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Many-body localization (MBL) has been widely investigated for both fermions and bosons, it is, however,
much less explored for anyons. Here we numerically calculate several physical characteristics related to MBL
of a one-dimensional disordered anyon-Hubbard model in both localized and delocalized regions. We figure out
a logarithmically slow growth of the half-chain entanglement entropy and an area-law rather than volume-law
obedience for the highly excited eigenstates in the MBL phase. The adjacent energy level gap-ratio parameter is
calculated and is found to exhibit a Poisson-like probability distribution in the deep MBL phase. By studying a
hybridization parameter, we reveal an intriguing effect that the statistics can induce localization-delocalization
transition. Several physical quantities, such as the half-chain entanglement, the adjacent energy level gap-
ratio parameter, the long-time limit of the particle imbalance, and the critical disorder strength, are shown
to be nonmonotonically dependent on the anyon statistical angle. Furthermore, a feasible scheme based on
the spectroscopy of energy levels is proposed for the experimental observation of these statistically related

properties.
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I. INTRODUCTION

Many-body localization (MBL) is the interacting analog of
single-particle localization and extends the original work of
Anderson [1] with the effects of particle-particle interactions.
There are two known classes of closed many-body systems:
ergodic systems and MBL systems. Ergodic systems serve
as a heat bath for themselves and thermalize after sufficient
long unitary evolution, and, thus, the initial information of
the systems is lost [2,3]. On the contrast, the emergence
of local integral of motions caused by disorders, such as
random potentials or interacting strengths leads to ergodicity
breakdown and keeps the system in highly nonthermal states
[4-7]. The key ingredient for the many-body localization-
delocalization transition is disorder via a mechanism similar
to the Anderson localization. Various aspects of MBL systems
are theoretically studied in the past few years with great
progress, such as a criterion for many-body localization-
delocalization phase transition proposed in Ref. [8], high-
energy eigenstates with power-law entanglement spectra in
localized regions [9], and localization-induced real-complex
transition in non-Hermitian MBL systems [10]. MBL systems
are robust against small perturbations and have the potential
of storing initial state information for a long time and, hence,
may be useful for dynamical quantum control and quantum
memory devices. Current active experimental searches for
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MBL have been reported in ultracold atoms [11,12], ultracold
ions [13], and superconducting circuits [14,15].

Fractional statistics that interpolate boson statistics and
fermion statistics was first proposed more than 40 yr ago
in two-dimensional systems [16—18]. The particles that obey
fractional statistics are anyons and the many-body wave
function of the Abelian anyons acquires an additional phase
e when exchanging two anyons on different sites where
0 denotes the statistical angle. In the limit & — 0, anyons
become bosons whose wave functions remain invariant under
particle exchange and when 6 — m anyons behave, such as
fermions. Quasiparticles in the two-dimensional fractional
quantum Hall effect obey fractional statistics and can be
considered as anyons [17,19]. Anyons play an important role
as quasiparticles in topologically ordered states and may be
potentially useful in quantum information processing [20-23].

Fractional statistics was restricted in two-dimensional sys-
tems until Haldane introduced arbitrary dimensional frac-
tional statistics [24]. Recently, a one-dimensional Hubbard
model of fermions with the correlated hopping process has
been proposed to realize fractional statistics [25]. Alternative
schemes for bosons with occupation-dependent hopping am-
plitudes by photon-assisted tunneling [26], Raman-assisted
hopping [27] and lattice-shaking-induced resonant tunneling
with potential tilts [28] have also been proposed to realize
anyons in one-dimensional optical lattices [23]. These propos-
als are based on the fractional Jordan-Wigner transformation
by mapping anyons to bosons with a density-dependent tun-
neling parameter. Some exotic properties of one-dimensional
anyons [28-32] closely related to the statistical angle have
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been revealed, such as the statistically induced ground-state
phase transition [26,33-35], the asymmetry of two-body cor-
relations in the momentum space [31], and the spatially asym-
metric particle transport of interacting anyons [36]. However,
the MBL properties of anyons in disordered systems are
largely unexplored.

