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Nanoparticle lattices with bases: Fourier modal method and dipole approximation
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The utilization of periodic structures such as photonic crystals and metasurfaces is common for light
manipulation at nanoscales. One of the most widely used computational approaches to consider them and design
effective optical devices is the Fourier modal method (FMM) based on Fourier decomposition of electromagnetic
fields. Nevertheless, calculating periodic structures with small inclusions is often a difficult task since they
induce lots of high-k‖ harmonics that should be taken into account. In this paper, we consider small-particle
lattices with bases (complex unit cells) and construct their scattering matrices via discrete dipole approximation.
Afterwards, these matrices are implemented in FMM for consideration of complicated layered structures. We
show the performance of the proposed hybrid approach by its application to a lattice, which routes left and right
circularly polarized incident light to guided modes propagating in opposite directions. We also demonstrate its
precision by spectra comparison with finite-element method calculations. The high speed and precision of this
approach enable the calculation of angle-dependent spectra with very high resolution in a reasonable time, which
allows resolving narrow lines unobservable by other methods.
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I. INTRODUCTION

Electromagnetic metasurfaces representing subwavelength
patterns on a chip are considered one of the most effec-
tive and convenient tools for light manipulation on a chip.
In particular, metasurfaces consisting of deep-subwavelength
nanoparticles are very convenient for the design of structures
with desired properties. Indeed, small nanoparticles have a
dipole response, which makes it easy to understand qual-
itatively the nature of the physical processes occurring in
these structures. At the same time, the choice of dielectric
or plasmonic material, the shape of the particle adjustment,
and the tuning of particle resonances give us wide opportu-
nities in the determination of their optical properties for a
demonstration of bright physical effects and their application
for different purposes. Such metasurfaces have already been
successfully implemented for holography [1–3], demonstra-
tion and implementation of lattice plasmon resonances [4–10],
biosensors [11–13], spin-orbit coupling [14], and many other
purposes.

However, small particles, especially if they are plasmonic
ones, induce high gradients of electromagnetic fields. This
strongly complicates their numerical consideration by the
means of the Fourier modal method (FMM) [15], which is
the most common and natural approach for dealing with
periodic structures. The fact is that FMM, also known as
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rigorous coupled-wave analysis (RCWA) [16], is based on
Fourier decomposition of electromagnetic fields and therefore
requires us to take into account too many harmonics to de-
scribe a tiny inclusion, which makes it inefficient in this case.
Several approaches partially solve this problem. Li’s factor-
ization rules help to solve the problem of concurrent jump
discontinuities [17]. The adaptive spatial resolution [18,19]
technique also improves the convergence rate for multiscale
problems and particles with a nonrectangular shape. In some
papers the finite-element method was used either for modal
consideration of periodic structures [20] or in combination
with Fourier-based approaches for describing layers with
plasmonic inclusions [21]. However, for deep-subwavelength
particles, an approach based on the consideration of the lat-
tices in the dipole approximation [22–24] is most natural. In
our recent study [23,24], we considered only simple lattices,
but obviously, lattices with several particles in a cell pave the
way for observation of a wide range of physical phenomena.
Auxiliary variation of the relative position and orientation
of particles in a cell and the lattice itself makes it possible
to obtain two-dimensional (2D) crystals with diverse optical
properties.

Here, we expand our approach based on the combination of
discrete dipole approximation (DDA) with FMM [23,24] for
the consideration of lattices with bases (several particles in a
cell in our case). We introduce the concept of the generalized
effective polarizability tensor for several particles in a cell.
An example of the method application is demonstrated in
the paper: the lattice of two nanobars acts as a polarization-
controlled grating coupler, which routes normally incident
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left- and right-hand circular polarization in opposite direc-
tions.

II. LATTICE WITH BASIS

The general idea of the dipole consideration of the lattice
is to substitute the real particle with an ideal point electric
dipole. Its dipole moment P can be found by an application of
the polarizability tensor α̂ of this particle to the background
electric field Ebg at the position of the particle:

Pβ,i = α̂βEbg
β,i. (1)

Hereinafter, we use Latin letters i and j to enumerate the cells
and Greek letters β and γ for particles in a cell. A convenient
approach for the calculation of the polarizability tensor α̂ of
a particle in an arbitrary environment, including one lying
on the interface, was reported in [23,24]. Nevertheless, any
other applicable technique might be used in this case since
this problem is completely independent of all the other com-
putations.

