
evaluated in this q range. Thus, we determined a single
normalization constant C1 = S(q, ω)/I (q, ω) from the sum
integrals in q < 1.63 Å−1 and normalized all spectra with C1

[34]. In the second method (norm 2), we extrapolated the va-
lence contribution with Mermin’s function [35]. Figures 1(c)
and 1(d) show the extrapolated curve and the integrated
region. We determined q-dependent normalization constants
C2(q) from the integral of each extrapolated spectrum. These
normalization methods have a small effect on the q depen-
dence of the obtained χ (q, 0), however, the absolute scale of
χ (q, 0) and the r dependence of the screening electron density
depend on the choice of the normalization methods.
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FIG. 2. (a) Experimentally determined −Im[χ (q, ω)] for solid
Li. qc is estimated to be 0.9 Å−1 using the electron gas model [36].
(b) −Im[χ (q, ω)] of solid and liquid Li at q = 0.5 Å−1. The dashed
and solid lines indicate the results obtained with the method of
norm 1 and norm 2, respectively. (c) −Im[χ (q, ω)] at q = 1.77 Å−1.
(d) −Im[χ (q, ω)] at q = 3.47 Å−1.

III. RESULTS AND DISCUSSION

A. IXS spectra

Figure 2(a) shows the IXS spectra for solid Li. In the low
q range (q < qc), a sharp peak of a plasmon is observed. qc

is the plasmon cutoff wave vector, beyond which the plasmon
is strongly damped [36]. The plasmon energy and line width
are presented in the Supplemental Material [34]. In the high
q range (q > qc), the excitation spectra are dominated by
a broad feature consisting of single-particle excitations. In
addition to the valence contribution, the K-edge structure is
observed at around 55 eV, and the intensity of the K-edge
structure increases with q.

The plasmon spectra of the solid and the liquid are
compared in Fig. 2(b). The different normalization methods
are indicated by solid and dashed lines. The shape of the
plasmon excitation spectrum shows little change on melting.
Figure 2(c) shows the spectra in the single-particle continuum
for the solid and the liquid. The IXS spectrum for the solid
shows a fine structure at around 17 eV. According to previous
IXS measurements of solid Li [24], additional intensities due
to the band structure effect appear, which results in the fine
structure in the single-particle excitation spectrum. In the
liquid state, the dip at around 17 eV is smeared, and no

fine structure is observed. This is attributed to the reduction of
the band structure effect upon melting, because in the liquid
state the IXS intensity due to the band structure effect is ex-
pected to be small. Moreover, we note that the peak intensity
of the IXS spectrum for the liquid is smaller than that for
the solid, which should also reflect the reduction of the band
structure effect. These trends upon melting are also observed
for the spectra in 1.63 < q < 2.45 Å−1 (1.5 < q < 2.2 kF ),
which are presented in the Supplemental Material [34]. In the
higher q range [Fig. 2(d)], the spectra of the solid and liquid
have similar shapes.

The absolute scale of −Im[χ (q, ω)] is affected by the
normalization methods. In fact, the IXS intensity of the liquid
gradually decreases with increasing q during a long measure-
ment [34], which leads to a small value of −Im[χ (q, ω)] of
norm 1 in the high q region. Such disadvantage of norm 1 can
be compensated by the method of norm 2. In the case of norm
2, the normalization was carried out for each spectrum, and
the problem of the variation of the IXS intensity was avoided.
The method of norm 1 is a crude procedure, however, the
results of norm 1 are useful to estimate how large uncertainty
is caused by the extrapolation.

B. Static density response function

We calculate χ (q, 0) using the K–K relation:

Re[χ (q, ω)] = 1

π
P

∫ ∞

−∞
dω′ Im[χ (q, ω′)]

ω′ − ω
. (3)

χ (q, 0), which is purely real, can be calculated by setting
ω = 0 in Eq. (3). The integration in ω′ < 0 was performed
using the property that Im[χ (q, ω′)] is an odd function. The
integration of the K–K relation was performed up to 350 eV to
ensure the causality. Thus the experimentally obtained χ (q, 0)
includes the contribution of the core electrons as well as that
of the valence electrons.