In this paper, we numerically calculate several physical
characteristics related to the MBL in a one-dimensional disor-
dered (soft-core) anyon-Hubbard model in both localized and
delocalized regions by using the numerical exact diagonaliza-
tion (ED) [37-40]. First, we present numerical evidence of
the existence of the MBL phase in the anyon-Hubbard model.
The half-chain entanglement entropy grows quickly in the
ergodic phase and logarithmically slow in the localized region,
respectively. The area-law growth of steady-state entangle-
ment entropy for highly excited states is also explored. The
calculated Poisson-like energy-level spacing statistics further
indicates that the MBL phase exists in the anyon-Hubbard
model with strong disorders, and the mean value of the gap-
ratio parameter shows the 6 dependence for various disorder
strengths. We also find that the localization length for 8 = 7 is
larger than 6 = 0. Then, by studying a hybridization parame-
ter, we find that a localization-delocalization transition can be
induced merely by the anyon statistic angle. Furthermore, sev-
eral physical quantities, such as the half-chain entanglement,
the adjacent energy-level gap-ratio parameter, the long-time
limit of the imbalance, and the critical disorder strength, are
found to be nonmonotonic functions as the statistical angle.
Finally, we propose the scheme based on the spectroscopy of
the energy-level techniques to observe the intrinsic properties
of the MBL of anyons in a small system. In our scheme, both
the mean value of the gap-ratio parameter and the inverse
participation ratio can be extracted from the discrete-time
Fourier transform of time-dependent two-point correlation
functions.

The rest of this paper is organized as follows. In Sec. II, we
introduce the anyon-Hubbard model and its mapping to the
Bose-Hubbard model with an occupation-dependent gauge
field through the Jordan-Wigner transformation. Section III
is devoted to investigating the difference of ergodic and lo-
calized phases, studying the statistically induced localization-
delocalization transition, and revealing the nonmonotonic de-
pendence of critical disorder strength on the statistical angle.
In Sec. IV, we propose the methods to experimentally observe
the MBL in the system. A brief discussion and a short sum-
mary are presented in Sec. V.

II. MODEL AND METHODS

Let us first briefly introduce the anyon-Hubbard model and
the fractional Jordan-Wigner transformation which exactly
maps the anyon model to the boson model. The interacting
anyon-Hubbard model in the one-dimensional lattice reads
[23,26]

L1 L
N S U A
A= -] (@aj +He) + 5 > ai; -1, (D)
j=1 j=1
where J is the tunneling amplitude, L is the lattice size, U
is the on-site interaction strength, and 7; = &j& ; is the anyon

number operator on site j with &j (a;) being the anyon cre-
ation (annihilation) operator on site j. This model in the clean
case has been studied in Refs. [23,26], and here, we consider
disorders by adding random on-site potential jhin;in A,
where h; € [-W, W] and W is the disorder strength. Anyons
obey the generalized commutation relations,
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where 6 is the particle statistical angle and sgn is the sign
operator with sgn(0) = 0. Thus, exchange particles between
different sites will rise an additional phase factor ¢ in the
many-body wave function and particles on the same site
behave the same as bosons. Anyons in the one-dimensional
system can be mapped to bosons by the fractional Jordan-
Winger transformation [26],

j-1 !
a; =bjexp <i9 Zﬁl), &;ZCXP (—i@Zﬁz)Bj-, @
I=1

=1

where b I (13;) is the boson annihilation (creation) operator. It
is worth emphasizing that the particles are pseudofermionic
in the 6 = 7 limit and multiple particles can occupy the
same site, thus, the on-site interaction is still relevant in
this limit. By making use of this anyon-boson mapping, the
anyon-Hubbard model with on-site potential disorders can be
rewritten under the boson operators,

L—1
A" =—J Z(éjé 1€+ Hoe.)
J
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Several schemes have been proposed to realize the Hamil-
tonian (5) in the absence of disorders with ultracold atoms
in optical lattices [23,26-28]. Remarkably, the occupation-
dependent synthetic gauge fields [41—44] as the key ingredient
and additional disordered potentials [11,12] have been exper-
imentally achieved.

Below, we implement an occupation-dependent tunnel-
ing scheme in the ED method to numerically handle the
conditional-hopping Bose-Hubbard model. In the ED cal-
culation, we use QuSpin [45] with a modified Hamiltonian
builder which inserts additional "¢ for all matrix elements
of tunneling terms based on the occupation number 7;. The
particle number can be directly read out from the constructed
Fock state basis in the particle-conserving manifold. In the
following numerical simulations, we set J = 1 as the energy
scale and use U = 1 or 2 in order to investigate the soft-core
anyon cases. The open boundary condition is assumed in all
of our numerical calculations.