In turn, the background electric field is the sum of the
external electric field E0, which would have been at the
position of the particles for the structure without a lattice, and
the field rescattered by all the neighboring particles in a lattice.
We represent this quantity as a sum of contributions of the
sublattice to which the considered particle belongs and all the
other sublattices:

Ebg
β,i = E0

β,i +
∑

(γ , j)�=(β,i)

Ĝ(rβ,i, rγ , j )Pγ , j

= E0
β,i +

∑
j �=i

Ĝ(rβ,i, rβ, j )Pβ, j

+
∑
γ �=β

∑
j

Ĝ(rβ,i, rγ , j )Pγ , j, (2)

where Ĝ(rB, rA) is the dyadic Green’s function defining
the electric field induced at the point rB by a dipole at
the coordinate rA. The vector rβ,i indicates the position of the
corresponding (β, i)th particle.

Finally, in order to obtain a closed-form expression we rep-
resent the dipole moment of a particle through the background
electric field acting on it and apply Bloch’s theorem to connect
electric fields of different cells by the phase factor:

Ebg
β,i = E0

β,i +
∑
j �=i

Ĝ(rβ,i, rβ, j )e
ik‖(rβ, j−rβ,i )α̂βEbg

β,i

+
∑
γ �=β

∑
j

Ĝ(rβ,i, rγ , j )e
ik‖(rγ , j−rγ ,i )α̂γ Ebg

γ ,i, (3)

where h̄k‖ is an in-plane quasimomentum defined by an
external wave incident on the structure. In this way, equations
on the fields in different cells separate, and their solutions are
connected by the Bloch theorem. Therefore, we consider a
system of equations for an arbitrary cell and omit its index
in the equations below. Denoting sums in an appropriate way,

we express the same equation in matrix form:
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...
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Ĉ11 Ĉ12
...
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0 0
. . .
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⎟⎟⎠

⎛
⎜⎜⎝

Ebg
β=1

Ebg
β=2

...

⎞
⎟⎟⎠, (4)

where

Ĉβγ (k‖) =
{∑

j �=i Ĝ(rβ,i, rβ, j )eik‖(rβ, j−rβ,i ) for β = γ ,∑
j Ĝ(rβ,i, rγ , j )eik‖(rγ , j−rγ ,i ) for β �= γ .

(5)
Tensors Ĉββ , which stand on a diagonal, come from the simple
lattices [23,24] and are well known as lattice sums [22,25]
or dynamic interaction constants [26]. Details on possible
approaches to their calculations in certain environments are
discussed in our papers [23,24] as well. The calculation of
off-diagonal tensors Ĉβγ is considered in Appendix A. Also,
such expressions were considered in several papers devoted to
lattices with complex unit cells [25,27,28].

Although Eq. (5) leaves open the possibility of different
sublattices being located in parallel, but shifted, planes, we do
not consider such cases in this paper. First of all, the presented
approach is developed primarily for the most practical case
of a lattice deposited onto a chip in a single stage, in which
there is obviously no vertical displacement δz. However, if we
consider a structure in which sublattices belong to different
layers and the spacing between them is large enough (at
least 50–100 nm), then its properties can be attributed by
means of FMM via computation of the scattering matrix of
the whole structure from matrices of each layer [29]. Such a
technique remains efficient since the interaction of sublattices
at such distances is mostly determined by a small number
of low-k‖ harmonics and the dipole approximation is valid.
The remaining case of small δz is also tricky enough. If there
is no additional in-plane shift of sublattices, then the dipole
approximation is not valid at all, and even their consideration
as constituents of the same layer cannot help. At the same
time, if the relative in-plane shift is large enough to make valid
the dipole approximation and the lattices are not separated
by any interface, then most likely, we can just neglect out-
of-plane shift δz, which brings us to the considered case.
Guided by these reasons, we conclude that it makes no sense
to include the consideration of rare, very specific cases at the
cost of complicating all the derivations.

In order to emphasize that the considered lattice is com-
plex, we denote the analog of effective polarizability, which
connects the dipole moments of the particles with correspond-
ing electric fields acting on them, as ℵ̂:⎛

⎜⎜⎝
Pβ=1

Pβ=2

...

⎞
⎟⎟⎠ = ℵ̂

⎛
⎜⎜⎝

E0
β=1

E0
β=2

...