Figure 3(a) shows the experimentally determined χ (q, 0).
For comparison with the experimental results, we calculated
χ (q, 0) of the electron gas model within the RPA. The calcu-
lated results were convolved with a Gaussian, representing the
experimental resolution of 0.136 Å−1. The absolute scales of
the experimental results are comparable to that of the electron
gas model, however, their scales change depending on the
normalization method. Thus, we calculated the normalized
density response function χ (q, 0) ≡ χ (q, 0)/Max|χ (q, 0)| to
compare the shape of the response function. Figure 3(b)
shows χ (q, 0) for norm 1. The experimentally determined
χ (q, 0) for the solid and liquid quantitatively reproduces the
characteristics of the electron gas results. Figure 3(c) shows
χ (q, 0) for norm 2, and its q dependence is similar to that
for norm 1, however, χ (q, 0) of norm 2 shows a bent at
q > 2.8kF . This feature should be an artifact arising from the
normalization, because in this q range a large part of the sum
integral of norm 2 was evaluated from the extrapolated curve
and the uncertainty due to the extrapolation is large, seen from
the Fig. 1(d).

We calculated the derivative of χ (q, 0) to investigate the
2kF singularity. Figure 4(a) shows χ (q, 0) for the solid and
liquid. A noteworthy feature is that the experimentally deter-
mined �χ (q, 0)/�q exhibits a maximum near 2kF . The peak
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FIG. 3. (a) Experimentally obtained χ (q, 0) in solid Li and that
of the electron gas model. The different normalization methods are
indicated in the legend. The solid line is the calculated result for
the electron gas model within the RPA. (b) The normalized density
response function χ (q, 0) for norm 1. (c) Corresponding results for
norm 2 are compared with the calculated result including the effect
of Fermi surface blurring. q is scaled by the Fermi wave vector with
ksol

F = 1.11 Å−1 and kliq
F = 1.09 Å−1.

FIG. 4. (a) Derivative of χ (q, 0) for solid and liquid Li. (b) Cor-
responding results including the effect of Fermi surface blurring.

TABLE I. Electrical resistivity, mean free path, and ratio �kF /kF .

ρ(� · m) l (Å) �kF /kF (%)

Solid Li 8.55 × 10−8 [37] 115.2 0.4
Liquid Li 26.33 × 10−8 [38] 38.5 1.2
Liquid Li 4.6 10 [39]

must reflect the logarithmic divergence of �χ (q, 0)/�q, as is
predicted in the electron gas model. Moreover, the peak in
the liquid is broader than in the solid. As previously men-
tioned, the shape of the IXS spectra in this q range actually
changes upon melting, and this trend suggests that the effect
of the 2kF singularity in the liquid is weaker than in the
solid.

To investigate the 2kF singularity in the solid and liquid,
we calculated χ (q, 0) which includes the effect of Fermi
surface blurring, using the dielectric function ε(q, l ) derived
by Leavens et al. [29]. In ε(q, l ), the effect of Fermi surface
blurring is expressed with the mean free path l . According
to the Heisenberg uncertainty principle, the blurring of kF

can be roughly estimated to be �kF ∼ 1/(2l ). In Table I,
we list �kF and l , which are estimated from the electrical
resistivity. However, the estimated �kF /kF of the liquid is
much smaller than that calculated by the Green function
method [39] (see Table I). In liquid metals, the electronic state
is strongly influenced by the scattering effects of disordered
ions, and it is necessary to fully take this into account for
the estimation of �kF . The scattering effects of disordered
ions are included in the self-energy calculated by Yan [39],
and �kF estimated by the Green function method is more
accurate than the estimation using the electrical resistivity.
We also carried out the calculation by setting the parameter
l such that �kF is equal to the value calculated by Yan [39].
The conditions for the calculation of ε(q, l ) are listed in
Table I [40].