III. MANY-BODY LOCALIZATION

In this section, we study the localization properties of
the one-dimensional disordered anyon-Hubbard model and
reveal their dependence of the anyon statistical angle 6. The
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FIG. 1. (a) The growth of half-chain entanglement entropy S, (t) for the L = 10 anyon-Hubbard model with two different disorder
strengths W = 2, 12 and three statistical angles 6 = 0, 0.5, w. (b) Sy of the highly excited eigenstates as a function of system size L.
(c) Sent of the highly excited states as a function of 8 for L = 10 and W = 8. Other parameters are chosen as J = 1, U = 2, and all data is
obtained by averaging over 20 000, 10 000, 2000, and 200 disorder realizations for L = 6, 8, 10, 12 systems, respectively, in the half-filling

manifold.

distinctions of entanglement growth, the dependence of half-
chain entanglement on the system size, and the many-body
energy level statistics indicate that both ergodic and localized
phases exist in the anyon system. We show that the statistical
angle 6 has nonmonotonic influence on the entanglement
entropy, the mean value of the adjacent energy-level gap-ratio
parameter, and the long-time evolution of the particle im-
balance. These numerical results indicate the nonmonotonic
dependence of the critical disorder strength on the statistical
angle.

A. Half-chain entanglement

We first study the half-chain entanglement of many-body
states in the anyon-Hubbard model. It was revealed that very
weak interactions can significantly change the growth of
entanglement in nonequilibrium many-body states driven by
disordered Hamiltonians [46—48]. The entanglement entropy
Sent can be defined as the von Neumann entropy,

(6)

of the reduced density matrix of either side labeled by A
and B. Seye shows a characteristic logarithmically slow growth
in the MBL phase and the saturate value is unbounded in
the thermodynamic limit. Here, we consider a bipartition
of equal half-chain Ly = Ly = L/2 and observe the log-
arithmic growth of Sgy in our disordered anyon-Hubbard
model. In our simulations, we implement the Chebyshev
polynomials [49] to approximate the action of matrix ex-
ponential |/ (f + Ar)) ~ e=H"A |(¢)) at the time ¢, which
can efficiently access the dynamical properties of soft-core
anyons (at half-filling). The half-chain entanglement entropy
is also calculated under this invariant subspace in order
to avoid the diagonalization of the large reduced density
matrix.

In Fig. 1(a), we present the growth of half-chain entan-
glement entropy Sen(t) for L = 10 anyon-Hubbard model
in both ergodic and deep in the localized region for several
statistical angles. At half-filling, we consider the initial state
|1 (0)) prepared in a product state where every even site is
filled by an anyon. The time evolution of Sy (¢) is obtained

Sent = —Trpas In pa = —Tr pp In OB,

by averaging over 2000 disorder realizations with the results
shown in Fig. 1(a). We can see that the entanglement en-
tropies quickly increase from the initial time for both weak
disorders (solid lines) and strong disorders (dashed lines),
which correspond to the expansion of the wave package. The
growth of the half-chain entanglement entropy cross from
dephasing dominated to transport-dominated dynamics [8,47]
and, then, increases logarithmically slow in time for all three
simulated statistical angles for strong disorders, whereas it
grows quickly and approaches the saturate value for weak
disorders.

As the steady-state entanglement entropy Se scales dif-
ferently in the MBL and ergodic phases, we study its depen-
dence on the system size for highly excited eigenstates in the
two phases. By using the shift-invert spectral transformation
(H” — Egis)~" along with Krylov subspace methods [50]
with an energy shift Eg,;s, we obtain those excited eigenstates
nearest to Egyir =0 up to L = 12. We plot the averaged
entanglement entropy Sy as a function of L for two different
disorder strengths W =2, 12 and three different statistical
angles & = 0, 0.5, 7w in Fig. 1(b). Here, S¢p is averaged over
20 000, 10 000, 2000, and 200 disorder realizations for L =
6, 8, 10, and 12, respectively. In the ergodic phase for weak
disorder (W = 2, solid lines), the steady-state entanglement
entropies of highly excited eigenstates increase significantly
with system size for all three statistical angles. The reason
for the nonprefect linear dependence, here, lies in the fact
that those eigenstates nearest to Egpiy = 0 are not locating
at the same position in the spectrum for different system
size and disorder realizations. For strong disorder (W = 12,
dashed lines), the entanglement entropies show very weak
dependence on system size. This phenomenon reveals the
area-law entanglement in the deep MBL phase, which is
different from the volume law in the ergodic phase [51,52].
The typical eigenstates of an ergodic system exhibit thermal
volume-law entanglement according to the eigenstate ther-
malization hypothesis, and this volume law will be broken
down by strong enough disorders, and the entanglement en-
tropy scales with the area between two bipartite subsystems
A and B, which means S, is approximately independent of
the system size for one-dimensional systems. These MBL
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FIG. 2. (a) The probability distribution of the gap-ratio parameter p(r) for L = 10 anyon-Hubbard model with two different disorder
strengths W = 2, 12 and three statistical angles 6 = 0, 0.5, 7. The green dashed line is the Poisson distribution and is plotted as a guide
to the eye. (b) The finite-size scaling of mean value (r) with # =0, (r) collapse to a universal function (r(W, L)) = f[(W — W,)L'/"] for
different system sizes L = 8, 10, 12. (c¢) The mean value (r) as a function of statistical angle 6 for different disorder strength W’s in L = 10
systems. Other parameters are chosen as J/ = 1, U = 2, and all data are obtained by averaging over 20 000, 10 000, 2000, and 200 disorder
realizations for L = 6, L =8, L = 10, and L = 12 systems, respectively, in the half-filling manifold.

