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Higher-order level spacings in random matrix theory based on Wigner’s conjecture

Wen-Jia Rao *

School of Science, Hangzhou Dianzi University, Hangzhou 310027, China

(Received 18 May 2020; revised 30 June 2020; accepted 21 July 2020; published 4 August 2020)

The distribution of higher-order level spacings, i.e., the distribution of {s(n)
i = Ei+n − Ei} with n � 1 is derived

analytically using a Wigner-like surmise for Gaussian ensembles of random matrix as well as Poisson ensemble.
It is found s(n) in Gaussian ensembles follows a generalized Wigner-Dyson distribution with rescaled parameter
α = νC2

n+1 + n − 1, whereas that in the Poisson ensemble follows a generalized semi-Poisson distribution with
index n. Numerical evidences are provided through simulations of random spin systems as well as nontrivial
zeros of the Riemann ζ function. The higher-order generalizations of gap ratios are also discussed.
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I. INTRODUCTION

Random matrix theory (RMT) was introduced half a cen-
tury ago when dealing with complex nuclei [1] and since
then has found various applications in fields ranging from
quantum chaos to isolated many-body systems [2,3]. This
roots in the fact that RMT describes universal properties of
a random matrix that depends only on its symmetry whereas
independent of microscopic details. Specifically, the system
with time-reversal invariance is represented by a matrix that
belongs to the Gaussian orthogonal ensemble (GOE); the
system with spin rotational invariance whereas breaks time-
reversal symmetry belongs to the Gaussian unitary ensemble
(GUE); whereas Gaussian symplectic ensemble (GSE) rep-
resents systems with time-reversal symmetry but breaks spin
rotational symmetry.

Among various statistical quantities, the most widely used
one is the distribution of nearest level spacings {si = Ei+1 −
Ei}, i.e., the gaps between adjacent energy levels, which
measures the strength of level repulsion. The exact expression
for P(s) can be derived analytically for a random matrix with
a large dimension, which is cumbersome [4,5]. Instead, for
most practical purposes it is sufficient to employ the so-called
Wigner surmise [6] that deals with a 2 × 2 matrix (this will
be reviewed in Sec. II), the out-coming result for P(s) has a
neat expression that contains a polynomial part accounting for
level repulsion and an Gaussian decaying part [see Eq. (6)].

Different models may and usually do have different density
of states (DOS), hence, to compare the universal behavior of
level spacings, an unfolding procedure is required to erase
the model-dependent information of DOS. To overcome this
obstacle, Oganesyan and Huse [7] proposed a new quantity to
study the level statistics, i.e., the ratio between adjacent gaps
{ri = si+1/si}, whose distribution P(r) is later analytically
derived by Atas et al. [8]. The gap ratio is independent of local
DOS and requires no unfolding procedure (provided the DOS
does not vary in the scale of the spacings involved), hence,
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has found various applications especially in the context of
many-body localization (MBL) [9–18] .

Both the nearest level spacing and gap ratio account for
the short-range level correlations. However, long-range corre-
lations are also important especially when studying the MBL
transition phenomena. Indeed, there are several effective mod-
els describing the level distribution at the MBL transition re-
gion. For example, the Rosenzweig-Porter model [19], mean-
field plasma model [20], short-range plasma model (SRPM)
[21], and its generalization—so-called weighed SRPM [22],
Gaussian β ensemble [23], and the generalized β − h model
[24]. All of these models more or less describe the short-range
level correlations in the MBL transition region well, and their
difference can only be revealed when long-range correlations
are concerned. For a comparison of these models in describing
the MBL transition point, see Ref. [22].