⎞
⎟⎟⎠, (6)
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FIG. 1. Calculation of the scattering matrix of a plasmonic lattice
in the dipole approximation. (a) Nanoparticle lattice in a layered
medium. (b) Calculation of the external field at the position of
nanoparticles (red points) in the layered medium without nanopar-
ticles. (c) Calculation of dipole moments of nanoparticles (blue
arrows). (d) Calculation of the local scattering matrix Slocal. In
(a)–(d) dashed lines separate the local dielectric environment of
the nanoparticles (yellow) from the outer dielectric environment
(green). Both local and outer dielectric environments might include
any number of vertically homogeneous layers and interfaces between
them.

where
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⎜⎝
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⎤
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. (7)

This quantity not only enables calculation of the scattering
matrix in the dipole approximation but makes the qualitative
analysis of the main phenomena in such structures convenient
as well. The physical sense of many effects can be understood
from the structure of the matrices introduced above by anal-
ogy with Ref. [27].

III. SCATTERING MATRIX CALCULATION

The introduction of the generalized effective polarizability
of the particle ensemble ℵ makes it easy to calculate the
dipole response of these particles on the given electric field.
However, our final goal is the calculation of the scattering
matrix of the so-called local layer, which contains a plasmonic
lattice with its closest dielectric environment. Here we follow
up on our notations and approach introduced in [23,24] and
report just the required modifications for the consideration of
several particles in a cell.

The basic idea reported in [23,24] is that we need to
artificially insulate the local layer of the lattice from the whole
structure (see Fig. 1). This layer should include the lattice
itself as well as its closely disposed environment (such as an
interface on which it lies) in order to get rid of high-k‖ har-
monics on its boundaries. In other words, the scattering matrix
of this layer will have a very limited number of elements
corresponding to low-k‖ harmonics that cannot be neglected.
This matrix can be represented as the sum of two terms: the

first one is a scattering matrix of the background layer, which
corresponds to a structure in the absence of the lattice, and the
second one is obviously a contribution from this lattice:

Slocal = Slocal
0 + δSlocal. (8)

In turn, this addition can be found as

δSlocal = BoutABin, (9)

where Bin helps us to obtain the vector of amplitudes of
up- and down-going waves at the plane of a lattice in the
background layer from amplitudes of the incoming wave
at the boundaries of this layer; the matrix A transfers this
amplitude to discontinuities induced by currents in the
lattice itself, and finally, Bout binds these discontinuities with
amplitudes of outgoing waves on the boundaries of the local
layer. The wonderful fact is that the expressions for Bout

and Bin are exactly the same as in [23,24] for simple lattices
and depend only on the structure of the background layer. A
can be represented as an Â tensor sandwiched between the
material matrix of the background layer F and its inverse:

A = F−1ÂF , (10)

where Â is an analog of A operating not with the waves’
amplitudes but, rather, with field harmonics. In this way, only
the matrix Â, which contains all the information about the
lattice itself, is changed when a lattice contains more than one
particle. However, its structure remains the same as for simple
lattices in the original papers [23,24]. It is easy to understand
that in our case the Â tensor has the following form:

Â = −4π ik0

s

⎡
⎢⎢⎣

0̂ 0̂ K̂x/ε

0̂ 0̂ K̂y/ε

0̂ Î 0̂
−Î 0̂ 0̂

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

��1 �0 �0
�0 ��1 �0
�0 �0 ��1

��2 �0 �0
�0 ��2 �0
�0 �0 ��2

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

†

ℵ̂

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

��1 �0 �0
�0 ��1 �0
�0 �0 ��1

��2 �0 �0
�0 ��2 �0
�0 �0 ��2

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣Î 0̂ 0̂ 0̂

0̂ Î 0̂ 0̂
0̂ 0̂ K̂y/ε −K̂x/ε

⎤
⎦, (11)

where s is an area of a unit cell in real space, k0 is a wave
vector in vacuum, ε is the permittivity of the homogeneous
medium in which the lattice is located (the upper medium for
the case of a lattice on an interface [23,24]), and the dagger
denotes the Hermitian conjugate. Kx and Ky are dimensionless
diagonal operators [15]:

K̂x = 1

k0
diag(ky + �gx ), K̂y = 1

k0
diag(ky + �gy), (12)

where �gx and �gy are 1 × Ng hypervectors of x and y projections
of reciprocal lattice vectors. ��β calculates the electric field at
the position of the βth particle from the Fourier harmonics
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and is set by the following expression:

��β = exp[i(kx + �gx )xβ + i(ky + �gy)yβ], (13)

where (xβ, yβ ) are the coordinates of the β particle inside the
unit cell in real space. In particular, ��†

β can be considered
a partial structure factor (Fhkl in x-ray crystallography)
corresponding to the βth sublattice. We omit the second
index numbering the cells since a particle in any cell can be
considered with the same result.