eigenstates are short-range entangled and locally correlated
near the boundary of two subsystems [51].

We further calculate S, of highly excited states as a
function of the statistical angle 6 with the results shown in
Fig. 1(c). Here, S¢p is calculated from states nearest to Egpiy =
0 of the L = 10 anyon-Hubbard systems and is averaged over
2000 disorder realizations with W = 8 [other parameters are
the same with those in Fig. 1(b)]. The half-chain entanglement
entropy shows a nonmonotonic relation with 8, which first
grows, then, decreases when increasing 6 with Se (6 = )
larger than S,y (0 = 0). Note that Sy changes from volume
law to area law when the eigenstate is localized and can reflect
the localization property in some aspects.

B. Energy-level statistics

The adjacent energy levels of a many-body Hamiltonian
show different spectral statistics in the localized and ergodic
phases. In the ergodic phase, the energy levels of large
amounts of disorder realizations are described by random
matrix theory, particularly, by the Gaussian orthogonal ensem-
ble (GOE) for real symmetric matrices and Gaussian unitary
ensemble (GUE) for complex Hermitian matrices [53-55]. In
the MBL phase, nearby eigenstates that localized in the Fock
space without level repulsion do not interact with each other
and the nearest energy levels show Poisson statistics [56]. For
those ED solvable finite-size systems, energy levels usually
vary smoothly between GOE/GUE and Poisson statistics
when increasing the disorder strength W. In order to avoid
energy unfolding, a dimensionless gap-ratio parameter can be
used to characterize statistics between adjacent energy-level
gaps [56-58]. The gap-ratio parameter is defined as [56,58]

= min{s,, §,—1} 7 (7)
max{d,, én—1}
where 6, = E,+1 — E, is the adjacent energy-level gap. The
Poisson distribution of r is p(r) =2/(1 +r)* and has the
mean value of (r)p =2 1n 2 — 1.

We numerically calculate the gap-ratio parameter of the

anyon-Hubbard model for weak and strong disorder strengths

and three different statistical angles with the results shown in
Fig. 2. In Fig. 2(a), the probability distribution of gap-ratio
parameter p(r) in the MBL phase (W = 12, dashed lines)
shows Poisson-like behavior whereas r in the ergodic phase
(W = 2, solid lines) has probability distribution of GOE (6 =
0, ) or GUE (8 = 0.57). The green dashed curve is exactly
the Poisson distribution plotted as a guide to the eye. Here, the
system size is limited to L = 10 whose Hilbert space is 2002
in the half-filling manifold, and 2000 disorder realizations
are averaged. For different statistical angles, the probability
distribution p(r) behaves similarly for strong disorders but
distinguishable in the ergodic phase. For the weak disorder
strength, anyons with statistical angle 8 = 0 or 7 are more
likely to be localized than 8 = 0.57.

To further investigate the energy-level statistics, we an-
alyze the relationship among the mean value of gap-ratio
parameter (r), system size L, and disorder strength W. It is
revealed in other many-body systems that the mean value (r)
is a universal function of (W — W,)L!/¥ [59,60], where W. is
the critical value of ergodic-MBL transition and v is a critical
exponent. We fit this universal function in Fig. 2(b) for three
different system sizes, L = 8§, 10, 12, averaged from10 000,
2000, and 200 disorder realizations, respectively, with the
statistical angle & = 0. By choosing W, & 5.5 and v & 1.1,
we can see that these three curves approximately collapse
to the same curve which stands for a universal function
(r(W, L)) = f[(W — W.)L'/"]. The dotted line indicates the
Poisson limit (r)p, &~ 0.386, and it is clear that the mean value
(r) tends to this limit when increasing disorder strength W. We
also find similar behaviors for other statistical angles, but the
corresponding critical disorder strength W, is quantitatively
different. Due to the small system size and limited disorder
realizations available in the ED method, we are unable to
figure out the difference of critical exponent v’s for different
statistical angle 0°s.