Commonly, the long-range correlations in a random matrix
can be described by the number variance �2 or the Dyson-
Mehta �3 statistics [5], however, both of them are very
sensitive to the concrete unfolding strategy and have already
been a source of misleading signatures [25]. Instead, it is
more direct and numerically easier to study the higher-order
level spacings and gap ratios. There are existing works that
generalize the level spacing and gap ratios to higher order
as well as their applications in studying MBL transitions
[22,24,26–32]. However, most of these works are numerical
or phenomenological, and an analytical derivation for the dis-
tribution of level spacing/gap ratio is still lacking. Given the
importance of higher-order level correlations, it is desirable to
have an analytical formula for them, and it is then the purpose
of this paper to fill in this gap.

In this paper, by using a Wigner-like surmise, we suc-
ceeded in obtaining an analytical expression for the distri-
bution of higher-order spacing {s(n)

i = Ei+n − Ei} in all the
Gaussian ensembles of RMT as well as the Poisson ensem-
ble. The results show the distribution of s(n)

i in the former
class follows a generalized Wigner-Dyson distribution with
a rescaled parameter; whereas, in the Poisson ensemble, it
follows a generalized semi-Poisson distribution with index
n. Interestingly, the rescaling behavior of higher-order level
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spacing is identical to that of the high-order gap ratio found
numerically in Ref. [28], for which we will provide a heuristic
explanation.

This paper is organized as follows. In Sec. II, we review
the Wigner surmise for deriving the distribution of nearest
level spacings and present numerical data to validate this
surmise. In Sec. III A, we present the analytical derivation
for higher-order level spacings using a Wigner-like surmise,
and numerical fittings are given in Sec. III B . In Sec. IV,
we discuss the generalization of gap ratios to higher order.
Conclusion and discussion come in Sec. V.

II. NEAREST LEVEL SPACINGS

We begin with the discussion about nearest level spacings,
our starting point is the probability distribution of energy
levels P({Ei}) in three Gaussian ensembles, whose expression
can be found in any textbook on RMT (e.g., Ref. [5]),

P({Ei}) ∝
∏
i< j

|Ei − Ej |ν exp

(
−A

∑
i

E2
i

)
, (1)

where ν = 1, 2, 4 for the GOE, GUE, and GSE, respec-
tively. The distribution of nearest level spacing can then be
written as

P(s) =
∫ N∏

i=1

dEiP({Ei})δ(s − |E1 − E2|), (2)

where N is the number of levels in {Ei} and the analytical
result is quite complicated for general N . Instead, Wigner
proposes a surmise that we can focus on the N = 2 case, the
distribution then reduces to

P(s) ∝
∫ ∞

−∞
|E1 − E2|νδ(s − |E1 − E2|)

× exp

(
−A

∑
i

E2
i

)
dE1dE2. (3)

By introducing x1 = E1 − E2, x2 = E1 + E2, we have

P(s) ∝ 2
∫ ∞

−∞
|x1|νδ(s − |x1|) exp

(
−A

2

∑
i

x2
i

)
dx1dx2

= Csνe−As2/2. (4)

The constants A,C can be determined by working out the
integral about x2, but it is more convenient to obtain by
imposing the normalization condition,∫ ∞

0
P(s)ds = 1,

∫ ∞

0
sP(s)ds = 1. (5)

From which we can reach to the celebrated Wigner-Dyson
distribution,

P(s) =

⎧⎪⎨⎪⎩
π
2 s exp

(−π
4 s2
)
, ν = 1 GOE,

32
π2 s2 exp

(− 4
π

s2
)
, ν = 2 GUE,

218

36π3 s4 exp
(− 64

9π
s2
)
, ν = 4 GSE.

(6)

On the other hand, the levels are independent in the Poisson
ensemble, which means the occurrence of the next level is

independent of the previous level, the nearest level spacings
then follow a Poisson distribution P(s) = exp(−s).