Referring the reader to [23,24] for the detailed description
of this matrix derivation, here we just describe the purpose
of each multiplier from right to left. First, the amplitudes of
harmonics of the x and y components of electric and magnetic
fields are transformed to harmonics of all three components
of electric fields. After that, we apply the inverse Fourier
transform to determine the electric field at the position of the
particles in a cell and obtain the dipole moment by applying
the already-discussed ℵ. Then, in reverse order, we calculate
the Fourier harmonics of dipole moments and transfer them
to discontinuities in the electric and magnetic fields that they
induce [30–32].

The approach considered in this paper is approximate and
obviously has its limitations. As already mentioned above,
dipole approximation requires particles to be much smaller
than the wavelength and the distance to the nearest neighbors.
The only difference in comparison with simple lattices, which
were thoroughly considered in [24], is the presence of several
particles in a cell, which makes the distance between closest
neighbors less than the period of a structure. Fortunately, this
condition is not very strict [24], in contrast to limits on the
particle size. Indeed, an increase of the particle dimensions or
refractive index of the environment results in the rapid growth
of high-order multipole moments. This means that before
large-scale calculations for relatively large particles we need
to verify that in the considered frequency range the dipole
approximation is valid by some independent approach. Par-
ticularly, the dipole approximation is not enough for the con-
sideration of resonant dielectric particles, which support both
electric and magnetic Mie resonances of close frequencies.
However, the magnetodipole term can potentially be easily
integrated into the presented approach since the corresponding
Green’s functions have a very similar form [22].

Our computational approach allows us to consider a lattice
in the vicinity of an interface in two different ways. The
first approach suggests describing the whole structure via the
combination of lattice and interface scattering matrices. It
is very convenient when the distance δzl−i between them is
relatively large. However, the decrease of δzl−i means that
the particles and their electromagnetic images come closer as
well. At first, this leads to a slight increase in the number of
required Fourier harmonics, and the first approach can still
be used. Nonetheless, the further δzl−i reduction leads to the
distance between particles and their images no longer being
larger than their size, and the dipole approximation is no
longer valid, and the second approach must be used. Namely,
when the lattice lies right on an interface or the distance
between them is 50–100 nm, both the lattice and the interface
should be considered inseparable constituents of the common
local layer. This means that the interface should be taken into

FIG. 2. Schematic of the plasmonic structure with a basis on a
waveguide. All the proportions are shown in the picture in nanome-
ters. Edges of plasmonic nanobars are smoothed out with a 1-nm-
radius chamfer.

account during the calculation of polarizabilities α̂ and lattice
sums Ĉ [24].

The convergence rate of our approach for simple lattices
was considered in [23,24] as well. First of all, the calculation
time of lattice sums Ĉ scales linearly with the number of
summands, which prevents them from being a bottleneck.
Nevertheless, in the case of a homogeneous environment and
lattices on an interface between two homogeneous media, the
diagonal blocks of lattice sums might require the computation
of integrals, which, however, converge rapidly [23,24]. The
calculation of off-diagonal blocks, discussed in Appendix A,
is straightforward and converges asymptotically very fast,
so it does not require thorough consideration. Finally, the
convergence rate of the full scattering matrix, whose com-
putational time scales cubically with the number of Fourier
harmonics, does not significantly depend on the number of
particles in a cell. According to [23,24], its convergence is
dramatically faster in comparison to ordinary FMM, which,
in turn, represents the main advantage of our method.

IV. EXAMPLE: LIGHT-ROUTING PLASMONIC
METASURFACE

The ability to consider plasmonic lattices in a dipole ap-
proximation allows us to observe a large number of exciting
physical phenomena. This flexibility is provided primarily by
the variation of the particle’s shape from symmetric disks to
very elongated nanobars, their orientation, and the relative
position of sublattices. In this way, the superposition of the
optical properties of individual nanoparticles and the geom-
etry of the lattice determines the behavior of guided mode
excitation and, in turn, the spectra of the photonic crystals.