Furthermore, we numerically obtain the mean value (r) as
a nonmonotonic function of 6, which is depicted in Fig. 2(c)
for four different disorder strengths with the parameters J =
1, U =2, and L = 10 in the half-filling manifold. For mod-
erate and strong disorder strengths (W = 4, 6, 8 for the red
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upward triangle, the green downward triangle, and the blue
square, respectively), the mean values (r) show a nonmono-
tonic relation with €, similar to those observed from Figs. 1(c)
and 5(c). It is also obvious that the values of (r) are larger for
0 = m than those for & = 0, which implies that the fermions
(anyons with & = 7 at the anyon-Hubbard model) is more
difficult than bosons (anyons with 6 = 0) to be localized,
which is consistent with the results shown in Fig. 1(c). For
weak disorder W = 2 (black circle), the mean value (r) forms
a plateau with (r) ~ 0.53 at 6 = 0 and 6 = «. For 8’s in be-
tween O and r, the Hamiltonian becomes complex Hermitian,
and (r) ~ 0.6.

We present a heuristic argument to understand the 6-
dependent localization features. In the simplest case with
a 2 x 2 Hermitian matrix with the eigenenergies Ej,, the
required numbers of parameters for the vanishing energy-level
spacing |E, — E| are different for real and complex matrices.
A general real symmetric 2 x 2 matrix can be written as

H, = <Z 2):

where the matrix element @ can be taken as the energy unit
and b and c can be tuned to vanish the energy-level spacing.
Thus, two out of three parameters (elements b and ¢) in a
real symmetric matrix should be controllable for a vanishing
energy-level spacing. However, for a general complex Hermi-

tian matrix,
a c1+ic
H,. = B ,
cp —icp b

the off-diagonal element has an imaginary part, and three out
of four parameters (b, c;, and c;) should be controllable. The
level crossing resistance for complex Hermitian Hamiltonians
are greater than real symmetric ones, and the mean value
(r) of the complex Hamiltonians is generally larger than real
ones (see Ref. [55] for a detailed interpolation). For the one-
dimensional anyon-Hubbard model, the statistical angle 6 in
between 6 = 0 and 6 = m leads the off-diagonal elements of
the Hamiltonian to complex and show a larger mean value (r).

C. Quench dynamics

Localization of particles in a quench dynamics can provide
addition evidence of ergodicity breakdown and is experi-
mentally observable in disordered systems [61,62]. In this
subsection, we numerically study the quench dynamics and
reveal the nonmonotonic 6 dependence of the long-time limit
imbalance [see Eq. (9)]. The even-odd particle imbalance is
defined as [59]

Ty = e = Pl
T R(t) + )

where 7,(t) = Y 7ip;(t) and 7i,(t) = > fipi1 () are the sum
of anyons on each even and odd site at time #, respectively.
The initial state is prepared in an out-of-equilibrium density
configuration (i.e., an anyon on each even site). The system
will keep a nonvanishing imbalance even after a long-time
evolution due to the breakdown of the ergodicity.

Figure 3 shows the time evolution of the imbalance Z for
three statistical angles 6 = 0, 0.5, 7 in the half-filling man-

®)
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FIG. 3. The time evolution of the particle imbalance Z for three
statistical angles 6 = 0,0.57, 7 in the half-filling manifold. The
inset plot is the long-time limit imbalance Z as a function of 6.
Parameters are chosen as J =1, U =2, L =10, and W = 6, and
the results are averaged over 2000 disorder realizations.

ifold withJ =1, U =2, L =10, and W = 6. The even-odd
imbalance 7 has a finite value for a long-time nonequilibrium
evolution for all three statistical angle 6’s. The inset plot of
Fig. 3 shows the long-time limit of the imbalance,

7=

If
/ Z(t)dt, C))
I —1In Juy,
which is averaged from z;, = 200 to 5, = 210 as a function of
statistical angle 6. This long-time limit imbalance, consisting
with half-chain entanglement and mean value (r), shows a 6-
dependent nonmonotonicity. The largest value of Z suggests
anyons with & = 0 are more localized than any other 6’s under

the same disorder strength.