Although the Wigner surmise is for the 2 × 2 matrix,
it works fairly well when the matrix dimension is large.
To demonstrate this, we present numerical evidence from a
quantum many-body system—the spin-1/2 Heisenberg model
with a random external field, which is the canonical model in
the study of MBL, whose Hamiltonian in a length-L chain is

H =
L∑

i=1

Si · Si+1 +
L∑

i=1

∑
α=x,y,z

hαεα
i Sα

i , (7)

where we set coupling strength to be 1 and assume the
periodic boundary condition in the Heisenberg term. The εα

i ’s
are random numbers within range [−1, 1], and hα is referred
to as the randomness strength. We focus on two choices of
hα: (i) hx = hz = h �= 0 and hy = 0, the Hamiltonian matrix
is orthogonal; (ii) hx = hy = hz = h �= 0, the model being
unitary. This model undergos a thermal-MBL transition at
roughly hc � 3 (2.5) in the orthogonal (unitary) model where
the level spacing distribution evolves from the GOE (GUE) to
Poisson [17].

We choose a L = 12 system to present a numerical simu-
lation and prepare 500 samples at h = 1 and h = 5 for both
the orthogonal and the unitary models. In Fig. 1(a), we plot
the DOS for the h = 1 case in the orthogonal model. We
can see the DOS is much more uniform in the middle part
of the spectrum, which is also the case for h = 5 and the
unitary model. Therefore, we choose the middle half of energy
levels to do the spacing counting, and the results are shown in
Fig. 1(b). We observe a clear GOE/GUE distribution for h =
1 in the orthogonal/unitary model and a Poisson distribution
for h = 5 in the orthogonal model as expected, the fitting
result for h = 5 in the unitary model is not shown since it
almost coincides with that in the orthogonal model. It is noted
the fitting for the Poisson distribution has minor deviations
around the region s ∼ 0, and this is due to the finite-size
effect since there will always remain exponentially decaying
but finite correlation between levels in a finite system. As
we will demonstrate in a subsequent section, the fitting for
higher-order level spacings will be better since the overlap
between levels decays exponentially with their distance in the
MBL phase.

A technique issue is, when counting the level spacings,
we choose to take the middle half levels of the spectrum,
whereas we can also employ a unfolding procedure using a
spline interpolation that incorporates all energy levels [16],
and the fitting results are almost the same [18,33].

III. HIGHER-ORDER LEVEL SPACINGS

Now, we proceed to consider the distribution of higher-
order level spacings {s(n)

i = Ei+n − Ei}, using a Wigner-like
surmise. We first give the analytical derivation, then provide
numerical evidence from simulation of the spin model in
Eq. (7) as well as the nontrivial zeros of the Riemann ζ

function.
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FIG. 1. (a) The DOS ρ(E ) of the random field Heisenberg model
at L = 12 and h = 1 in the orthogonal case, the DOS is more uniform
in the middle part, we, therefore, choose the middle half levels to
perform level statistics. (b) Distribution of nearest level spacings
P(Ei+1 − Ei ), we see a GOE/GUE distribution for h = 1 in the
orthogonal/unitary model, whereas a Poisson distribution is found
for h = 5 in the orthogonal model, the result for h = 5 in the unitary
model is not displayed since it coincides with that in the orthogonal
model.

A. Analytical derivation

Introduce Pn(s) = P(s(n) = s) ≡ P(|Ei+n − Ei| = s), to ap-
ply the Wigner surmise, we are now considering (n + 1) ×
(n + 1) matrices, the distribution Pn(s) then goes to

Pn(s) ∝
∫ ∞

−∞

∏
i< j

|Ei − Ej |νδ(s − |E1 − En+1|)

× exp

(
−A

n+1∑
i=1

E2
i

)
n+1∏
i=1

dEi. (8)

We first change the variables to

xi = Ei − Ei+1, i = 1, 2, . . . , n, xn+1 =
n+1∑
i=1

Ei,

(9)

the Pn(s) then evolves into

Pn(s) ∝
∫ ∞

−∞

∂ (E1, E2, . . . , En+1)

∂ (x1, x2, . . . , xn+1)

⎛⎝ n∏
i=1

n∏
j=i

∣∣∣∣∣
j∑

k=i

xk

∣∣∣∣∣
ν
⎞⎠

× δ

(
s −

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣
)

× exp

⎧⎨⎩−A

n

⎡⎣ n∑
i=1

n∑
j=i

(
j∑

k=i

xk

)2

+ x2
n+1

⎤⎦⎫⎬⎭
n+1∏
i=1

dxi.