Here we demonstrate the performance of our approach on
a lattice of two nanobars, which supports the effect often re-
ferred to as photonic spin-orbit interaction [33,34]. Our lattice
is placed on a 190-nm-high Si3N4 (εSi3N4 = 4.1) waveguide on
a silica (εSiO2 = 2.1) substrate. Gold nanobars with a size of
80 × 40 × 30 nm3 are positioned according to Fig. 2 and are
described by Johnson-Christy optical constants [35]. In order
to avoid the appearance of strongly localized mesh-sensitive
edge plasmons and simplify the finite-element method
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FIG. 3. In-plane wave-vector and energy dependences of (a) and (d) reflection, (b) and (e) transmission (in the main diffraction order), and
(c) and (f) absorption in (a)–(c) right-handed and (d)–(f) left-handed circular polarizations for the plasmonic structure on a waveguide. Green
and yellow dashed lines correspond to the TE and TM modes of a waveguide without a plasmonic lattice transferred to the first Brillouin zone.
The color scale of (a)–(f) is explained on the right. (g)–(i) Spectra for the normal incidence of light, which corresponds to the kx = 0 section
of angle-dependent spectra. They include a comparison of computations conducted via our approach with conventional FEM calculations in
COMSOL MULTIPHYSICS.

(FEM) calculation of the nanobar’s polarizability tensor and
reference spectra [see Figs. 3(g)–3(i)], which will be consid-
ered below, we smoothed out its edges with a 1-nm-radius
smooth chamfer.

The general concept of the effect was presented in a pio-
neering paper [36], where the authors proposed a 2D periodic
structure consisting of two sublattices of perpendicular slots
in metal. Because of their perpendicularity, normally incident
circularly polarized light is scattered with a π/2 phase shift
by slots that belong to different sublattices. At the same time
the relative shift of a quarter of the period along the x axis
(as in Fig. 2) results in an additional π/2 phase shift in
the excitation of guided modes (surface plasmon polariton
modes in the original paper) propagating along and against
the x axis. Finally, this means that sublattices excite guided
modes that interfere constructively in one direction (in which
phase shifts compensate each other) and destructively in the
opposite one (in which phases add up and result in π shift).
In other words, this structure routes light of each circular

polarization to corresponding guided modes propagating in
opposite directions.

Following the original idea, we illuminate the structure
from above by light of both circular polarizations and observe
the reflection, transmission in the main diffraction order, and
absorption spectra [see Figs. 3(a)–3(f)]. Figures 3(g)–3(i)
show a comparison of spectra obtained by our approach with
reference points calculated by the FEM in COMSOL MUL-
TIPHYSICS. We see that the match is very good across the
whole spectrum and even the narrow lines obtained by both
approaches coincide. Moreover, since the FEM is a numerical
method as well and has its own finite precision, we do not
even know which one is more precise. The difference between
the two approaches can be considered a rough estimation of
an error. However, in the case when each of the alternative
approaches provides precision, which is sufficient to observe
the characteristic phenomena, the issue of computation time
becomes the most essential one. FEM calculations require
high computational power and consume a lot of RAM. That
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is why it takes about a minute to compute one point on a
high-power PC. Our approach requires precomputations of
the polarizability tensor, which take from several minutes to
an hour in COMSOL MULTIPHYSICS depending on the required
accuracy and available computational resources. However,
after that, it becomes possible to obtain six spectra like those
in Figs. 3(a)–3(f), each consisting of 500 × 250 = 150 000
points, for any lattice from the considered particles in ap-
proximately 10 min on a regular laptop. Pictures like those
in Figs. 3(g)–3(i) consisting of 300 points each are plotted in
approximately 1 min.

Figures 3(a)–3(f) show that for circular polarization of
an incident light kx-dependent spectra do not have mirror
symmetry with respect to the kx = 0 plane. Moreover, in
accordance with the symmetry of the structure all the spectra
for left-hand polarized light [Figs. 3(d)–3(f)] are mirror im-
ages of corresponding right-hand circular polarization spectra
[Figs. 3(a)–3(c)]. This phenomenon is clearly seen from the
dispersion curves of the quasiguided modes. Indeed, the TE
mode propagating to the right and the TM mode propagating
to the left are excited by right-hand polarized light and vice
versa for the left-hand one. Thus, we observe the desired
phenomenon of spin-orbit coupling. However, in contrast to
many works on surface plasmon polaritons [36–44], we have
two modes of different polarizations that behave differently as
well. In order to explain the considered phenomena, we build
a toy model in Appendix B. Another exciting phenomenon
is the strong coupling of the localized plasmonic resonance
with TE and TM modes, which is observed on all the spectra.
Most likely, the dipole approximation provides us with a
well-known bound state in the continuum [45] in this case.
However, we leave consideration of these high-quality modes
for further research.