D. Localization length

The localization length is one of the standard measures
of localization in single-particle systems. When considering
interactions, it is difficult to derive the localization length
exactly. The interacting localization length can be extracted
from two-particle correlations, which is given by [63]

CPG, j) = (Yl aldlaja; 1) , (10)
where |y,,) is the nth eigenstate of the many-body Hamilto-

nian. Then, the distance-dependent,

CP(d) = Zcff)(i, i+d)/(L—d) (11)

is the average of two-particle correlation with the same dis-
tance j — i = d. Near the localized phase, this two-particle
correlation falls off exponentially with the distance,

CIEZ)(d) ~ e*(\dl/f)’ (12)

where & is defined as the localization length in the inter-
acting systems [6]. We calculate C'¥(d) in the two-particle
manifold with the parameters J =1, U =2, L =14, and
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FIG. 4. The two-particle correlation C*(d) as a function of the
distance d for different statistical angle 6 and disorder strength W
with the parameters / = 1, U =2, and L = 14 in the two-particle
manifold. All data are averaged over 10 000 disorder realizations.

[,,) chosen to be the eigenstate at the middle of the energy
spectrum. It is clear from Fig. 4(a) that C'*(d) approxi-
mately falls off exponentially when increasing the distance
d. For the same disorder strength (solid lines for W = 8 and
dashed lines for W = 4), the decay rate of C\?(d) is the
largest and smallest for & = 0 and 6 = =, respectively. This
means the localization length £(60 =) > §(0 =0.4x7) >
£(0 =0.2m) > £(0 = 0), and the anyon-Hubbard model with
0 = m is harder to localize than & = 0. To see the relation
between & and 6 more clearly, we plot additional curves of
C,(lz)(d) for 6 = 0.6 and 0.8 alone with § = 0.4 and 7
in Fig. 4(b). The decay rate of the two-particle correlation
indicates that the localization length £(0 = 0.87) =~ £(0 =
0.6w) > &0 =m) > &0 = 0.47), which reveals the non-
monotonic dependence of localization lengths on the statis-
tical angle.

E. Statistically induced localization-delocalization transition

Up to now, we have shown the existence of the MBL
phase in the one-dimensional anyon-Hubbard model and find
that the physical quantities nonmonotonically depends on
the statistical angle 6. In this subsection, we uncover an
intriguing phenomenon that the anyonic statistics may induce
the localization-delocalization transition at a fixing disorder
strength W.

In order to detect the localization-delocalization transition
in many-body interacting systems, we adopt the hybridization
parameter G(e, L) introduced in Ref. [8]. The hybridization
parameter is given by

| (Wit [V [¥) |

/ I i
En+1 En

Ge,L)=1n , (13)

where € = (E, — Enin)/(Emax — Emin) 1S the energy density
with E, in ascending order, E, = E, + (¥, IV |4,,) is the mod-
ified energy, |v,) is the eigenstate corresponding to energy
E,, Enax (Emin) is the highest excited (ground) energy, and
V is a perturbation operator. This parameter characterizes
the hybridization of nearest eigenstates induced by the per-
turbation. Typically, G(e, L) o« —«L, and x = 0 separates lo-
calized states (k > 0) from delocalized states (« < 0) [8].
Thus, dG(e, L)/dL can be used to detect the localization-
delocalization transition. Here, we choose V = &z /Z&L/2+1 as

the perturbation operator and calculate G(e, L) as a function
of statistical angle 6 for different system size L’s, and set €
to where the delocalized phase is most robust in the whole
energy spectrum. In numerical calculations, we set the value
of € and obtain the crossover of G (e, L) for different L’s, the
critical disorder value is chosen to be the maximum crossover
value when turning € from O to 1. We note that choosing other
perturbation operators would lead to similar results [8].

In Fig. 5(a), we plot G(e, L) for the half-filling anyon-
Hubbard model withJ =1, U =2, W = 7, and four differ-
ent L’s (L = 6, black circle; L = 8, upward triangle; L = 10,
blue downward triangle; L = 12, red square). Some 20 000,
10 000, 2000, and 200 disorder realizations are averaged for
J=1, U =2, and W =7, respectively. The hybridization
parameter G(e, L) decreases (increases) when enlarging sys-
tem size L for small (large) 6, and the crossover indicates
the localization-delocalization transition where « = 0. It is
clear from Fig. 5(a) that there is a transition from localized
to delocalized phase transition at 6 &~ 0.4mr when disorder
strength is fixed at W = 7. To further clarify the different
critical disorder strength W,’s for different statistical angle 6°s,
we calculate G(e, L) as a function of disorder strength W with
the parameters J = 1, U = 2 and the results are plotted in
Fig. 5(b). The crossover for different system sizes happens at
W~ 6.5and W = 7.4 for 6 = 0.2 and 6 = m, respectively.
From this aspect, the critical disorder strength W, also shows
6 dependence.