(10)

In this expression, the Jacobian ∂ (E1,E2,...,En+1 )
∂ (x1,x2,...,xn+1 ) and integral for

xn+1 are all constants that can be absorbed into the normaliza-
tion factor, hence, we can simplify Pn(s) to

Pn(s) ∝
∫ ∞

−∞

⎛⎝ n∏
i=1

n∏
j=i

∣∣∣∣∣
j∑

k=i

xk

∣∣∣∣∣
ν
⎞⎠δ

(
s −

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣
)

× exp

⎡⎣−A

n

n∑
i=1

n∑
j=i

(
j∑

k=i

xk

)2
⎤⎦ n∏

i=1

dxi. (11)

Next, we introduce the n-dimensional spherical coordinate,

x1 = r cos θ1, xn = r
n−1∏
i=1

sin θi,

xi = r

⎛⎝ i−1∏
j=1

sin θ j

⎞⎠ cos θi, i = 2, 3, . . . , n − 1,

0 � θi � π, i = 1, 2, . . . , n − 2, 0 � θn−1 � 2π,

(12)

whose Jacobian is

∂ (x1, x2, . . . , xn)

∂ (r, θ1, θ2, . . . , θn−1)
= rn−1

n−2∏
i=1

sinn−1−i θi, (13)

which reduces to the normal spherical coordinate when n = 3.
The resulting expression of Pn(s) is complicated, whereas we
are mostly interested in the scaling behavior about s, hence,
we can write the formula as

Pn(s) ∝
∫ ∞

0
rn−1

∫
rνC2

n+1δ[s − r|G(θ)|]

×H (θ) exp

[
−A

n
r2J (θ)

]
dr dθ, (14)

where C2
n+1 = n(n + 1)/2 and dθ = ∏n−1

i=1 dθi, the explana-
tion goes as follows: (i) the first term rn−1 comes from the
radial part of the Jacobian in Eq. (13); (ii) the second rνC2

n+1

comes from the number of terms in
∏n

i=1

∏n
j=i |

∑ j
k=i xi|ν

where each term contributes a factor of rν ; (iii) the auxiliary
function G(θ) = ∑n

i=1 xi/r; (iv) the second auxiliary function
H (θ) is composed of the angular part of the Jacobian and
the angular part of

∏n
i=1

∏n
j=i |

∑ j
k=i xi|ν ; (v) J (θ) is the

angular part of
∑n

i=1

∑n
j=i (

∑ j
k=i xk )

2
. The key observation
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is that G(θ), H (θ), and J (θ) all depend only on θ whereas
independent of r. Since we are only interested in the scaling
behavior about s, we can work out the δ function and get

Pn(s) ∝ sνC2
n+1+n−1

∫
H (θ) exp

[
− AJ (θ)

n|G(θ)|2 s2

]
dθ. (15)

Although the integral for θ is tedious and difficult to handle, it
will only perform a correction to the Gaussian factor whereas
not influence the scaling behavior about s. Therefore, we can
write Pn(s) into a generalized Wigner-Dyson distribution,

Pn(s) = C(α)sαe−A(α)s2
, (16)

α = n(n + 1)

2
ν + n − 1. (17)

The normalization factors C(α) and A(α) can be determined
by the normalization condition in Eq. (5) for which we obtain

A(α) =
(

�(α/2 + 1)

�(α/2 + 1/2)

)2

, C(α) = 2�α+1(α/2 + 1)

�α+2(α/2 + 1/2)
,

(18)
where �(z) = ∫∞

0 t z−1e−t dt is the � function. When n =
1, Pn(s) reduces to the conventional Wigner-Dyson distribu-
tion in Eq. (6).