Thus, we have demonstrated that such a structure supports
many interesting physical phenomena some of which can be
implemented for practical purposes. First of all, this lattice
can be used as a grating coupler for normally incident light
toward a single mode, i.e., a single direction, in contrast to
conventional ones. Second, the direction of the coupling is
controlled by the polarization of light, which can be used as
a convenient tool to control light propagation. Moreover, the
excitation of TE and TM modes in opposite directions by a
given circular polarization makes the tool set even larger. This
one single example demonstrates the high diversity of possible
applications that can be considered by means of the proposed
approach.

V. CONCLUSION

In this paper, we have applied a calculation method com-
bining DDA and FMM to consider periodic photonic struc-
tures with inclusions of dipole nanoparticle lattices with
bases. This approach allows obtaining spectra with extremely
high energy and angular resolution as it is much faster than
conventional methods. Direct comparison of spectra with
FEM-calculated ones demonstrated the high precision of the
calculations, which makes the method reliable and applicable
for practical utilization. In particular, our approach is very
useful for plasmonic lattices with bases. This was demon-
strated by considering a lattice supporting photonic spin-orbit

coupling. This structure can be used as a circular polarization
splitter for normally incident light or as a grating coupler
routing TE and TM modes in opposite directions. It shows the
potential of our approach for the design of practical photonic
devices.
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APPENDIX A: CALCULATION OF THE GENERALIZED
DYNAMIC INTERACTION CONSTANT

The concept of a generalized dynamic interaction constant
for the lattice with bases is very important. However, for
its practical implementation in computational approaches, we
need an efficient method for its calculation. Each block of the
whole tensor arising in Eq. (4) has the form defined by Eq. (5).

Since we consider dipole lattices located only in envi-
ronments that are translation invariant in the x-y plane, the
Green’s function can be taken to be a convolution kernel.
This leads to the equality of all the diagonal blocks, which
correspond to the self-action of a certain sublattice since they
do not depend on β:

Ĉββ =
∑
j �=i

Ĝ(rβ,i, rβ, j )e
ik‖(rβ, j−rβ,i )

=
∑
j �=i

Ĝ(rβ,i − rβ, j )e
ik‖(rβ, j−rβ,i )

=
∑
j �=i

Ĝ(ti− j )e
−ik‖(ti− j )

=
∑
j �=0

Ĝ(t j )e
−ik‖(t j ), (A1)

where t j is the jth translational vector of the lattice. Their
calculation has already been discussed in many papers, and
one of the approaches was considered in our work [23,24].
The calculation of off-diagonal blocks is much easier since the
summation is held over the whole lattice without exclusions:

Ĉβγ (k‖) =
∑

j

Ĝ(rβ,i, rγ , j )e
ik‖(rγ , j−rγ ,i )

=
∑

j

Ĝ(rβ,i − rγ , j )e
ik‖(rγ , j−rγ ,i )

=
∑

j

Ĝ(rβ − rγ + t j )e
−ik‖t j . (A2)

In principle, the sum above can be calculated as is; how-
ever, in real space the Green’s function decays very slowly,
and therefore, the convergence rate will be poor. The classical
approach to cope with this problem in a homogeneous envi-
ronment was formulated by Ewald [46] and was implemented
in many papers [26,47–49]. Here we decided to apply another,
very easy to implement method, which is applicable for a
lattice placed onto an interface.
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So the sum in (A2) can be expressed as a sum over the
reciprocal lattice via the Poisson formula:

Ĉβγ (k‖) =
∑

j

4π2

s
M̂(k‖ + g j )e

i(k‖+g j )(rβ−rγ ), (A3)

where g j is jth vector of the reciprocal lattice and M̂(k‖) =
1

4π2

∫
Ĝ(r‖)e−ik‖r‖d2r‖ is the dyadic Green’s function in re-

ciprocal space. Nevertheless, the new sum in reciprocal space
converges slowly as well, and some components of the tensor
do not converge at all. This is due to the fact that, tech-
nically, the dyadic Green’s function is not an L2-integrable
function and therefore does not have a Fourier image from
a mathematical point of view. However, high-k‖ harmonics
are mainly associated with a local high-gradient field in the
vicinity of point dipoles. Therefore, if we exclude them with a
smooth low-spatial-frequency filter F (k‖), then the interaction
between particles will remain almost unchanged, whereas the
asymptotic convergence rate can be made as fast as needed:

Ĉβγ (k‖) ≈
∑

j

4π2

s
F (|k‖ + g j |)M̂(k‖ + g j )e

i(k‖+g j )(rβ−rγ ).