The results of χ (q, 0) calculated from ε(q, l ) are shown
in Fig. 3(c). In the solid, there is only a small difference
between results calculated with and without Fermi surface
blurring. In the liquid, the result calculated with �kF /kF =
10% shows a broad peak compared to that compared with the
result with �kF /kF = 1.2%. Figure 4(b) shows �χ (q, 0)/�q
which includes the effect of Fermi surface blurring. The peak
near q = 2kF is broadened as �kF /kF increases, however,
the calculated broadening of the peak is large compared with
the experimentally obtained trend. Thus, the feature of the
2kF singularity is less pronounced in the liquid because of
the effect of disorder, however, this effect is smaller than
theoretically expected.

C. Screening electron density

To investigate screening in real space, we have calculated
the screening electron density �n(r) [13]:

�n(r) = 1

2π2

∫ ∞

0
dq

(
q sin qr

r

)
χ (q, 0)

4πe(−e)

q2
, (4)

where we assumed the external potential of a positive point
charge. As the q range of the experimental results was lim-
ited, we extrapolated the data using the response function
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FIG. 5. Screening electron density of Li.

of the RPA. The extrapolated results well reproduce the q
dependence of the experimental results (see the Supplemental
Material [34]).

Figure 5 shows the normalized screening electron density
�n(r) ≡ �n(r)/Max|�n(r)|. The electrons aggregate to the
positive charge at r = 0, and they form the screening in the
range of about 2.2 Å. This value is estimated from the distance
at which �n(r) decays to 1% of �n(0).

Figures 6(a)–6(c) show an enlargement of �n(r) at large r.
In addition to the screening near the positive charge, electron
density oscillations over a long range are observed both in the
solid and liquid. For �n(r), the effect of a systematic error is
large compared with the case of χ (q, 0). The oscillations of
the liquid for norm 1 is distorted in r < 5 Å. We estimated
the wavelength of the oscillations from the maximum and
minimum positions in r > 5 Å as:

λ =
∑N1

1

(
rmax

i+1 − rmax
i

) + ∑N2
1

(
rmin

i+1 − rmin
i

)
N1 + N2

, (5)

where rmax
i and rmin

i are the maximum and minimum position,
respectively. We calculated the wave vector from the wave-
length of norm 1 and obtained K sol

norm1 = (1.93 ± 0.05)ksol
F and

K liq
norm1 = (2.18 ± 0.19)kliq

F . In the case of norm 2, the value
is K sol

norm2 = (2.07 ± 0.27)ksol
F for the solid. For the liquid, it is

difficult to determine the wave vector, because the amplitude
of the oscillations in 6 < r < 8 Å is too small to detect the
maximum and minimum positions. Alternatively, we esti-
mated the wave vector for the liquid by including the peaks in
r < 5 and obtained K liq

norm2 = (2.16 ± 0.08)kliq
F . The obtained

wave vectors are in reasonable agreement with the wave
vector of the Friedel oscillations. Furthermore, in r > 7.5 Å
the Friedel oscillations in the liquid tend to be smaller than in
the solid, for both cases of norm 1 and norm 2. This difference
should reflect the sharpness of the Fermi surface, because
it has been pointed out that the amplitude of the Friedel
oscillations in the effective interionic potential becomes small
if the Fermi surface is blurred [28,30]. We calculated �n(r)
including the effect of Fermi surface blurring, and the cal-
culated results are shown in Fig. 6(d). The damping of the
Friedel oscillations is enhanced with increasing �kF /kF , and

FIG. 6. (a) Enlargement of the long-range oscillations in �n(r)
calculated by the method of norm 1. The maximum and minimum
positions of oscillations are indicated by circles and squares, respec-
tively. (b) Corresponding results of norm 2. (c) Comparison of the
results of norm 1 and norm 2. (d) Calculated �n(r) including the
effect of Fermi surface blurring.

the amplitude of the Friedel oscillations with �kF /kF = 10%
is especially small. These calculations qualitatively reproduce
the trend of the experimental results on melting, which shows
that the variation of the Friedel oscillations upon melting is
caused by the Fermi surface blurring. It is noted that the
blurring effect is more clearly observed in �n(r) for norm 2
than �χ (q, 0)/�q. However, the observed change of �n(r) is
not as large as that of the Green function method, as in the case
of χ (q, 0). This indicates that the Friedel oscillations slightly
weakened by the effect of disorder persist in the liquid state
near the melting point.