Interestingly, there exists coincidences between distribu-
tions in different ensembles. For example, as has been known
for a long time [4,34], Pk (s) in the GSE coincides with P2k (s)
in the GOE for arbitrary integer k. And P7(s) in the GOE
coincides with P5(s) in the GUE, and so on. Actually, our
derivations are purely mathematical that work for arbitrary
positive values of ν (not limited to integer values), although
the three standard Gaussian ensembles are of most physical
interest.

For the uncorrelated energy levels in the Poisson class,
the distribution for higher-order spacing can also be ob-
tained. Let us start with n = 2, we can write s̃ = Ei+2 −
Ei = (Ei+2 − Ei+1) + (Ei+1 − Ei ) = si+1 + si, where si+1 and
si can be treated as independent variables that both fol-
low Poisson distribution, therefore, the distribution P2 (̃s) for
unnormalized s̃ is

P(̃s) ∝
∫ s̃

0
P1(̃s − s1)P1(s1)ds1 = s̃e−̃s. (19)

Then, by requiring the normalization condition, we arrive at
P2(s) = 4se−2s—the semi-Poisson distribution [35], which is
suggested to be the distribution for nearest level spacing at the
thermal-MBL transition point in the orthogonal model [20].
This interesting fact indicates the (leading-order) universality
of this transition point is more affected by the MBL phase
rather than the thermal phase, which is already noted by
previous studies [10,20].

For higher-order level spacing in the Poisson ensemble, by
repeating the procedure in Eq. (19) n − 1 times, we reach

Pn(s) = nn

(n − 1)!
sn−1e−ns, (20)

which is a generalized semi-Poisson distribution with index
n. Compared to the Poisson distribution for nearest level
spacings, it is crucial to note that Pn(0) = 0 for n � 2, this
is not a result of level repulsion as in the Gaussian ensembles,

TABLE I. The order of the polynomial term in Pn(s) for the three
Gaussian ensembles as well as the Poisson ensemble, the decaying
term is a Gaussian type for the former class and an exponential decay
for the latter.

n 1 2 3 4 5 6 7 8

GOE 1 4 8 13 19 26 34 43
GUE 2 7 14 23 34 47 62 79
GSE 4 13 26 43 64 89 118 151
Poisson 0 1 2 3 4 5 6 7

rather, it simply states that n + 1 (n � 2) consecutive levels
do not coincide.

We note every Pn(s)’s in the Gaussian and Poisson en-
sembles tend to be the Dirac δ function δ(s − 1) in the limit
n → ∞, which is easily understood since, in that limit, only
one spacing remains in the spectrum. Finally, we want to
emphasize that the levels are well correlated in the Gaussian
ensembles, hence, the derivation of Pn(s) for the Poisson
ensemble in Eq. (19) does not hold, otherwise the result will
deviate dramatically [32].

For convenience, we list the order of the polynomial part in
Pn(s) for the three Gaussian ensembles as well as the Poisson
ensemble up to n = 8 in Table I, note that the exponential parts
in the former class are Gaussian type and that in the Poisson
ensemble is an exponential decay.

B. Numerical simulation

To show how well the distributions in Eqs. (16) and (20)
work for the matrix with large dimensions, we now perform
numerical simulations for the random spin model in Eq. (7)
where we also pick the middle half levels to do statistics. We
have tested the formula up to n = 5, and, in Fig. 2, we display
the fitting results for n = 2 and n = 3.

As expected, the fittings are quite accurate for both GOE
and GUE as well as the Poisson ensemble. In fact, the fit-
tings for higher-order spacings in the Poisson ensemble are
better than that for the nearest spacing in Fig. 1(b). This
is because, in the MBL phase, the overlap between levels
decays exponentially with their distances, hence, the fitting for
higher-order level spacings is less affected by the finite-size
effect.