(A4)
This formula can be used for practical calculations, but

how does this filtering worsen the result? To figure it out, we
need to return to real space. Indeed, multiplication in Fourier
space is equivalent to a convolution in real space. This means
that we substitute the dipole moment density defined by the
delta function δ(r) with a source distributed in accordance
with the inverse Fourier image of the filtering function f (r) =∫

F (k‖)eik‖r‖d2k‖.
On the one hand, it is obvious that the narrower f (r‖) is, the

more precise the results are; on the other hand, we understand
that in reality the dipole moment is not located at the point,
and therefore, there is no reason to make the distribution area
of a source much smaller than the size of a particle. At the
same time, the wider a filter is in real space, the narrower it
is in reciprocal space, and therefore, the faster convergence is.
The calculation of Eq. (A4) is a relatively fast operation since
all the summands are analytical functions, it does not include
integrals or other costly operations, and, as a result, it does
not limit the speed of calculations. Therefore, we recommend
choosing a relatively narrow filter in real space. A reasonable
half width of f (r‖) for a wide range of problems is 10–20 nm.

The shape of the filter can be arbitrary but has to meet
certain requirements. In reciprocal space F (k‖) should be
equal to unity for small wave vectors and decay to zero for
high ones. This results in a fixed integral

∫
f (r‖)d2r = 4π2

in real space, which corresponds to the preservation of the
total dipole moment (4π2 is determined by the choice of
the constant in the Fourier transform). Also, the width of the
real-space filter should be much smaller than the distance to
the nearest neighbor and wavelength.

For our implementation we have chosen the Gaussian filter
since it provides fast decay in both real and reciprocal spaces:

f (r‖) = 2π

σ 2
e− r2‖

2σ2 , F (k‖) = e− σ2k2‖
2 , (A5)

where σ is a typical half width of the blurred dipole source
in real space. Thus, off-diagonal blocks Ĉβγ can be found as

follows:

Ĉβγ (k‖) ≈
∑

j

4π2

s
e− σ2 (k‖+g j )2

2 M̂(k‖ + g j )e
i(k‖+g j )(rβ−rγ ).

(A6)

APPENDIX B: DIPOLE TOY MODEL

In this Appendix, we develop a toy model based on the
dipole approximation to explain qualitatively the observed
effects in spectra in Fig. 3. We consider a system of equations
on dipole moments analogous to Eqs. (1) and (2), but for
the whole structure, including the waveguide. For practical
calculations, there is no reason to include the waveguide in
the consideration because of the necessity to fix its height and
the material of the substrate, which can be easily varied within
FMM. Also, since the bottom of the waveguide is far from
the lattice, its inclusion in the consideration will not decrease
the number of harmonics or increase the precision. However,
here we are not going to repeat the procedure outlined in this
paper and just focus on the main peculiarities of the obtained
equations and their solutions. In this way, dipole moments of
the particles are determined as a response to a sum of the
electric field induced by external light and field rescattered
by the lattice:[

P1

P2

]
=

[
α̂

wg
1 0

0 α̂
wg
2

]([
E0

1

E0
2

]
+

[
Elattice

1

Elattice
2

])
, (B1)

where indices 1 and 2 correspond to particles positioned at the
(0,0) and (ax/4,−ay/2) coordinates, respectively (see Fig. 2).
Polarizabilities of particles α̂

wg
1,2 should be calculated for the

case where they are placed on a waveguide. However, since
the bottom of the waveguide is far from the particles, we
can assume that α̂

wg
1,2 = α̂1,2 with good precision, where the

latter polarizabilities correspond to particles on an interface
between two half-spaces of different media and were used
in calculations in this paper. Moreover, from the numerical
values of these tensors we know that for the sake of simplicity
it is possible to consider particles uniaxial scatterers:

α̂1 = α

2

[
1 −1

−1 1

]
, α̂2 = α

2

[
1 1
1 1

]
, (B2)

where α is their polarizability along the 80-nm-long side.
Here we consider the illumination of the structure by

normally incident light with energy close to either TE or TM
mode excitation, which corresponds to intersections of the
white dotted line with the green and yellow ones in Fig. 3.
Under the resonant condition the contribution of the lattice
to the background electric field acting on the particles in the
considered cell can be expressed as a sum of fields of two
modes propagating in opposite directions:[