We calculated the total induced charge to discuss the accu-
racy of the absolute scales of χ (q, 0), which is determined
by the f -sum rule. The accuracy of the absolute scale can
be checked by the condition that the integrated screening
electron density for a positive charge is −e [41], which means
that screening is complete. We calculated the total induced
charge as Q = −e

∫ ∞
0 dr4πr2�n(r) and obtained Q ≈ −0.9e

for both the solid and the liquid in the case of norm 1. In
the case of norm 2, we obtained Q ≈ −1.2e for the solid
and Q ≈ −1.1e for the liquid. These values are comparable
to −e, however, they change depending on the normaliza-
tion method. Thus, we discussed the normalized quantities,
χ (q, 0) and �n(r).
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FIG. 7. (a) −Im[χ (q,ω)]
h̄ω

of solid Li in the low q region and (b) high
q region.

D. Effect of the core electrons on screening

Finally, we comment on the effect of the core electrons
on χ (q, 0). In fact, χ (q, 0) is influenced by the contribu-
tion of the core electrons in Im[χ (q, ω)] through the K–K
relation. Figure 7 shows the integrand of the K–K relation
(Im[χ (q, ω)]/ω). The core contribution, in h̄ω > 55 eV, in-
creases with q, and this contribution is not negligible in q >

2kF . To illustrate this effect, we calculated χ (q, 0) which
only includes the contribution of the valence electrons. To
remove the core contribution, we calculated χ (q, 0) by the
K–K transformation of Im[χ (q, ω)] extrapolated by Mermin’s
function. Figure 8(a) shows the results of χ (q, 0) with and

FIG. 8. (a) χ (q, 0) with and without the core contribution for
solid Li. The calculation method for χ (q, 0) of the valence contri-
bution is described in the text. (b) �n(r) with and without the core
contribution for the liquid. (c) �n(r) for the valence contribution in
the solid and liquid.

without the core contribution. The effect of the core con-
tribution is smaller than expected from the IXS spectra in
Fig. 2(a). This is because the core contribution, located in the
high energy region, is weakened by a factor of 1/ω in Eq. (3).
In q > 2kF , χ (q, 0) of the valence contribution takes larger
values than that of norm 2, and the valence results show a
better agreement with that of the electron gas model. Thus,
the valence contribution is well described by the electron gas
model, however, the core contribution is also important for
describing the screening property in the high q region. In
this study, the experimental results are compared with the
electron gas model within the RPA, however, the compari-
son with a sophisticated theoretical calculation including the
effect of the band structure and the core electrons will lead
us to deduce information on the many-body effect on the
screening.

To investigate the effect of the core electrons on the screen-
ing electron density, we calculated �n(r) from χ (q, 0) of the
valence contribution. We compare �n(r) for the liquid with
and without the core contribution in Fig. 8(b). The amplitude
of the Friedel oscillations for the valence contribution is larger
than that for norm 2 in low r. This shows that the short-range
oscillation becomes weak due to the effect of the core elec-
trons, however, the long-range oscillations are not affected.
Furthermore, we compared the �n(r) of the solid and liquid
for the valence contribution in Fig. 8(c). The amplitude for
the liquid is smaller than that for the solid. This supports the
interpretation that the Friedel oscillations become weak upon
melting because of the Fermi surface blurring.

IV. CONCLUSION

We carried out IXS experiments on solid and liquid Li
and experimentally determined the static density response
function. The experimental χ (q, 0) of a simple metal provides
a testing ground for the theoretical description of screening
and will contribute to improve the treatment of the many-body
effects in the density functional theory. The experimentally
determined χ (q, 0) shows the 2kF singularity predicted in the
electron gas model. Moreover, we calculated the screening
electron density and found that the amplitude of the Friedel
oscillations in the liquid tend to be smaller than in the solid.
This trend upon melting is explained by Fermi surface blur-
ring due to the scattering effects of disordered ions.
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