For another example, we consider the nontrivial zeros of
the Riemann ζ function [36],

ζ (z) =
∞∑

n=1

1

nz
, (21)

it was established that statistical properties of nontrivial Rie-
mann zeros {γi} are well described by the GUE distribution
[37]. Therefore, we expect the gaps {s(n)

i = γi+n − γi} follow
the same distribution as those in the GUE. The numerical
results for n = 1–3 are presented in Fig. 3 as can be seen, the
fittings are perfect.

IV. HIGHER-ORDER GAP RATIOS

As mentioned in Sec. I, besides the level spacings, an-
other quantity is also widely used in the study of random
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FIG. 2. Distribution of next-nearest level spacings P(s(2) ) in
(a) and next-next-nearest level spacings P(s(3) ) in (b), where α and n
are the indices in Eqs. (16) and (20), respectively.

matrices, namely, the ratio between adjacent gaps {ri =
si+1/si}, which is independent of the local DOS. The distribu-
tion of the nearest gap ratios P(ν, r) is given in Ref. [8], whose

FIG. 3. The distribution of nth order spacings of the nontrivial
zeros {γi} of the Riemann ζ function, where α is the index in
generalized Wigner-Dyson distribution in Eq. (16). The data come
from 104 levels starting from the 1022th zero, taken from Ref. [38].

result is

P(ν, r) = 1

Zν

(r + r2)ν

(1 + r + r2)1+3ν/2
, (22)

where ν = 1, 2, 4 for the GOE, GUE, GSE, and Zν is
the normalization factor determined by requiring

∫∞
0 P(ν, r)

dr = 1.
This gap ratio can also be generalized to higher order, but

in different ways, i.e., the “overlapping” [8,26] and “nonover-
lapping” [28,29] ways. In the former case, we are dealing with

r̃ (n)
i = Ei+n − Ei

Ei+n−1 − Ei−1
= si+n + si+n−1 + · · · + si+1

si+n−1 + si+n−2 + · · · + si
, (23)

which is named the overlapping ratio since there is shared
spacings between the numerator and the denominator.
Whereas the nonoverlapping ratio is defined as

r (n)
i = Ei+2n − Ei+n

Ei+n − Ei
= si+2n + si+2n−1 + · · · + si+n+1

si+n + si+n−1 + · · · + si
. (24)

Both these two generalizations reduce to the nearest gap
ratio when n = 1, but they are quite different when studying
their distributions using Wigner surmise: For the overlapping
ratio r̃ (n)

i , the smallest matrix dimension is (n + 2) × (n +
2); whereas it is (1 + 2n) × (1 + 2n) for the nonoverlapping
ratio. Naively, we can expect the distribution for r̃ (n) is more
involved due to the overlapping spacings. Indeed, the n = 2
case for P(̃r (n) ) has been worked out in Ref. [26], and the
result is very complicated. Instead, for the nonoverlapping
ratio, Ref. [28] provides compelling numerical evidence for
its distribution to follow:

P(ν, r (n) ) = P(ν ′, r), (25)

ν ′ = n(n + 1)

2
ν + n − 1, (26)

Surprisingly, the rescaling relation Eq. (26) coincides with
that for higher-order level spacing in Eq. (17). We have also
confirmed this formula by numerical simulations in our spin
model Eq. (7), and the results for n = 2 in the GOE (ν = 1)
case is presented in Fig. 4 where we also draw the distribution
of overlapping ratio r̃ (2) for comparison. As can be seen,
they differ dramatically, and the fitting for the nonoverlap-
ping ratio is quite accurate. This result strongly suggests the
nonoverlapping ratio is more universal than the overlapping
ratio, and its distribution P(r (n) ) is homogeneously related
with that for the nth-order level spacing, at least in the sense of
Wigner, surmise for which we provide a heuristic explanation
as follows.