It is found that the critical disorder strength W, also has a
nonmonotonic relationship with the statistical angle 6. First,
we examine the critical disorder strength W, as a function
of statistical angle 6 by using the hybridization parameter
G(e, L). As shown in Fig. 5(c) [with the same parameters as
Fig. 5 (b)], the critical disorder W, first increases with anyonic
statistics € and, then, decreases when 6 g 0.77. The critical
value for 8 = 0 is W, &~ 5.4, whereas the value for 0 = 7 is
much larger (W, ~ 7.3). Such a nonmonotonic relation for the
critical localization-delocalization transition value of W,.(0) is
similar as from other quantities related to the ergodic-MBL
transition [see Figs. 1(c), 2(c), and 3].

IV. PROPOSAL OF EXPERIMENTAL OBSERVATIONS

A recently developed many-body spectroscopy technique
is able to resolve the energy levels of the interacting sys-
tem [14] and makes it possible to observe the properties of
the MBL in a realistic experiment setup. We simulate the
spectroscopy of energy levels in L = 9 sites systems with a
maximum of two anyons which has 45 energy levels in the
two-particle manifold, and, then, we derive the mean value (r)
and inverse participation ratio (IPR) as functions of statistical
angle 6. The key idea is recording the response of the system
after a local perturbation as a function of time and using spec-
trum analysis to reveal the characteristic modes of the system.
We, here, consider only the two-particle energy manifold;
although it is the simplest case for interacting systems, some
typical features of the many-body localization emerge. The
initial state is prepared in a product state,

10) + |1) 10) + 1)
|w0>m,n ( \/E )m < \/E >n > ( )
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FIG. 5. (a) The hybridization parameter G(e, L) as a function of statistical angle 0 for different system sizes L = 6, 8, 10, 12 with the
disorder strength W = 7. (b) The hybridization parameter as a function of disorder strength W for different system sizes L = 8, 10, 12, and
6 = 0.27 (three solid lines), & = m (three dashed lines). (c) The critical disorder strength W, determined by the crossover of hybridization
parameter G(e, L) for different system sizes as a function of 6. Some 20000, 10000, 2000, and 200 disorder realizations are used for L =
6, L =38, L =10, and L = 12, respectively, in the half-filling manifold. Other parameters J = 1, U = 2.

where sites m and n are in superposition of |0) and |1), and all
other sites are in |0) states. The state evolved at time ¢ reads

1 1 —ilED
WOy = 5 IVac) + 5 3 Ch e 10 i)
B

£330 (G g0 1)

where |¢;2)) is the pBth eigenstate in the two-particle

manifold with the corresponding energy E/f) and Cf =

m,n
(¢;,2)| Ly 1a) - EDS 19D), and C¢ are counterparts in the
single-particle manifold and are irrelevant in this simulation.
The two-point correlation of a two-particle lowering operator
can be expressed as

xa(m,n) = (0, +i0,) (o, +i0}))
= (on00) = {onon) + ilon,03) + iloon),  (16)

where o* = [1)(0] 4+ |0)(1] and o” = i|1){0] —i|0)(1]. The
time-dependent expectation value of the two-point correlation
is

1 _(E®
xa(m, n) = Z Z ICE |0/, (17)
B

It is obvious that the single-particle component is projected
out, and we can reveal |C5 ,|* and E éz) by the discrete-time
Fourier transform,

N

ok = 2 3N wil), (18)
=1

where N = T/t is the number of data sampled from evolution
time 7 with sampling interval t. By varying m and n in the
initial state, the confidence of detecting each energy level is
enhanced.