Elattice
1

Elattice
2

]
= A→

[
Ẽ→

1
Ẽ→

2

]
+ A←

[
Ẽ←

1
Ẽ←

2

]
. (B3)

According to the theory of quasinormal modes [50–52] and
especially their application for the case of Fano resonances
in periodic structures [53,54], the amplitude of each mode is
proportional to the product of the particles’ dipole moments
and the field of a conjugate mode (propagating in the opposite
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direction): [
A→
A←

]
= 1

ω − ω̃

1

N

[
Ẽ←

1 Ẽ→
1

Ẽ←
2 Ẽ→

2

]T[
P1

P2

]
, (B4)

where ω̃ is the frequency of the resonant modes, which is
real valued in this case, and N is the normalizing factor.
Substituting Eqs. (B1) and (B3) in the latter equations (B4),
we obtain the following system of equations:[

A→
A←

]
= 1

ω − ω̃

1

N

[
Ẽ←

1 Ẽ→
1

Ẽ←
2 Ẽ→

2

]T[
α̂1 0
0 α̂2

][
E0

1
E0

2

]

+ 1

ω − ω̃

1

N

[
Ẽ←

1 Ẽ→
1

Ẽ←
2 Ẽ→

2

]T[
α̂1 0
0 α̂2

]

×
[

Ẽ→
1 Ẽ←

1
Ẽ→

2 Ẽ←
2

][
A→
A←

]
. (B5)

And we easily solve it:[
A→
A←

]
=

(
(ω − ω̃)N

[
1 0
0 1

]

−
[

Ẽ←
1 Ẽ→

1
Ẽ←

2 Ẽ→
2

]T[
α̂1 0
0 α̂2

][
Ẽ→

1 Ẽ←
1

Ẽ→
2 Ẽ←

2

])−1

×
[

Ẽ←
1 Ẽ→

1
Ẽ←

2 Ẽ→
2

]T[
α̂1 0
0 α̂2

][
E0

1
E0

2

]
. (B6)

The last thing left to do is to substitute the explicit expressions
for polarizabilities and the modes’ fields. The case of TE mode
excitation gives us

ẼTE,�
1 =

[
0
1

]
, ẼTE,�

2 =
[

0
e±i 2π

ax
ax
4

]
=

[
0
±i

]
, (B7)

which results in[
ATE,→

ATE,←

]
= 1/NTE

ω − ω̃TE − α/NTE

[−1 1 −i −i
−1 1 i i

][
E0

1
E0

2

]
.

(B8)

The resonant denominator ω − ω̃ − α/N corresponds to the
hybridized lattice-waveguide resonance. The frequency of the
hybridized resonance is equal to ω̃HR = ω̃ + α/N and is com-
plex because of the losses on leakage and dissipation. Since
polarizabilities of particles are relatively small, this frequency
is typically rather close to the frequency of the original mode
of the waveguide.

Given that Right-handed circularly polarized (RCP) light
normally incident on the structure induces external field
E0,RCP

1 = E0,RCP
2 ∝

√
2

2 [ 1
−i], we obtain

[
ATE,→

ATE,←

]
∝ −(1 + i)

√
2

ω − ω̃TE − α/NTE

1

NTE

[
1
0

]
. (B9)

This means that only the TE mode propagating to the right
will be excited by RCP light. Obviously, the reverse sit-
uation will be observed for Left-handed circularly polar-
ized (LCP) light, which can excite only the left-propagating
TE mode.

The same properties can be demonstrated for the TM mode.
Although the TM mode has a nonzero field component along
z, we consider only the field’s in-plane components since they
are the only ones that interact with the lattice in the framework
of our model:

ẼTM,�
1 =

[
1
0

]
, ẼTM,�

2 =
[

e±i 2π
ax

ax
4

0

]
=

[±i
0

]
. (B10)

These fields result in a very similar expression:

[
ATM,→

ATM,←

]
= 1/NTM

ω − ω̃TM − α/NTM

[
1 −1 −i −i
1 −1 i i

][
E0

1
E0

2

]
,

(B11)

which corresponds to RCP light exciting the left-propagating
TM mode and LCP light exciting the right-propagating one,
which is in accordance with our calculation.
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