For a given energy spectrum {Ei} from a Gaussian en-
semble with index ν, we can make up a new spectrum {E ′

i }
by picking one level from every n levels in {Ei}, then, the
nth-order level spacing s(n) in {Ei} becomes the nearest level
spacing in {E ′

i }, and the nth-order nonoverlapping ratio in {Ei}
becomes the nearest gap ratio in {E ′

i }. Since we have analyti-
cally proven the rescaling relation in Eq. (17), we conjecture
the probability density for {E ′

i } (to leading order) bear the
same form as {Ei} in Eq. (1) with the rescaled parameter α

in Eq. (17). Therefore, the higher-order nonoverlapping gap
ratios also follow the same rescaling as expressed in Eqs. (25)
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FIG. 4. The distribution of the second-order gap ratio in the
orthogonal model where red and blue dots correspond to overlapping
and nonoverlapping ratios, respectively, the latter fits perfectly with
the formula in Eq. (25) with ν ′ = 4. Note the data are taken from the
whole energy spectrum without unfolding.

and (26). For this point of view, numerical evidences are
provided in a recent work of the author [39].

V. CONCLUSION AND DISCUSSION

We have analytically studied the distribution of higher-
order level spacings {s(n)

i = Ei+n − Ei} which describes the
level correlations on long range. It is shown s(n) in the Gaus-
sian ensemble with index ν follows a generalized Wigner-
Dyson distribution with index α = νC2

n+1 + n − 1, where ν =
1, 2, 4 for the GOE, GUE, and GSE, respectively. This results
in a large number of coincident relations for distributions
of level spacings of different orders in different ensembles.
Whereas s(n) in the Poisson ensemble follows a generalized
semi-Poisson distribution with index n. Our derivation is
rigorous based on a Wigner-like surmise, and the results have
been confirmed by numerical simulations from random spin
system and nontrivial zeros of the Riemann ζ function.

We also discussed the higher-order generalization of gap
ratios, which come in two different ways—the overlapping
and nonoverlapping way—and point out their difference in
studying their distributions using the Wigner-like surmise.

Notably, the distribution for the nonoverlapping gap ratio has
been studied numerically in Ref. [28] in which the authors
find a scaling relation Eq. (26) that is identical to the one
we find analytically for higher-order level spacings. This
strongly indicates the distribution of higher-order spacing and
the nonoverlapping gap ratio are correlated in a homogeneous
way, for which we provided a heuristic explanation.

It is noted that the higher-order level spacings have played
an important role in the study of the spacing distribution
in a spectrum with missing levels [40], where the second-
order level spacing distribution in the GOE is derived by a
method different from this paper. Our derivations for P(s(n) )
in Gaussian ensembles are purely mathematical that work for
arbitrary positive values of ν, although ν = 1, 2, 4 for the
GOE, GUE, and GSE are of most physical interest. Therefore,
it is possible for our results to find applications in models
that go beyond the three standard Gaussian ensembles. For
example, the ν = 3 behavior for level spacing has been found
in a two-dimensional lattice with non-Hermitian disorder [41].

It is also interesting to note the distribution of next-
nearest level spacing in Poisson class is semi-Poisson P2(s) ∝
s exp(−2s), which is suggested to be the distribution for near-
est level spacing at the thermal-MBL transition point in the
orthogonal model [20]. This indicates—to leading order—the
universality property of this transition point is more affected
by the MBL phase than the thermal phase, a fact already
noted by previous studies [10,20]. This observation, thus,
motivates a natural question: How will the thermal phase
affect the universality of the MBL transition point? To answer
this question, a comparison between the GOE-Poisson and
GUE-Poisson transition points is suggested, which is left for
a future study.

Last but not least, in this paper, the distribution of higher-
order level spacing is derived only in (n + 1) × (n + 1) ma-
trix, its exact value in a large matrix as well as the difference
between them can in principle be estimated using the method
in Ref. [8], this is also left for a future study.
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