In Fig. 6(a), we plot Zm’n |X{(m, n)| as a function of en-
ergy (frequency) for a single disorder realization of the anyon-
Hubbard model with the parameters J =1, U =1, W =3,
and 6 = 0.57. The discrete-time Fourier transform is pre-
formed from data obtained by 2000 time-step samplings, and
44 eigenenergies can be resolved from the peaks labeled by

red crosses. In Fig. 6(b), we present the mean value (r) as
a function of 6 calculated from the peak positions of the
discrete-time Fourier transform of N = 2000 samplings in
evolution time 7 (red upward triangle labeled), N = 20000
samplings in evolution time 107 (blue downward triangle
labeled), and ED results (black circle labeled), all data are
averaged over 100 disorder realizations. The nonmonotonic
relation (r(0)) can be clearly seen from the Fourier transform
of N = 2000 samplings. Here, the values of (r) are larger than
ED results due to the energy level missing. One can measure
after a longer evolution time and resolve the spectrum more

(a)
n
E" 02 7
<&
=
Sodf .
A
i
-8 -4 0 4 8
E/J
0.5
0.22
b x4
o peieiag] o
& & o2d
048t A &% T T8
— & o
= & 018
0.46 — %
F--- 107 2 016
= —3H—ED
0.4 \ 0.14
0 /4 /2 34 ™ 0 /4 /2 3r/4 ™
0 0

FIG. 6. (a) The discrete-time Fourier transform of the expec-
tation value y,(m,n) as a function of energy (frequency) for a
single disorder realization. Data are obtained from 2000 time-step
samplings with & = 0.57 and a sum over every possible initial
state. Red crosses are peaks corresponding to the eigenenergies of
the disordered anyon-Hubbard model. (b) The mean value (r) as
a function of statistical angle 6. The black solid line is calculated
from ED, the red dashed curve is data simulated with 2000 time-
step samplings, and the blue dotted line is simulated with 20 000
samplings. (c) The IPR as a function of 6. Other parameters are
J=1,U=1, W =3,and L = 9. (b) and (c) are averaged over 100
disorder realizations.
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accurately, but it requires much longer decoherence time of
the experimental system.

Simultaneously, the IPR of each eigenstate in the represen-
tation of single-occupation states can be calculated as

ﬂ 4
IPRy = —Z’"*” |C'”'”| , (19)

(S lhal’)’

where [C/ |? is accessible from the amplitude of the Fourier

transform | Xzf (m, n)| at the corresponding energy (frequency)
and the denominator is a normalization constant. We display
the simulated IPR as a function of 6 in Fig. 6(c) with the
parameters J/ = 1, U = 1, and W = 3. Here, g is chosen at
the middle of the energy spectrum, and the data are averaged
over 100 disorder realizations. The nonmonotonic relation
is also distinctly shown by IPR calculated from N = 2000
samplings (red upward triangle), N = 20 000 samplings (blue
downward triangle), and the ED results (black circle). We
note that the numerical simulation reveals the degree of local-
ization properties rather than the localization-delocalization
transition for systems with different 6’s. In this sense, the
systems with & = 0 are more likely to be localized than others.
In addition, our numerical simulation indicates the observa-
tion of the nonmonotonic 6 dependence of the localization
properties in a realistic experimental system of small size.

V. DISCUSSION AND CONCLUSION

Before concluding, we note that the nonmonotonic be-
haviors are also observed for lower densities, such as the
quarter-filling case. At low-density filling, the Pauli exclusion
principle for quasifermions becomes distinct [30], and mul-
tioccupancy states are suppressed. One may except that the
localization properties of the one-dimensional anyon-Hubbard

model would be independent of the statistical angle 6 in the
hard-core limit. However, in our numerical simulation, mul-
tiparticle occupancy is not ignorable for quarter-filling when
6 = =, and, thus, the on-site interaction is still relevant in this
case. The density would play an import role in the quasimo-
mentum space in the clean limit of this model [64] where
the maximum momentum is nonmonotonically depending on
0 and the nonmonotonic behavior becomes more distinct
when increasing density. It would be interesting to further
investigate the dependence of the localization properties on
the filling density.

To summarize, we have explored the localization properties
of the ergodic and localized phases in the one-dimensional
disordered anyon-Hubbard model. Several physical charac-
teristics, such as the half-chain entanglement, the adjacent
energy-level gap-ratio parameter, the long-time limit of the
particle imbalance, and the critical disorder strength, have
been numerically calculated. It is found that these localiza-
tion characters are nonmonotonically dependent on the anyon
statistical angle. Furthermore, we have demonstrated that the
statistics can induce localization-delocalization transition by
studying the hybridization parameter. Finally, the possibility
of observing these statistically related properties in the ex-
periments is explored based on the numerical simulation of
spectroscopy of energy levels.
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